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Abstract. Simplicial complexes consist of a set of vertices together with des-

ignated subsets. They can be thought of as embedded in Rn with the induced

metric and topology, where n is large enough that the points can all be geomet-
rically independent. The sets of points spanned by these designated subsets

then form triangles or their higher or lower dimensional analogues according to

some restrictions. By gluing together simplices in various ways, many compact
manifolds can be approximated up to homeomorphism by finite complexes. In

addition, we show that any simplicial complex of dimension n can be realized

in R2n+1 without compromising the basic structure of the complex, regard-
less of number of vertices. Because their component parts are fairly simple,

approximation with simplices can make it easier to compute properties of a
space, such as the Euler characteristic. Continuous maps between spaces can

also be approximated up to homotopy by linear simplicial maps, which map

the simplicial structure of one space into another.
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1. Introduction and Basic definitions

The properties of a space can be more easily understood if we build the space
up through a finite number of smaller spaces, each of which has relatively simple
properties. Similarly, building up functions through a finite number of locally linear
maps defined on these smaller spaces gives an easier way to deal with functions.
Developing the framework for approximating spaces and functions in this way with
homeomorphic simplicial complexes and homotopic simplicial maps is one of the
main purposes of this paper. These tools can then be used to compute homology
and prove more important theorems about, for example, embedding manifolds in
Rn.

Definition 1.1. A set of points {ai}i=0,..,n in Rm is geometrically independent if
whenever
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(1.2)
n∑
i=0

λiai = 0

and

(1.3)
n∑
i=0

λi = 0,

λi = 0 for all i.
By combining the two equations above, we get the equivalent statement that the

set of points {ai} are geometrically independent if the vectors (ai− a0), i = 1, ..., n
are linearly independent.

Conversely, the set {ai}i=0,..,n is geometrically dependent if there exist λ0, λ1, ..., λn
such that the first two equations above hold, but λi 6= 0 for some i. Solving the
second equation for λi and substituting it into the first equation, we get that

(1.4) (λ0 + · · ·+ λn)ai = λ0a0 + · · ·+ λnan,

where neither side of the equation includes a λi term.
Dividing by λ0 + · · ·+ λn, we see that ai can then be written as a linear combi-

nation of the other points, with coefficients ηj such that

(1.5)
n∑
j=0

ηj = 1.

This gives us an equivalent definition of geometric dependence, and we can say
in general that a point b is geometrically dependent on a set of points ai if it
can be written as a linear combination of the ai with coefficients which add up
to 1. From now on we will refer to to geometrically independent points as simply
“independent,” and likewise for geometrically dependent points.

Definition 1.6. Given a set of n + 1 independent points a0, a1, ..., an in Rm, the
set of points dependent on them, with λi > 0 for all i, is called the n-simplex sn,
and the ai are called its vertices.

We could alternatively follow the common practice of defining a simplex as the
set of all dependent points with λi ≥ 0 for all i; however, for this paper we follow
Hilton’s [1] convention of insisting that the λi be strictly greater than 0.

A set of vertices uniquely determines a simplex, since by independence of the
vertices, any point that can be written as a linear combination (with the above
restrictions) is in the simplex, and can only be written one way. We say that a sim-
plex is spanned by its vertices. Also, note that the combination of the conditions
that λi > 0 and that

∑
λi = 1 implies that simplices are points, line segments,

triangles, or higher dimensional generalizations such as tetrahedrons.

Definition 1.7. The boundary ∂sn of a simplex sn is the set of all points d such
that

(1.8) d =
n∑
i=0

λiai,



MAGICAL TRIANGLES 3

where λi = 0 for one or more i, and
∑
i λi = 1.

Definition 1.9. Given a subset of a simplex’s vertices, the simplex spanned by
this subset is called a face of the simplex. Write sn ≺ sm if sn is a face of sm.

Note that a simplex is a face of itself. Proper subsets of vertices form proper
faces, although we will just use the term face in both situations unless there is some
ambiguity.

Definition 1.10. The closure of sn, sn, is the union of a simplex with its boundary.

Note that the condition on simplices that λi > 0 for all i implies that simplices do
not include their boundaries, and are therefore open in the closed simplex defined
by the same vertices.

Proposition 1.11. Simplices are convex.

This is an important reason why simplices are so useful, since it makes finding
homotopies between functions to simplices trivial (use the straight-line homotopy),
provided their images land in the closure of the same simplex.

Proof. Take two points b0 and b1 in a simplex spanned by {a0, .., an}. Then we can
write
b0 =

∑
i λiai, where

∑
i λi = 1 with λi > 0 for all i.

b1 =
∑
i ηiai where

∑
i ηi = 1 with ηi > 0 for all i.

Then the line from b0 to b1 is the set of of d such that

d = t
∑
i

λiai + (1− t)
∑
i

ηiai

=
∑
i

(tλi + (1− t)ηi)ai

for t between 0 and 1.
Since tλi + (1− t)ηi > 0 for all such t, and∑

i

tλi + (1− t)ηi = t+ (1− t) = 1,

d is in sn.
�

sn is convex as well, by a similar argument.
It is clear that a point on the boundary of a simplex belongs to a unique proper

face, since it is in the simplex spanned by the set of ai with coefficients not equal
to 0 in the expression

∑
λiai, and we know all points in a simplex have a unique

representation. Also, any point on a proper face is in the boundary, by our defini-
tion.

Definition 1.12. A geometric simplicial complex K in Rm is a finite set of simplices
in Rm which satisfies two properties:

(1) Let sp and sq be simplices, with sp in K. Then if sq ≺ sp, sq is in K.
(2) Distinct simplices do not intersect.
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From now on, we will abbreviate “geometric simplicial complex” as simply “com-
plex”. The first condition states that a complex includes all the faces of each
simplex, while the second ensures that each point in the complex lies in a unique
simplex.

A closed simplex sn is the simplest example of a complex. Further, any union of
closed simplices constitutes a complex (if intersections are limited to shared faces).
Conversely, since the closure of every simplex is in a complex, any complex can be
written as a union of closed simplices.

Definition 1.13. A subcomplex is a subset of the simplices in a complex such that
(1) and (2) above hold.

Any closed simplex or union of closed simplices constitute a subcomplex. A
special case of this is the n-skeleton:

Definition 1.14. The n-skeleton of a complex is the set of all simplices with
dimension ≤ n.

Ignoring the simplicial structure of a complex, we can consider the underlying
space consisting of points belonging to a complex K with the subspace topology
from Rm. We denote this space |K|, the polyhedron of K. If K ′ is a subcomplex of
K, then |K ′| is called a subpolyhedron of |K|.

Proposition 1.15. If K0 and K1 are subcomplexes of K, then K0∪K1 and K0∩K1

are also subcomplexes.

Proof. For the first part, suppose s is a simplex in K0 ∪K1. Then it is in K0 or
K1. So, (1) is satisfied for s, and the fact that both subcomplexes are part of the
same complex implies (2) is satisfied as well. For the second part, suppose s is in
K0 ∩K1. Then it is in both subcomplexes, and by definition (1) and (2) must be
satisfied for s in both. Thus, K0 ∩K1 is a subcomplex. �

2. Abstract Complexes and Complexes as Spaces

If we think about a complex as a subspace of Rm, we do not really care about
its actual location relative to some set of axes, the order of its vertices or the
relative sizes of simplices. All of the important topological properties of a complex
come from which simplices are connected, and in what way. This information is
determined completely by certain facts about its vertices, as we will show. For this
reason, we define a vertex scheme and an abstract simplicial complex:

Definition 2.1. Given a finite set of vertices, a vertex scheme is a set of subsets
of these vertices. Each subset is called a selected set of the vertex scheme.

Definition 2.2. An abstract simplicial complex consists of sets of vertices and a
way of grouping them, the vertex scheme, which has the property that every vertex
is in some selected set of the scheme, and that every subset of a selected set is also
selected. Each of the selected sets of the vertex scheme is a simplex of the abstract
complex.

Every subset of a selected set is called a face of the original set. Note that,
with our abstract complex versions of the definitions for simplex and face, part (1)
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of definition 1.12 is satisfied, and we do not need to worry about part (2) in an
abstract complex.

We can define the vertex scheme of a geometric simplicial complex by having
the vertices spanning each (geometric) simplex correspond to a selected set in the
scheme. This vertex scheme then has the same properties as in an abstract complex.
These two things show why we use the terms ”face” and ”simplex” in abstract
complexes.

From now on, in addition to geometric simplicial complex, we will also abbreviate
“abstract simplicial complex” as just “complex.” Whether we are referring to an
abstract or geometric complex should be clear from the context, although the two
are often interchangeable.

Example 2.3. The vertex scheme for a geometric complex consisting of a single
2-simplex would be: {{a0, a1, a2}, {a0, a1}, {a0, a2}, {a1, a2}, {a0}, {a1}, {a2}}.

Definition 2.4. The set of vertices in an abstract complex can be associated with
a set of points {ai} in Rm through a bijective correspondence. If the points corre-
sponding to each selected subset are independent, then the vertex scheme V of the
abstract complex determines a complex in Rm called the geometric realization of
V , |V |. The realization consists of the sets of points of the form

∑
i λiai such that

(1) λi > 0 for all i
(2)

∑
i λi = 1

(3) If for some point a, λi1 , ..., λik is its complete set of non-zero coefficients,
then their corresponding {ai1 , ..., aik} is a selected set of the scheme.

(1) and (2) say that |V | includes all points dependent on the vertices in V , and
all boundary points. (3) says that, if a point is on the boundary of |V |, then it lies
on the face of some simplex.

Definition 2.5. A vertex transformation is a map v : V (K)→ V (L), where V(K)
is the vertex set of K, between vertices in an abstract or geometric complex K to
vertices in an abstract or geometric complex L, which maps simplices to simplices.

Definition 2.6. A simplicial map g : K → L, K,L geometric complexes, is the
linear extension of a vertex transformation v to the interiors of simplices. Because
it acts as a vertex transformation on vertices, it maps simplices in K to simplices
in L.

Proposition 2.7. Any abstract simplicial complex with vertex scheme V can be
geometrically realized in Rm for some m.

The idea is just to place each vertex in the abstract complex into one higher
dimension than the previous vertices. This ensures geometric independence, and
therefore that simplices will not intersect. We can then just take the subcomplex
consisting of the faces that are selected for in V as our realization.

Proof. Let {bi}i=0,...,p be the vertices of a single p-simplex sp in Rp+1, where p+ 1
is the number of distinct vertices ai in the abstract complex. Define a simplicial
map v by v(ai) = bi. Then the subcomplex of sp consisting of the simplices spanned
by the selected subsets of V satisfies the two properties of a complex, and thus is a
realization of the abstract complex. �
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Definition 2.8. If there exists a vertex transformation between two abstract com-
plexes whose inverse exists and is also a vertex transformation, the complexes are
said to be isomorphic.

This says that isomorphic complexes are essentially the same complex with re-
named vertices, since if the inverse of a vertex transformation v exists and is also a
vertex transformation, v must be bijective. Now we can prove our earlier assertion
that all of the important topological properties of a complex arise from the vertex
scheme.

Theorem 2.9. Isomorphic abstract complexes have homeomorphic realizations.

Proof. Let K and L be the geometric realizations of two isomorphic abstract com-
plexes. We know the abstract complexes have a bijective vertex transformation v
between them. We can then linearly extend v to a continuous simplicial map f
from K to L. f−1 is then just the extension of v−1, and so is also continuous and
therefore a homeomorphism. �

Many spaces can easily be approximated up to homeomorphism (and therefore
homotopy equivalence) by a complex. For example, the sphere Sn is homeomorphic
to ∂sn+1, by simply putting ∂sn+1 inside the sphere and projecting onto it.

Theorem 2.10 (Simplicial Embedding Theorem). An abstract simplicial complex
K with dimension n can be realized in R2n+1.

Proof. This theorem is mainly a statement about the number of independent vec-
tors needed to uniquely represent points in any two pairs of simplices. By definition,
we need to find a set of points in R2n+1 that we can map the vertices in our abstract
complex to, and which form a geometric complex themselves by satisfying condi-
tions (1) and (2) in definition 1.12. So, we require that the closure of every abstract
simplex is realized, and no two simplices intersect. If we can realize the closure of
every simplex individually, then condition (1) will be taken care of, because every
complex is the union of its closed simplices. However, this is a trivial task, since by
definition the highest dimensional simplex in the abstract complex has dimension
n, and thus can be realized in n dimensions, much less than 2n+ 1.

The second condition is more difficult to satisfy. If two simplices intersect, then
the points in their intersection can be written as linear combinations of two differ-
ent sets of vertices. However, if we can find enough independent sets of points to
ensure that no two n-dimensional simplices intersect, then it follows that three or
more n-dimensional simplices will certainly not intersect, and also that no two (or
more) p- and m-dimensional simplices, with m, p ≤ n, will intersect either. So, it is
just pairs of simplices that we need to worry about, specifically pairs of n-simplices.

Each n-simplex has n+ 1 vertices, and so requires n+ 1 geometrically indepen-
dent points in Rp to be realized. We require that an n-simplex’s intersection with
any other individual simplex be empty. The worst case scenario is that the complex
contains more than one n-simplex, so we want that every set of 2(n+ 1) = 2n+ 2
points be geometrically independent. We know that the smallest Rp for which we
can find 2n+ 2 independent points in R2n+1, but can we find an arbitrary number
of points in R2n+1 such that any 2n+2 of them are independent? The answer is
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yes, by the following method:

Recall that 2n + 2 independent points is equivalent to having 2n + 1 linearly
independent vectors. We know that we can find a set of 2n+1 linearly independent
vectors in R2n+1, but not in any dimension less than this. Take the union of
subspaces spanned by every set of 2n of these vectors. Since no finite union of
subspaces with dimension less than the dimension of the whole space can equal the
whole space, we can create a new vector in the space whose span does not intersect
any of the previously created subspaces (except at 0). This vector is then linearly
independent of any other set of 2n vectors. Thus we now have 2n+ 2 vectors, such
that any 2n+1 of them are linearly independent. This corresponds to having 2n+3
points, such that any 2n+2 of them are independent. We can continue this process
as long as we want, provided the number of vectors stays finite. In this way, we can
create an arbitrary number of points such that any 2n+2 of them are independent.
By the above, K can then be realized in R2n+1. �

Note that the same argument shows that if K only contains one n-dimensional
simplex, and its next highest simplex has dimension m < n, then we can realize
it in Rn+m+1. According to Hilton [1], this theorem is “an essential step in the
proof that a compact n-dimensional metrizable space [such as a manifold] can be
embedded in R2n+1.”

3. Barycentric Subdivision

In this section, we will define some concepts that will prove useful in the next
two sections.

Definition 3.1. The barycenter of a simplex is literally its center of mass (from the
Greek word barus, meaning “heavy”), assuming all vertices are weighted equally.
It is given by the equation

(3.2) b =
1

n+ 1

n∑
i=0

ai

Definition 3.3. The barycentric subdivision of an abstract complex K is a new
complex K ′ defined as follows. For each simplex s with vertex set a0, a1, ..., an, for
each selected subset {ai0 , ai1 , ..., aik} of this set, create a vertex of the form bi0,...,ik
(the ij subscript corresponds to the vertex aij in the selected set). For example,
if {ai0 , ai1} = {a2, a3} is a selected set, then we would create a new vertex labeled
bi0,i1 = b2,3. Then, forgetting about the old set of vertices, we define the selected
sets of the new set of b vertices by the following rule: if a set of vertices can
be arranged so that the subscripts of each are contained in the subscripts of the
preceding vertex, then that set is selected. For example, the three vertices b1, b1,5,7,
and b1,7 form a selected set, since they can be arranged as b1,5,7, b1,7, b1.

Note that since the original vertices each formed their own selected set, we have
that b0 = a0, ..., bn = an. Also, we can repeat this process as many times as we
like, forming a new complex each time. The rth subdivision will be denoted K(r).
The new vertices could be embedded in a higher dimension than that of the old
simplex which they came from, but by the way we have defined the selected sets, we
can embed them in the same subspace as the original simplex by associating each
bi0,...,in to the barycenter of the simplex spanned by aio , ..., ain . The embedding
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map defined in this way on the vertices and linearly extended to the interiors of the
simplices in K ′ is bijective and continuous, and therefore has a continuous inverse,
making it a homeomorphism between the old polyhedron and the newly subdivided
polyhedron. Thus, subdivision does not change the polyhedron or underlying space
of a complex.

Definition 3.4. The mesh of a complex K, denoted µK, is the greatest distance
between any two points in the closure of the same simplex.

Note that, given any two points in the same simplex, we can move them farther
apart by pushing them onto the boundary of the simplex. We can then move them
even further apart by sliding them one at a time along a face of the boundary in a
line, until they reach a vertex. For some vertex, moving them in any other direction
would bring them closer to each other, since the simplex is convex. Since any two
vertices in a simplex are connected by a 1-simplex which is part of the complex,
the mesh of a complex is equal to the length of the longest 1-simplex.

Theorem 3.5. If K is a simplicial complex with dimension ≤ n, and K ′ its first
barycentric subdivision, µK ′ ≤ n

n+1 µK.

Proof. As mentioned above, the mesh of K ′ is equal to the length of the longest
1-simplex. 1-simplices in K ′ are lines extending from the barycenter of a simplex
s in K to some point on the boundary (the barycenter of a face of s). If b is the
barycenter of any simplex, then the longest line from b to any point on the boundary
occurs when the endpoint is a vertex, since we can always just slide the endpoint in
some direction along a straight line to increase the length of the segment, until we
get to a vertex. Call this vertex a0. For a k-dimensional simplex, the vector from
b to a0 is:

b− a0 =
1

k + 1

k∑
i=0

(ai − a0)

The length of this vector is |b− a0|. By the triangle inequality,

|b− a0| ≤
1

k + 1

k∑
i=1

|ai − a0|

But |ai − a0| ≤ µK, so the above equation is less than k
k+1µK (note that we

begin at i = 1, since the first term is just 0). Since dim K ≤ n, the largest this
could be is n

n+1µK. �

Note that since n
n+1 < 1, and barycentric subdivision does not increase the

dimension of a complex, we can use repeated subdivision to get the mesh of a
complex as small as we like.

Definition 3.6. Recall that every point x in a complex belongs to a unique simplex,
since simplices do not intersect. This simplex is called the carrier of x.

4. Homotopy on Complexes

One of the main reasons building a space with a simplicial complex is useful is
that a lot of homotopy facts are easier to prove on complexes. Homotopy equiv-
alence between two spaces is in some sense a weaker equivalence than homeomor-
phism because two homeomorphic spaces are homotopy equivalent by definition,
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but the converse is generally not true. An example is the unit disk in R2, which is
homotopy equivalent to a point, but not homeomorphic, since any open set in the
disk must map to the closed point.

It is easy to show that for f, g : X → Y , f homotopic to g (denoted f ' g), is an
actual equivalence relation in the set of maps from X to Y . Reflexivity and symme-
try come straight from the definition, and transitivity can by shown by composing
the homotopies and running them each at twice the speed. Similarly, homotopy
equivalence between two spaces is an equivalence relation on the collection of spaces,
although proving this requires a lemma.

Lemma 4.1. If f0, f1 : X → Y , and f0 ' f1, then for any continuous function
g : Y → Z, g ◦ f0 ' g ◦ f1. Similarly, if h : Z → X, then f0 ◦ h ' f1 ◦ h.

Proof. For the first part, let H be the homotopy between f1 and f0. Define
H ′ : X × I → Z by H ′ = g ◦ H. Then H ′ is continuous, and provides the ho-
motopy we seek.

For the second part, again let H be the homotopy between f1 and f0. Define
H ′ : Z × I → Y by H ′(z, t) = H(g(z), t). H ′ is continuous by continuity of g, and
is a homotopy. �

Proposition 4.2. Homotopy equivalence between spaces is an equivalence relation

Proof. Obviously a space is equivalent to itself, and X ' Y implies Y ' X, by
definition. Suppose X ' Y and Y ' Z, with maps f : X → Y, g : Y → X,h : Y →
Z, v : Z → Y . Then our map from X to Z is hf and our map from Z to X is gv.
We know that vh ' idY , so gvhf ' g(idY )f = gf ' idX . Similarly, fg ' idX , so
hfgv ' h(idX)v = hv ' idZ .

�

Definition 4.3. Let Y be a subspace of X. Then a map r : X → Y is called a
retracting map if r restricted to Y is the identity on Y (written r|Y = idY ). Y is
called a retraction of X.

Definition 4.4. A function f : X → X acts relative to a subspace A ⊂ X if
f |A = idA.

Definition 4.5. Y is a deformation retract of X if there exists a homotopy H :
X × I → X relative to Y such that H(x, 0) = x and H(x, 1) ∈ Y for all x. H1

is clearly the embedding of a retraction into X, and so we can see that H is a
homotopy between the identity on X and i ◦ r for some retracting map r : X → Y
and an embedding i : Y → X. H is called a deformation retraction.

Proposition 4.6. If Y is a deformation retract of X, then Y ' X.

Proof. Let i : Y → X be an embedding of Y into itself as a subspace of X. By
definition of deformation retract, there exists a retraction H : X × I → X and a
retracting map r such that i ◦ r = H1. Thus H itself gives us a homotopy between
i ◦ r and idX . On the other hand, r ◦ i = idY since i just imbeds Y into itself
as a subspace of X, and by definition r acts relative to Y , and therefore leaves it
unchanged. �

Definition 4.7. If s is a simplex in K, then the set of all simplices which have s
as a face is called the star of s, and is denoted star(s).
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Note that star(s) is open in K, since simplices are open.

Theorem 4.8 (Homotopy Extension Theorem). Let f0 be a map from |K| → X,
where |K| is a complex and X is a topological space. Let g be a map from a
subcomplex |L| to X such that g is homotopic to f0||L| by a homotopy

H : |L| × I → X

(where H(x, 0) = f0(x) and H(x, 1) = g(x)). Then we can extend g to a map
g′ : |K| → X such that g′ is homotopic to f0 via a homotopy H ′ : |K| × I → X,
where H ′|(|L| × I) = H.

Proof. Our main goal is just to extend g in a continuous (if arbitrary) way over
|K|−|L|, so that the homotopy between f0 and g in |L| can be continuously extended
over all of |K|. We begin by defining H ′(x, 0) = f0(x) for all x ∈ |K|, and H ′(y, t) =
H(y, t) for all y ∈ |L|. This then gives us a map from {|K|−|L|×0}∪{|L|×I} → X.
Then, as f0 is homotoped to g in |L|, we want the areas around |L| to gradually
change towards g as well, otherwise the extension of g will not be continuous. We
accomplish this by using a neat projection trick to define H ′ on first 0-simplices,
then 1-simplices, and so on until we get to the highest dimensional simplices.

For any vertex a in |K| − |L|, define H ′(a, t) = f0(a) for all t. For simplices in
|L|, the value of every point at time t is already determined by H, so we will only
be concerned with points outside |L|. For any point x at time t in the 1-simplex
between two vertices, take its radial projection from the point (b1, 2), where b1 is
the barycenter of the 1-simplex, and define H ′(x, t) to be the value of its projection
onto {|K| × 0}∪ {K0× I}, where K0 is the 0-skeleton of K. Notice that for points
on faces near a vertex in |L|, their value continuously follows that of the changing
values of the vertex. Now g and our homotopy are defined on 1-simplices. Continue
this technique for 2-simplices and on up to the highest dimensional simplices by
taking the barycenter of each j-simplex and using the projection from (bj , 2) onto
{|K|×0}∪{|Kj−1|×I} to define H ′(x, t) on the j simplices via the j−1 simplices.
This projection is well-defined on all simplices for all t, since the j − 1-skeleton
of a complex contains the boundaries of all the j simplices (so there is something
to project on to), and the projection is just the identity on the boundary. Thus
g′ = H ′1 is an extension of g to |K|, and in creating the extension, we have defined
the desired homotopy H ′ between f0 and g′. �

5. Approximating Functions with Homotopic Simplicial Maps

An additional advantage of approximating spaces with simplicial complexes is
that continuous functions on these spaces can then be approximated arbitrarily
closely with homotopic simplicial maps.

Definition 5.1. Let g : K → L and g′ : K ′ → L be simplicial maps, where K ′ is a
subdivision of K. Then g and g′ are called contiguous if, for simplices s ∈ K and
s′ ∈ K ′, where s′ ⊂ s, whenever g(s) ≺ t for t ∈ L, g′(s′) ≺ t.

Definition 5.2. A simplicial map g : K → L, K,L complexes, is called a simplicial
approximation to a continuous function f : |K| → |L| if, for any x ∈ |K|, g(x) is in
the closure of the carrier of f(x).
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Theorem 5.3 (Simplicial Approximation Theorem). Let K and L be geometric
simplicial complexes, and f : |K| → |L| a continuous map. Then there exists a
linear simplicial map g : K ′ → L, where K ′ is some subdivision of K, such that g
is a simplicial approximation to f .

First let us get an idea about what sort of requirements a simplicial map g needs
to fulfill in order to be a simplicial approximation to f .

Let x be a point in |K|. Then x lies in a simplex s which is contained in the
open set star(a), where a is a vertex of s. Recall that the definition of simplicial
approximation requires only that g(x) land in the closure, rather than interior, of
the simplex that f(x) lands in. Assuming g is a vertex transformation, g takes a
to some vertex t in L. Therefore, we want to define g so that the t it maps a to is
the vertex in L such that f(x) ∈ |star(t)| for all x in star(a). This implies f(x) is
in a simplex which has t as a face, and therefore the closure of the carrier of f(x)
contains t. g maps vertices to vertices, so the easiest way to see where it should
map a given vertex a is to see where f(a) goes, and make sure g(a) gets mapped
to a vertex b in L such that |star(b)| contains f(a). It seems reasonable that a g
defined this way will be close to a simplicial approximation of f .

However, we have three problems. The first is that f may not map the open stars
around every vertex in |K| inside open stars in |L|. The open images of these stars
under f may sprawl across two or more stars in |L|. The second problem is that
we need to make sure that g defined this way is actually a simplicial map (it maps
simplices to simplices), and finally, we must show that if the first two conditions
are met, g is a simplicial approximation. To address the first of these problems, we
begin with a lemma:

Lemma 5.4 (Lebesgue). If K is a compact metric space, then given an open
covering {Ua}a∈A, there exists a δ > 0 such that any subspace of K with diameter
< δ is entirely contained in at least one Ua.

Proof. Let d be the metric in K. Suppose that such a δ does not exist. Then we can
find an open set Vn of diameter 1/n for any n such that it is not contained in any
Ua. Take a point an in each of these sets. Then the set of an forms a sequence in
K which has a convergent subsequence. Call the point this subsequence converges
to a. a is contained in some open set Ua in {Ua}, so there exists some ε > 0 such
that Bε(a) is contained in Ua. But we can find an N1 such that for all n > N1,
d(a, an) < ε/2. Similarly, we can find an N2 such that the Vn around each an has
diameter < ε/2 for all n > N2. Then for all n > max(N1, N2), Vn is contained
in Bε(a), which is contained in some Ua. This contradiction implies that such a δ
must exist. Any such δ is called a Lebesgue number of the covering. �

Now we can take care of the first problem. It is clear that {|star(bi)|}i around
each vertex bi in |L| form an open cover of |L|. Then by continuity of f , the set
f−1({|star(bi)|}i) forms an open cover of |K|. Since |K| is compact and can be em-
bedded in Rn, it is metrizable by the induced metric from Rn. So, we we can apply
the above lemma. Let δ be a Lebesgue number of this covering. We have previously
shown that we can subdivide |K| so that the mesh of |K ′| is arbitrarily small, in
particular less than δ/2. Then the star around any vertex must have diameter less
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than δ and is therefore entirely contained in at least one open set in the cover of |K ′|.

On to the second problem. Fortunately, the proof that g is a simplicial map also
shows us that it is an approximation to f :

Proof of Theorem 5.3. Let x ∈ |K ′|. Then x is in some simplex s, with vertices
{ai}i=1,..,n. So,

x ∈
n⋂
i=1

star(ai)

This implies that

f(x) ∈
n⋂
i=1

f(|star(ai)|) ⊆
n⋂
i=1

|star(g(ai))|

since f(|star(ai)|) ⊂ |star(g(ai))| for all i, by the way we’ve defined g and the fact
that, thanks to our subdivision, f now maps stars of |K ′| into stars of |L|.

The star of a vertex is a set of simplices, so if two or more stars have a non-empty
intersection, then that intersection must contain a simplex. So, if the intersection
of the stars of g(ai) contains the point f(x), then it must also contain the carrier
of f(x), which is some simplex t in |L|. Thus the vertices g(ai) in |L| all lie on the
boundary of the same simplex t, and therefore span a face of t. This proves that
g is indeed a simplicial map, and since g mapped s onto a face of t, g(x) is in the
closure of t, the carrier of f(x). So, g is a simplicial approximation to f .

�

An important result of simplicial approximation is that not only is g linear on
simplices and thus easier to work with than f , but g and f are homotopic by the
straight line homotopy.

Proposition 5.5. Any two simplicial approximations are contiguous.

Proof. If g′ is another simplicial approximation of f , then it must map points in
|K| into the closure of the same simplices that f maps them into, which are also
the same simplices g maps them into. So, g′ must be a simplicial approximation of
g, by defintion. Then for any simplices s ∈ K, s′ ∈ K ′ such that s′ ⊂ s, g(s) is a
simplex in |L|, so g′(s′) is a simplex in the closure of that simplex. Thus, g and g′

are contiguous. �

Proposition 5.6. If f(x) = b, where b is some vertex in |L|, then g(x) = b and g
and f agree exactly at x.

Proof. Note that we know this happens simply because g is a simplicial approxi-
mation to f , and the closure of a vertex is itself, so g must map x onto the same
vertex. However, an explicit proof of this is helpful in illuminating how g behaves.

Since this is obvious if x is a vertex, suppose x is not a vertex. Then x ∈ |star(ai)|
for some set of vertices {ai}. We know that f(|star(ai)|) ⊂ |star(bi)|, where bi is
some vertex in in |L|. We also know f(x) = b for x ∈ |star(ai)|, but the only
star in |L| containing b is |star(b)|. By our subdivision of |K|, f(|star(ai)|) must
lie entirely in some star in |L|, and so it must be in |star(b)|. This is true for all
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i. Thus for all vertices in {ai}, g(ai) = b. Writing x out explicitly, we see that
g(x) = g(λ1a1 + ...+ λnan) = (λ1 + ...+ λn)b = b, since

∑
i λi = 1.

�

Note that the last line in the proof above is true for any x inside the simplex.
This shows that whenever a simplex in |K ′| contains even a single point that f maps
to a vertex, g squashes the entire simplex into that vertex. The same is true for
when f maps a point in a simplex in |K ′| to a face of a simplex |L| (which happens
whenever f stretches the image of a simplex out across two simplices without going
through a vertex); g maps the entire simplex onto that face, by a similar proof: if
there are n vertices in |K| whose stars contain the x which gets mapped to a face,
then there are n − j for some j ≥ 1 vertices in |L| whose stars contain the face
that has f(x) in it. Again, f of the stars around the n vertices (which contain the
vertex itself) each must be contained in the stars around the n− j vertices due to
the restriction caused by where f(x) landed. So, we have that g maps n vertices
in K ′ to the n− j vertices in L whose stars contain f(x), and therefore the whole
simplex gets mapped onto that face by linearity of g.

Also, note that when f maps one or more simplices completely inside the same
simplex in L, g expands each simplex in K ′ to fill the whole simplex in L, by lin-
earity. It is clear that while g and f are homotopic, g may not be a very good
approximation in the sense of mapping points close to where f takes them, since
the simplices in |L| may be arbitrarily big, and thus if g’s approximation to f is to
squash its image entirely into a vertex or edge, the distance from these points to
the same points in the image of f can be arbitrarily large.

This makes it clear that if we want to make g a better approximation in this
sense, we need to subdivide L.

Definition 5.7. Define the distance ρ between two functions f, g : X → Y by
ρ = supx∈X{d(f(x), g(x))}, where d is the metric in Y .

Theorem 5.8. Given any continuous function f : |K| → |L| and ε > 0, there
exists a simplicial approximation g : K(r) → L(s) for some subdivisions r and s
such that ρ(f, g) < ε.

Proof. Subdivide L until µL < ε. Call this subdivision L(s). Then use the simplicial
approximation theorem to find an approximation g to f .Then for any x, g(x) is in
the closure of the simplex f(x) is in, and thus d(f(x), g(x)) < ε. So, ρ(f, g) < ε. �

Another way of saying this is that, if |K||L| denotes the space of all continu-
ous functions from |K| → |L| with the ρ metric above, then the set of simplicial
approximations is dense in |K||L|.

Theorem 5.9. If f, g : |K| → |L| are continuous and ρ(f, g) < δ/3, where δ is a
Lebesgue number of the open covering of |L| created by the stars about its vertices,
then there exists a map v such that v is a common simplicial approximation to both
f and g.

The idea is to get, for every vertex a ∈ |K|, f(|star(a)|) and g(|star(a)|) to land
in the star around the same vertex b in |L|. We do this by making the open sets
in the cover of L smaller so that when we bring it back to K, f and g will always
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map these smaller open sets into the same open star in the original larger cover
of |L|. The simplicial approximation theorem (which defines the approximation
based only on which open stars in |L| f maps open stars in |K| to) then gives us
an approximation to both f and g.

Proof. Note that every non-vertex point in |L| is contained in at least two differ-
ent stars around two different vertices, each of whose boundary contains the other
vertex. Also, note that these open sets extend at least δ in every direction (since
by definition of Lebesgue number, if an open ball with diameter δ is in one of these
stars, with the vertex of the star just inside the boundary of the ball, the entire
thing must be contained inside that star, since no other star contains that vertex).
So, every point in |L| is greater than δ/3 away from the boundary of one of the
stars that contains it, since if a point is less than or equal to δ/3 from the bound-
ary of a star, it is greater than or equal to 2δ/3 from the vertex generating the
star, so it is greater than or equal to 2δ/3 from the boundary of the star gener-
ated by one of the other vertices (the star whose boundary includes the first vertex).

This shows that our covering of |L| by the open stars around vertices in Theorem
2.9 was a bit excessive in that we can trim a δ/3 wide section off from the edges of
all the open stars and still have an open cover. So, for each vertex bi in |L|, define
an open set

Vi = {y ∈ star(bi)|d(y, ∂(star(bi))) > δ/3}
The set of Vi then form an open cover of |L|, so f−1({Vi}i) is an open cover of |K|.
We then proceed as in 2.9: let ε be a Lebesgue number of this cover, then subdivide
K until µK < ε/2. Let ai be a vertex in |K ′|. Now f(|star(ai)|) ⊂ Vi ⊂ |star(bi)|,
but Vi is at least δ/3 away from the boundary of |star(bi)|, so if ρ(f, g) < δ/3, then
g(|star(ai)|) ⊂ |star(bi)| as well. The simplicial approximation theorem then gives
us an approximation to both f and g. �

Note that we could even increase the width of the trimmed section of the open
stars to anything less than δ/2, by the reasoning in the first paragraph. Thus, even
functions such that δ/3 ≤ ρ(f, g) < δ/2 can have a common simplical approxima-
tion.

However, for the final theorem, we only require that functions with difference
less than δ/n for some n <∞ have a common simplicial approximation.

Theorem 5.10. If f0 ' f1, then there exists a sequence of simplicial approxima-
tions g0, g1, ..., gn, where gi : K(ri) → L, such that g0 is an approximation of f0, gn
is an approximation of f1, and gi and gi+1 are contiguous.

We know that f0 can be continuously deformed into f1 via the homotopy H, so
the idea is to split H up into a finite number of discrete steps small enough that the
intermediate function at each step is within δ/3 of the previous function. This way,
we can use the above theorem to produce the desired sequence of approximations.

Proof. Since I×K is compact and H is continuous, H(x, t) is uniformly continuous
with respect to t. So, given ε > 0, there exists a σ > 0 such that |t − t′| < σ
implies |ft(x) − ft′(x)| < ε for all x. In particular, there exists such a σ when
ε = δ/3. So, we can split H into the sequence of functions f0, fσ, f2σ, ..., f1, where
ρ(fiσ, f(i+1)σ) < δ/3. By the previous theorem, any two consecutive functions



MAGICAL TRIANGLES 15

fiσ, f(i+1)σ have a common simplicial approximation gi,i+1. Also, since any two
simplicial approximations of the same function are contiguous, consecutive gi’s in
the sequence of approximations are contiguous. �

Note that non-consecutive gi’s are generally not contiguous. If they were, we
could simply remove the intervening gi’s.
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