
Stallings' Folding Process in (almost) Linear

Time

Carmel Levy

October 16, 2008

Email: carmel1@uchicago.edu

Abstract

We introduce and describe Stallings' Folding Process for determining
minimal free generating sets for �nitely generated subgroups of a free
group and �nd a simple upper bound for the computational complexity
of this process. This result is due to Touikan[1], though we clarify it
considerably. We primarly treat the process combinatorially, although a
topological motivation is brei�y noted. This analysis will use a method
borrowed from computer science designed to maintain a family of disjoint
sets under the union operation, which operates in (almost) linear time
due to Tarjan[3]. We end with a conjecture for a lower upper bound and
a description of the intuition behind it.

1 Free Groups

1.1 Motivation, Terms and Deinitions

To motivate our discussion, we list some terms and de�nitions.

1.1.1 De�nition: Let X be a set of symbols {x1, x2. . . xn}. Let X−1 be
the corresponding set of formal �inverses�, {x−1

1 , x−1
2 ...x−1

n }. A word in
Σ = X∪X−1 is a string of symbols from Σ. A word is considered reduced

if it contains no symbol adjacent to its formal inverse as a subword, i.e.
there is no occurance of xix

−1
i or x−1

i xi as a subword of a reduced word.
Let FX be the set of all reduced words in Σ. FX is a group under the
operation �concatenate and reduce�, e.g., for a, b ∈ X, a · b = ab, and
aba · a−1b = abb. The identity of FX is the empty word, and inverses
are determined accordingly. FX is called the free group on X , with X

the free generating set of FX . We say FX has rank equal to |X|. We
will only deal with �nitely generated free groups in this paper, hence
| X |<∞.

More conceptually, a group is free if it has a generating set in which there are
no relations other than those that can be derived from the cancellation of an

1

element and its inverse[4]. In this paper, we will tend to use this more natural
de�nition to identify whether a set generates a group freely. We now present
two theorems about free groups.

1.1.2 Theorem

|S| = |P | if and only if FS
∼= FP . Speci�cally, for every integer N , there exists

exactly one free group of rank N up to isomorphism, notated FN .
Proof: Since S and P are �nite and of the same size, there is a 1-1 corre-

spondence between their elements. Suppose φ is a matching of the elements in
S = s1...sn and P = p1...pn such that φ(si) = pi. It is simple to extend φ to a
matching of between S′ = S ∪ S−1 and P ′ = P ∪ P−1. Let us further extend
φ to match words in the two sets: Then if w = si1 ...sir

is a word in S′, then
φ(w) = φ(si1)...φ(sir) is a word in P ′ of the same length. Moreover, w has a
subword of the form aa−1 if and only if φ(w) has such a subword. Hence φ
induces a 1-1 correspondence between FS and FP .�

1.1.3 Theorem (Nielsen�Schreier)

Subgroups of free groups are free

Proof: This is a non-trivial proof, and so we will not outline it here. However,
the interested reader can refer to Trees by J.-P., Serre, Springer-Verlag, 1980
for a nice proof using covering spaces.�

Looking at these results, a question presents itself. Given a subset A ⊂ FX ,
we know < A >, the group generated by A, is a subgroup of FX and therefore is
a free group by 1.1.3. But which free group is it? Speci�cally, does < A >= FA?

The simplest way to answer this question would be to �nd a free generating
set for < A >. Note that although, by de�nition, A generates < A >, it may
not do so freely- it is possible that some non-trivial relations exists between the
elemements of A. A free generating set is useful since, by 1.1.2, the size of the
free generating set, a.k.a the rank of the group, gives us the group itself up to
isomorphism. The only question now is, how does one obtain a free generating
set from a given subset of a free group? A priori, there is no good way to
check if a given subset generates freely. For example, suppose X = {a, b} and
A = {a, b, ab}. In this case, since a · b = ab, it is obvious that when we consider
< A > as a subgroup of Fx, < A >∼= F2

∼= Fx. On the other hand, suppose
A = {abba, aa, a−1ba}. Finding the isomorphism class in this case is clearly
non-trivial. One might think that by enumerating all the elements of < A > of
bounded length, we might reasonably expect to �nd any relations that might
exist on the elements of A, but not only would such an algorithm require at
least an exponential amount of time, it would also have no clear termination
point.

The solution provided by Stallings' Folding Process is to encode the gener-
ators graphically, and by compressing the resulting graph� hence storing the
information it encodes in a more compact way� arrive at a graph from which

2

the desired information can simply be read o�. We describe the process be-
low. A rigorous topological formulation can be found in Stallings original paper
[5]. However, to discuss the computational complexity of the process, we need
only look at the process formally- looking a the graph as a combinatorial object
rather than as representing a topologial or algebraic object. Thus, in Section
2, wherein we describe the process, we follow Kapovicha and Myasnikovb [2]
closely.

2 Stallings Folding Process

2.1 Labled Graphs

2.1.1 De�nition (X-Digraph):

Let X ={x1, . . . , xN} be a �nite alphabet. By an X-labled directed graph Γ (also
called an X-digraph or simply an X-graph) we mean the following:

Γ is a combinatorial graph where every edge e has a direction, indicated by
an arrow, and is labled by a letter from X, denoted µ(e). For each edge e of
Γwe denote the origin of e by o(e) and the terminus of e by t(e). If o(e) = t(e),
then e is a loop.

Let Γ and ∆ be two X-digraphs. Then a map π : Γ →∆ is called an X-

digraph map (or simply a graph map) if π takes verticies to verticies, directed
edges to directed edges, preserves lables of directed edges and has the property
that o(π(e)) = π(o(e)), t(π(e)) = π(t(e)) for any edge e of Γ.

Given an X -digraph Γ, we can make Γ into a graph labled by the alphabet
Σ = X ∪X−1. Namely, for each edge e of Γ we introduce a formal inverse e−1

of e with label µ(e)−1 and endpoints de�ned as o(e−1) = t(e), t(e−1) = o(e).
The arrow on e−1points from the terminus of e to the origin of e. For the new
edges e−1 we set (e−1)−1 = e.

When we wish to refer to this new graph, labled by the alphabet Σ, as
opposed to the original, we will denote it Γ̂. However, in most cases we will
abuse this notation and simply refer to it as Γ.

2.1.2 De�nition (Paths)

With Γ̂, we may de�ne the notion a path in Γ. Namely, a path p in Γ is a
sequence of edges p = e1, . . . , ek where each ei is an edge in Γ̂ and the origin of
each ei (for each i > 1) is the terminus of ei−1. In this situation we will say the
origin o(p) of p is o(e1) and the terminus t(p) is t(ek). The length |p| of this path
is set to be k. Also the label of the path is de�ned to be µ(p) = µ(e1)...µ(ek).
Thus, µ(p) is a word in the alphabet Σ = X ∪ X−1. Note that it is entirely
possible that µ(p) contains subwords of the form aa−1 or a−1a for some a ∈ X.
Also, if v is a vertex in Γ, we will consider the sequence p = v to be a path with
o(p) = t(p) and µ(p) = 1(the empty word).

3

2.1.3 De�nition (Folded Graphs)

Let Γ be an X-digraph. We say that Γ is folded if for each vertex v in Γ and
each letter a ∈ X there is at most one edge in Γ with origin v and label a and at
most one edge with terminus v and label a. Note that Γ is folded is and only if
for each vertex v of Γ and each x ∈ Σ there is at most one edge in Γ̂ with origin
v and label x. A vertex v in Γ such that for a label x ∈ Σ there is more than
one edge in Γ̂ with origin v and label x is called a foldable vertex. It is simple
to see that a graph Γ is folded if and only if there exists a foldable vertex v in
the vertex set of Γ. Note that in a folded X -digraph, the degree of each vertex
is at most 2|X|.

We now introduce the concept of graph foldings.

2.2 Graph Folding

Suppose Γ is an X-digraph and e1, e2 are edges of Γ with a common origin and
the same label x ∈ Σ. Then, informally speaking, folding Γ at e1, e2 means
identifying e1and e2 in a single new edge labled x. The resulting graph carries
a natural structure of an X-digraph. A more precise de�nition is given below.

2.2.1 De�nition (Folding of Graphs)

Let Γ be an X -digraph. Suppose v0 is a vertex of Γ and f1, f2 are two distinct
edges of Γ̂ with origin v0 and such that µ(f1) = µ(f2) = x ∈ Σ = X ∪ X−1

(so that Γ is not folded, with v0 a foldable vertex). Let hi be the positive edge
of Γ corresponding to fi (that is, hi = fi if fi is positive or hi = f−1

i if fi is
negative). Note that, depending on whether x ∈ X or x ∈ X−1, the edges f1

and f2 are either both positive or both negative in Γ̂.
Let ∆ be an X -digraph de�ned as follows:
The vertex set of ∆ is the vertex set of Γ with t(f1) and t(f2) removed and

a new vertex tf added (we think of t(f1) and t(f2) being identi�ed to produce
new vertex tf). The edge set of ∆ is the edge set of Γ with the edges h1 and
h2 removed and a new edge h added (we think of h1 and h2 being identi�ed to
produce new vertex h).

The endpoints and arrows for the edges in ∆ are de�ned in a natural way.
Namely, if e is in the edge set of ∆, and e 6= h (i.e., in Γ, e 6= hi) then the label,
arrow, origin and terminus of e identically correspond to those in Γ. Otherwise,
if e = h, then we let o∆(h) = oΓ(h) if oΓ(h) 6= t(f1), t(f2) and o∆(h) = tf if
oΓ(h) = t(fi) for some i. Similarly, t∆(h) = tΓ(h) if tΓ(h) 6= t(f1), t(f2) and
t∆(h) = tf if t(h) = t(fi) for some i.

Thus ∆ is an X-digraph, and we say that it is obtained from Γ by a folding

(or a folding of the edges f1 and f2). We summarize some basic properties of
folding in the following obvious lemma.

4

2.2.2 Lemma

Let Γ1 be an X-digraph obtained by a folding of a graph Γ. Let v be a vertex
of Γ and let v1 be the corresponding vertex of Γ1.Then the following hold:

1. If Γ is connceted, then Γ1 is connected.

2. Let p be a path from v to v in Γ with label w. Then the edgwise image of
p in Γ1 is a path from v1 to v1with label w.

2.2.3 Theorem (Computational properties of Folding)

We present this result as a theorem, as it is less obvious.
Let Γ0 be a foldable, �nite X-graph with foldable edge pair e1, e2 ∈ Γ̂0. Let Γ1

be the graph obtained by folding e1, e2. Let V (Γi) be the vertex set of Γi. Then

|V (Γ1)| ≤ |V (Γ0)|, with equality if and only if both of the ei are loops. Note that

since Γ0 is �nite, then in folding it into Γ1, we always decrease the number of

edges by one.

Proof: First we suppose at most one of the ei is a loop. Then the verticies
t(e1), t(e2) are not the same vertex in Γ̂0, but are identi�ed in Γ̂1. Hence,
|V (Γ1)| = |V (Γ0)| − 1, since all verticies besides t(e1) = t(e2) in V (Γ1) are

identical to thier pre-images in V (Γ0). Otherwise, t(e1) = t(e2) in both Γ̂0

and Γ̂1, and since all other verticies in V (Γ1) are identical to those in V (Γ0),
|V (Γ1)| = |V (Γ0)|. The second statement is an obvious consequence of the
de�nition of folding: by folding, we identify two edges in Γ0 as one in Γ1.

2.2.4 Reduced Words and Reduced Paths

Recall that a word w in an alphabet Σ = X ∪ X−1 is freely reduced if it does
not contain a subword of the form aa−1or a−1a for a ∈ X. Such a word is also
an element of FX , the free group on X. We say a path p in an X -digraph Γ is
reduced if it does not contain subpaths of the form e, e−1 for e in the edge set
of Γ. We end this section with a culminating lemma:

2.2.5 Lemma

Let Γ be an �nite X -digraph, and let v be a vertex in Γ. Then the following
hold:

1. The set L of loops based at v form a group under concatination of paths.

2. Furthermore, by (1), the set µ(L) = µ(p)|p ∈ L is a group under concati-
nation of words.

3. If Γ is foldable, and we fold it into Γ1 then the group µ(L) de�ned on each
of the graphs is the same.

4. If Γ is folded, then for any loop l ∈ L based at v with label µ(l), µ(l) is a
freely reduced word in Σ, [2] and so µ(L) is a free group.

5

2.3 Stallings Folding Process

From here, it is a simple matter to describe Stallings folding process. Let A =
{a1, ...ak} ⊂ FX . We now contsruct Γ0. Draw a base point x0. For each of
the elements ai ∈ A, draw a seperate path pi with t(p) = o(p)= x0, such that
µ(pi) = ai. Note that, topologically, Γ0 is a bouquet of k circles. For example,
in Fig 1, X = {a, b} and A = {abba, aa, a−1ba}:

�g 1
If Γ0 is a folded graph, we are done. Otherwise, we traverse the vertex set

of Γ0, and each time we come upon a foldable vertex v with a foldable pair of
edges, e1 and e2, originating or terminating at v, we fold Γ0 into Γ1:

We
then continue to traverse the vertex set of what is now Γ1, looking for more fold-
able verticies. At the end of a series of foldings, we obtain a folded graph Γ:

Γ0 → Γ1 → . . .→ ΓM = Γ

This process terminates because Γ0 has �nitely many edges and each elementary
folding decreases the number of edges by 1 (see 2.2.3). The output of this
process, Γ, is a folded graph which is independent of the sequence of foldings.
[5, 1]

Lemma 2.3.1

If Γ is a folded graph, and v is a vertex in Γ, and l1, l2...ln are loops based at v,
then µ(l1), µ(l2), ...µ(ln) form a free basis for < A >⊂ FX .

Proof: Take a spanning tree T of Γ, and consider it equivalent to the point
v. Then, take the set of edges ai /∈ T . For each ai, which we can clearly count,

6

we have a loop li based at v. Since Γ is folded, the µ(li) are freely reduced words
in Σ = X ∪X−1 with no non-trivial relations. �

We conclude that, using Stallings folding process, given a subset of a free
group, we can �nd a covering space corresponding to the free group generated by
that subset. The next question is, how e�ciently can we perform this process?

3 Computational Complexity

3.1 Introduction

The key to understanding the nearly-linear algorithm for Stallings' folding pro-
cess is a re-casting of the process as a partitioining of the verticies of the initial
graph Γ0. Namely, in Stallings folding process, we have a series of elementary
foldings:

Γ0 → Γ1 → . . .→ ΓM = Γ

Each fold represents a map πi : Γi −→ Γi+1. Note that each πi induces
an equivalence relation on Γi: for v, u ∈Γi, v ∼ u if and only if πi(v) = πi(u)
in Γi+1. Hence we have an induced map π : Γ0 −→ Γ that, in turn, induces
an equvalence relation on the verticies of Γ0: for v, u verticies in Γ0, v ∼ u if
and only if π(v) = π(u) in Γ. Thus, the whole process of folding Γ0 into Γ
is equivalent to partitioning the set of verticies of Γ0 into equivalence classes
representing the set of verticies of Γ. Initially, looking at the set of verticies
of Γ0, we have a set of disjoint sets, representing equivalence classes, all of size
one. With each successive folding, we merge two equivalence classes (unless we
are folding two loops; see 2.2.3. This has no bearing on our analysis.), until we
reach the end of the process.

Given this point of view, we are left with some important questions: how
do we e�ciently represent disjoint sets under the union operation? How can we
tell if a vertex is folded or not, and, if need be, how do we fold it? How do we
know if the process has terminated? Most of all, what are the operational costs
associated with the answers to these questions? Below, we will answer all of
these questions to the reader's satisfaction.

3.2 Maintaning a Set of Disjoint Sets Under the Union

Operation

This problem has been formulated in a perticularly clear and consise way in
Bushbaum et al. [6], in which the standard solution has been attributed to Tar-
jan [6, 3]. Following Bushbaum et al, who de�nes this as the disjoint set union

(DSU) problem, we are asked to maintain a dynamic partition of a universe U,
initially consisting of singleton sets. Each set has a unique designated element ;
the designated element of a singleton set is its only element. Two operations
are allowed:

makeset(x): Create a new set containing the single element x, previosly in
no set.

7

unite(v, w): Form the union of the sets whose designated elements are v and
w, with v being the designated element of the new set.

find(v): Return the designated element of the new set containing element
v.

This formulation of the problem is perfect for our purposes. To use it,
given the starting graph Γ0, we must �rst build a list of verticies, and for each
v ∈ V (Γ0), store a list of the edges connecting to it, edgelist(v,Γ0) . Once this
list is built, which we can do trivially in O(n), every v ∈ V (Γ0) is represented
in the DSU problem by a singleton set. Then, for every fold πi : Γi −→ Γi+1,
as long as we are not folding two loops together (again, see 2.2.3) we perform a
unite on the two representatives of the two sets that correspond to the verticies
that are being equated. Note that each time we fold two edges e1, e2 ∈ Γ̂, we
are performing the operation unite(find(t(e1)), find(t(e2))).

In the standard solution to the DSU problem, we represent the universe
U by a forest F of rooted trees, each tee representing one of the sets in U,
and each vertex in the tree representing an element of the set. The designated
element of the set is the root of the tree. Within this representation, to perform
unite(v, w), where here v, w ∈ F , we �rst �nd the roots of the trees containing v
and w, and link them together by making one root the parent of the other, with
the root of the tree containing v the root of the newly linked tree. To perform
find(v), we climb the tree containing v, going from child to parent, until we �nd
the root (which is easily identi�ed, as it is de�ned as being its own parent). A
unite operation takes O(1) time. A find takes time porportinal to the number
of verticies on the �nd path. As we can see, the find operation, after the �rst
unite, is potentially much more costly to perform, in terms of computational
complexity. It is therefore in our interest to make the find paths as short as
possible- our ideal forest has short, 'bushy' trees rather than long-limbed, tall
ones.

One way to reduce the length of the �nd paths is called path compression:
after a �nd, make the root of the tree the parent of every other node on the �nd
path. This multiplies lengthens every find operation by a constant multiple,
but makes future �nds on the same tree potentially much shorter. Another way
to reduce the �nd path length is to do balanced unions, a general term for a
group of methods that keep trees short by uniting the 'smaller' of the two trees
onto the 'larger', with the di�erent balanced union methods de�ning 'larger'
and 'smaller' di�erently. For example, in union-by-rank, each root has a non-
negative integer rank, initially zero for a singleton set. To perform unite(v, w),
we make the root of higher rank the parent of the root of lower rank; in case of
a tie, we make either root the parent of the other and add one to the rank of
the remaining root.

The running time of the DSU problem is summarized below:

3.2.1 De�nition (Inverse Ackerman's Function)

This version of the de�nition is due to Tarjan. Let A(i, j) for i, j ≥ 1 be
de�ned by A(1, j) = 2j for j ≥ 1; A(i, 1) = A(i − 1, 2) for i ≥ 2; and A(i, j) =

8

A(i−1, A(i, j−1)) for i, j ≥ 2. Then α(m,n) = min{i ≥ 1|A(i, bm/nc) > log2n}

3.2.2 Theorem (Tarjan)

Given an intermixed sequence of the three set operations, makeset, find, and
unite, of length m, on an initial universe U of n sigleton sets, the set union
algorithm that uses path compression and union by rank runs in O(mα(m,n))
time. [3]

3.3 Observations

Interestingly enough, some simple observations show that the above DSUmethod
is su�cient to perform the entire folding process.

3.3.1 Observation (Constant Bound on Number of Vertex Checks)

Let Γ0 be an X -graph with edges E(Γ0), and |E(Γ0)| = N . Note that if Γ0

is constructed as described in 2.3, and corresponds to a subset A ⊂ FX , with
A = {a1...ak}, then |E(Γ0)| = N =

∑
|ai|. Then, by 2.2.3, each fold we make,

the number of edges in our graph decreases by one. Hence, we will make at
most N − 1 folds to obtain our �nal graph Γ.

3.3.2 Observation (Constant Bound on Complexity of Vertex Checks)

Recall that in Stallings' folding process, we traverse the verticies of an initial
X -graph Γ0, checking each vertex to see if it is unfolded, and if so, folding a
pair of edges originating at that vertex with the same label in Σ = X ∪ X−1.
By the analysis in 3.2, we know that the folding itself is a relatively inexpensive
operation. We are left to analise the process of verifying whether or not a given
vertex is folded. This is a potentially expensive operation. Suppose n = |X|,
and v is the vertex we are checking, with edges {e1...el} originating at v. Then,
a priori, we must check each ei, ej pair to see if ei = ej . Thus, we would

be performing
(

l
2

)
edge comparisons for each of the verticies we check. This

procedure, however, may be done much more e�ciently, indeed, in a constant
amount of time per vertex: Suppose Γ is an X -graph. Then if there is a vertex
v ∈ V (Γ) of degree d(v) > 2|X|, then that vertex is foldable (see 2.1.3). This is

by the fact that a folded vertex is the origin of at most one edge in Γ̂ for each
label in Σ = X ∪X−1. Also, for a given vertex v with edge set {e1...el}, instead
of checking all possible edge-pairs, we may simply go through the ei's, storing
those which we have seen. Thus, for every vertex, we will check at most 2|X|
edges, giving us a constant-time algorithm for checking a vertex for foldability.

3.3.3 Linear-Time contruction of Γ0

The reader may wish to refer back to the contruction of Γ0 given in 2.3. Given
the subset A ⊂ Fx, A = a1...ak, we can construct the initial graph Γ0, in linear
time. We procees by induction on k. Suppose k = 1. Then we are simply

9

drawing one path, p1: We go through each letter in a1, and as long as we are
not on the last letter, we draw a new vertex vi+1 and new edge e with o(e) = vi

and t(e) = vi+1 with appropriate label and arrow. Otherwise, if we have reached
the last letter in a1, we connect the last vertex to the base point, and our loop
is drawn. Now suppose k > 1, and we are drawing pi. Then at the conclusion
of pi, it is a simple matter to check if i = k, and if not, draw pi+1. Thus, since
for each letter in ai we do a constant number of operations, and for each ai, we
do |Ai| operations, Γ0 is drawn in O(

∑
|Ai|) = O(N) time.

The process just described could easily be translated in to the creation of a
list of verticies and thier neigbors, which is all need for the DSU formulation of
our problem.

3.3.4 Conclusion

In conclusion, the computational complexity of Stallings' folding process is near-
linear. Given inputs X and A ⊂ FX , with

∑
|Ai| = N , we can construct Γ0

in O(
∑
|Ai|) = O(N) time, by 3.3.3. Then, we traverse the vertex set of Γ0,

checking each vertex we come upon to see if it is foldable, which takes O(1).
Suppose we makeM folds in the process. A priori, we do no know the size ofM ,
but, as noted in 3.3.1, we do know that M ≤ N − 1. Since the amortized time
of folding and maintentence takes O(Mα(M,N)), and since M < N , we have
O(N) +O(Nα(N,N)) for the computational complexity of the entire process.

4 Conjecture for Linear Time Bound

Here we attempt to draw inspiration from the methods of Bushbaum, et al to
�nd a linear-time bound. As we can see from our analysis in Section 3, the
main place we can shave o� run time is in the �nd operation. To try to use
the techniques of Buchsbaum et al, we need to show two things. First, that we
can order the unions, such that they occur bottom-up. That is, once vertex u
becomes a child of vertex v in the DSU forest, it is never again the argument to
a union. Second, that we can compute the answer to small instances in constant
time.

References

[1] Nicholas W.M. Touikan, A fast Algorithm for Stallings' Folding Process,
Internat. J. Algebra Comput. 16 (2006), no. 6, 1031�1045

[2] Ilya Kapovich and Alexei Myasnikov, Stallings Foldings and Subgroups of
Free Groups, Journal of Algebra Volume 248, Issue 2, 15 February 2002,
Pages 608-668

[3] R. E. Tarjan, Data Structures and Network Algorithms, CBMS 44, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

10

[4] Weisstein, Eric W. "Free Group." From MathWorld�A Wolfram Web Re-
source. http://mathworld.wolfram.com/FreeGroup.html

[5] Stallings, John R. Topology of �nite graphs. Invent. Math. 71 (1983), no. 3,
551�565.

[6] Buchbaum, Adam L.; Gerogiadis, Loukas; Kaplan Haim; Rogers, Anne; Tar-
jan, Robert E.; Westbrook, Je�ery Linear-Time Algorithms for Dominators
and Other Path-Evaluation Problems, Siam Journal on Computing, to ap-
pear.

11

