
ELLIPTIC CURVES OVER C

MICHAEL TRAVIS

Abstract. Elliptic curves are an exciting example of mathematics that is at

the intersection of numerous fields of study. This paper begins by introducing

elliptic curves over R but is more concerned with the field of complex numbers,
continuing through basic theory to showing that complex tori are isomorphic

to complex elliptic curves. I will take a mostly analytic approach, and only a

basic knowledge of complex variables and analysis should suffice to understand
the material.
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1. What Is An Elliptic Curve?

It is perhaps easiest to begin with the most simple definition of an elliptic curve.
The name “elliptic curve” comes from elliptic integrals, which originally arose in
order to find the arclength of an ellipse. Let’s first consider a general field, K of
characteristic not 2, then later consider R and C. Let f(x) ∈ K[x] be a cubic
polynomial with distinct roots, and x and y in the algebraic closure of K. Then
our definition is:

Definition 1.1. An elliptic curve is the locus of points satisfying

(1.2) y2 = f(x)

We will also add the point at infinity (∞,∞) to the curve, which will be discussed
later. The condition that the roots be distinct is required so that the curve is
smooth everywhere. In R, elliptic curves generally look like this:
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Figure 1. Two typical elliptic curves over R

1.1. The Group Law. The first interesting results we run into is that the set of
points of an elliptic curve (and the point at infinity, recall) coupled with a certain
addition creates a group. Consider two points, M1 and M2 on an elliptic curve E.
If you draw a line through these points, it will intersect the curve at a third point
which1, when reflected about the x-axis, we will call M3. It isn’t geometrically
obvious that this method will always yield a third point, but consider that in this
addition a point plus another distinct point can equal the original point. In other
words, the points need not all be distinct. This process gives the sum of two points
on an elliptic curve. In the following figure, M1 + M2 := M3:

Figure 2. The Sum of Two Points on an Elliptic Curve

1In the study of algebraic curves, this is a consequence of Bezout’s Theorem, which states that
the number of intersection points of two curves is equal to the product of their degrees
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Definition 1.3. For E an elliptic curve in a field of characteristic not 2 or 3, let
E be defined as

y2 = x3 + ax + b

Let M1 = (x1, y1) and M2 = (x2, y2) (neither infinity) be on E. Define M1 + M2 =
M3 = (x3, y3) in one of four cases:
(i) If x1 6= x2, then x3 = m2 − x1 − x2, y3 = m(x1 − x2)− y1, where m = y2−y1

x2−x1

(ii) If x1 = x2 but y1 6= y2 or y1 = y2 = 0, then x3 = ∞, y3 = ∞
(iii) If x1 = x2, y1 = y2 6= 0, then x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, where
m = 3x2

1+a
2y1

(iv) Mi +∞ = Mi for any Mi

Remark 1.4. The definition of this operation seems quite cumbersome, but under-
standing the geometric definition described previously is more important. Further-
more, it is beyond the scope of this paper to prove that the set of all points on
E together with this addition defines a group, but it is nevertheless worth noting
that this is, in fact, an abelian group with ∞ as the identity and −M = (x,−y) as
the inverse of M . This inverse is only correct if E is defined as in Definition (1.3).
More general elliptic curves aren’t so simple.

This is really all the introductory material required to understand elliptic curves
over the complex numbers, so let’s move straight to it. These new curves should
be similarly easy to grasp.

2. Elliptic Curves Over C

2.1. Lattices and the Fundamental Parallelogram. To understand elliptic
curves over the complex numbers, we must first investigate lattices. A lattice is
the set of all integral linear combinations of two given complex numbers:

Definition 2.1. Let ω1,ω2 be two linearly independent (considered as two vectors
in R2) complex numbers such that ω1

ω2
has a positive imaginary part–that is, they’re

taken clockwise, heuristically speaking. Then the lattice L associated with ω1, ω2

is defined to be

(2.2) L = {mω1 + nω2|m,n ∈ Z}

Associated with each lattice is a fundamental parallelogram, Π.

Definition 2.3. The fundamental parallelogram for L and α a complex number2

is defined as

(2.4) Π = α + {aω1 + bω2|0 ≤ a ≤ 1, 0 ≤ b ≤ 1}

We are interested in functions on C/L, which can be thought of as functions on C
with a certain periodicity condition. These are the doubly periodic functions. For
the next section, recall that the Riemann Sphere is just the complex numbers C
unioned with the point at infinity, considered to be sitting “on top” (and bottom)
of the imaginary axis.

2After this definition through the end of the paper, α will be set as equal to 0 without loss of
generality
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Figure 3. The fundamental parallelogram Π of a lattice L is periodic

2.2. Doubly Periodic Functions. Given a lattice L and its generating ωi, we can
now define a meromorphic function f from the complex numbers to the Riemann
Sphere such that

(2.5) f(z + ωi) = f(z); z ∈ C

Note that ω1 and ω2 are the two periods of this function, hence the name doubly
periodic. These doubly periodic, meromorphic functions are called elliptic, and
this term will be used primarily from here on out. This function is defined by its
values in Π and opposite sides of the fundamental parallelogram have equal values–
to foreshadow things to come–if you think of gluing opposite edges together this
fundamental parallelogram can be though of as a torus. These functions have many
properties recognizable from complex analysis. The following all assume f , L, and
Π to be defined as above.

Theorem 2.6. If f has no poles on its boundary ∂Π, then the sum of the residues
in Π is 0.

Proof. By the residue theorem, 2πi
∑

Resf =
∫

f over ∂Π. Since f is doubly
periodic, the integrals on opposite sides of ∂Π cancel and the sum is 0. �

Theorem 2.7. If f has no poles in the interior of Π, then f is constant.

Proof. Π is a compact domain, so f is bounded on Π, and since f is doubly periodic
f is bounded in all C. By Liouville’s theorem, f is thus constant since it is a bounded
meromorphic function over C. �

Remark 2.8. An elliptic function can be non-trivial, it simply requires at least two
poles (including multiplicity) by the residue theorem.

Theorem 2.9. If f has no poles or zeroes on the boundary of Π, and {ai} are the
singular points of f in Π where f has order mi at ai, then

∑
mi = 0.

Proof. If f is elliptic, then so are f ′ and f ′/f . Then by the residue formula for
quotient functions we have 0 =

∫
f ′/f = 2πi

∑
Resf = 2πi

∑
mi. �
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Let C/L denote the quotient of the additive group of complex numbers by the
lattice L (a subgroup). A simple group isomorphism from C/L to the unit circle
in the complex plane can be given by f(a + ib) = (e2πia, e2πib). So far we’ve
learned about basic complex elliptic functions, but have no concrete examples. The
following function is just what we need.

2.3. Weierstrass ℘-Function. The most important example of a non-constant
elliptic function in C is the following curious function defined with respect to L:

(2.10) ℘(z) = ℘(z;L) =
1
z2

+
∑

0 6=ω∈L

(
1

z − ω2 −
1
ω2

)

The Weierstrass ℘-function alone gives rise to many of the most important results
of elliptic curves in the complex numbers. We will use it to investigate our most
powerful results in elliptic functions. First, let’s make sure it’s an elliptic function.

Theorem 2.11. ℘(z) converges absolutely and uniformly on compact sets not in-
tersecting L.

Lemma 2.12.
∑
|ω|−k converges if k > 2.

Proof. Let An be the annulus defined by n − 1 ≤ |z| < n. Now let m > 0 be an
integer such that the maximum distance between any two points in Π is less than
or equal to d. Then An is contained within

(2.13) n− 1− d ≤ |z| ≤ n + d

The area of this annulus is C · n for some C. If kn is the number of fundamental
parallelograms (as in Figure 3) of the lattice L which intersect the annulus An,
then the number of lattice points in An is bounded by kn. Then for Π, we have the
following equation:

kn · (Area of Π) ≤ (Area of 2.13) ≤ C1 · n

where C1 = C·(Area of Π) > 0, such that the number of lattice points in An ≤ C ·
n. Then we have for n less than an arbitrarily large N

(2.14)
∑
|ω|≤N

1
|ω|k

�
∞∑
1

n

nk
=

∞∑
1

1
nk−1

which converges for k > 2. �

Proof of Theorem 2.11. Now rewrite the ℘-function as one fraction

(2.15) ℘(z) =
z(2ω − z)

(z − ω)2(w)2

Now on a compact set C, let M =Max{|z| |z ∈ C} and |ω| ≥ 2M . Then |z − ω| ≥
|ω|/2 and |2ω − z| ≤ 5|ω|/2, so we have

(2.16)

∣∣∣∣∣∣ 1
z2

+
∑

0 6=ω∈L

(
1

z − ω2 −
1
ω2

)

∣∣∣∣∣∣ =
∣∣∣∣ z(2ω − z)
(z − ω)2(w)2

∣∣∣∣ ≤ M(5|ω|/2)
|ω|4/4

=
10M

|ω|3

By the preceding lemma, this sum converges so the theorem is proven. �
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Inspecting our function more carefully, we see that ℘(z)− (z − ω)−2 is continuous
for all z except at lattice points z = ωi, thus ℘(z) is meromorphic with a double
pole at each lattice point. Replacing ω by −ω and z by −z in the equation leaves
the sum the same and thus ℘(z) = ℘(−z) so the Weierstrass function is even. Next,
we take the derivative (term-by-term)

(2.17) ℘′(z) = −2
∑
ω∈L

1
(z − ω)3

The derivative function is doubly periodic since replacing z by z+ω0 just rearranges
the sum and in fact it is odd, which is even easier to spot. Then ℘′(z) is an elliptic
function.

Theorem 2.18. ℘(z) is doubly periodic.

Proof. We know that the derivative is doubly periodic, so for i = 1, 2 we have
℘′(z + ωi)−℘′(z) = 0, so therefore ℘(z + ωi)−℘(z) = C for some constant C. Let
z = − 1

2ωi and we have ℘(ωi

2 ) = ℘( (ωi

2) ) + C, but since ℘ is even C = 0. �

One of the truly superb properties of the Weierstrass function is that it and its
derivative generate any and all elliptic functions in C. Since ℘′(z) is odd, for any
odd f the product f · ℘′(z) is a new even elliptic function. Then we want to show
that any elliptic function f can be represented as a rational function of ℘ and ℘′

using the fact that any function can be written as the sum of an even and an odd
function:

f(z) =
f(z) + f(−z)

2
+

f(z)− f(−z)
2

Theorem 2.19. If f is any elliptic function periodic with respect to a lattice L,
then f can be expressed as a rational function of ℘ and ℘′.

Proof. As described above, it is sufficient to prove that if f is even, it is a rational
function of ℘. For this proof, we must define a modified fundamental paralellogram
with two sides removed, Π′.

(2.20) Π′ = {aω1 + bω2 | 0 ≤ a < 1, 0 ≤ b < 1}
Every point in C differs by a lattice element from exactly one point in Π′. Now, we
are interested in the zeroes and poles of f in order to generate a new function in
terms of ℘, so let’s list those in a special way. If 0 is a zero or pole of f , it will be
omitted, and each other zero or pole will be listed as many times as its multiplicity.

Suppose that a 6= 0 is in Π′ and a zero of f(z), but is not half of a lattice point.
That is, a 6= ω1

2 , ω2
2 , or (ω1+ω2)

2 . Define a∗ to be a∗ = ω1 + ω2 − a if a is in the
interior of Π′, or a∗ = ω1 − a or a∗ = ω2 − a, respectively, if a is on one of the two
sides of Π′. By double periodicity and the evenness of f , if a is a zero of order m,
then so is a∗. This is seen because

f(a∗ − z) = f(−a− z) = f(a + z)

and then writing f as a power series implies that a∗ is a zero of order m as well.
Now suppose a is a zero of f(z) in Π′ but is half a lattice point. Without loss of
generality, let a = ω1

2 . Then f(a + z) = f( 1
2ω1 + z) = amzm+ higher terms, and

f( 1
2ω1−z) = f(− 1

2ω1 +z) = f( 1
2ω1 +z) by double periodicity and evenness. Thus,

the order of the zero m is even. Let ai be the list of the zeroes of f(z) in Π′ which
are not half-lattice points, each listed as many times as its multiplicity, but only
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one taken from each pair a, a∗. If one of the three possible half-lattice points is a
zero, include it in the list half as many times as its multiplicity. Let bj be the list
of nonzero poles of f(z) in Π′, counted in the same way as the zeroes so that only
“half” of them appear. Since all the elements of these two lists are nonzero, ℘(ai)
and ℘(bj) are finite and we can define a new elliptic function

(2.21) g(z) =
∏

i ℘(z)− ℘(ai)∏
i ℘(z)− ℘(bj)

Then g(z) has the same zeroes and poles of f(z), counting multiplicity. To see
this, let’s examine the nonzero points in Π′. Since 0 is the only pole in the numerator
or denominator of g(z) we have that the zeroes of g(z) come from the zeroes of
℘(z) − ℘(ai), while the nonzero poles must come from the zeroes of ℘(z) − ℘(bj).
Since ℘(z)−u for a constant u has a double zero at z = u if u is a half-lattice point
or a pair of simple zeroes at u and u∗, these are the only zeroes of ℘(z)− u in Π′.
Then by construction f(z) and g(z) have the same zeroes and poles with the same
orders everywhere in Π′ with the possible exception of 0. But since we can choose
our α wisely as in (2.3), the point at 0 can be disregarded.

Now then we have that f(z) = cg(z) for some constant c, but by Theorem 2.7
the ratio of two elliptic functions with no poles in the fundamental parallelogram is
constant, so g(z) is defined entirely in terms of ℘(z): we have proved the theorem.

�

This theorem tells us some useful things about any elliptic function we choose,
but let’s focus on ℘′(z). Recall from (2.17) that ℘′(z) has a triple pole at 0 and
three simple zeroes, so that a corollary of this theorem is that ℘′(z)2 is a cubic
polynomial in ℘(z). Now the double zeroes of ℘′(z)2 are ω1

2 , ω2
2 , and (ω1+ω2)

2 ; these
are the ai’s. Now calling these e1, e2, and e3, respectively, yields a pretty equation
expressible in terms only of a constant C, ℘(z), and the ei’s.

(2.22) ℘′(z)2 = C(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

Now we want to find what C is. The way to do this is to compare powers of z
near the origin, but first recall that ℘(z)−z−2 and ℘′(z)+2z−3 are both continuous
at the orgin. So the leading term on the left of (2.22) is (−2z−3)2 = 4z6, while on
the right it is C(z−2)3 = Cz−6, so C = 4. Now we can rewrite (2.22) as a more
general differential equation:

(2.23) ℘′(z)2 = f(℘(z)),where f(x) = 4(x− e1)(x− e2)(x− e3) ∈ C[x]

Another common way to write this cubic function f is

(2.24) f(x) = 4x3 − g2x− g3.

The gi’s depend on L but deriving them requires some truly hideous algebra, so
one should check my sources for a very in-depth discussion on the subject.

3. Complex Elliptic Curves are Tori

3.1. Complex Projective Space. We need one final concept before reaching our
ultimate goal of equating elliptic functions with tori. This is the complex projective
space, often notated CPn. We’ve actually been working in a projective space–the
Riemann sphere is CP1–but now to more precisely give the isomorphism we seek,
it is necessary to switch to CP2.
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Definition 3.1. The Complex Projective Plane, CP2 is a set of equivalence classes
[z1, z2, z3] of ordered triples (z1, z2, z3) ∈ C3\(0, 0, 0) under the equivalence relation
(z1, z2, z3) ∼ (z′1, z

′
2, z

′
3) if (z1, z2, z3) = (λz1, λz2, λz3) for some nonzero complex λ.

This space is not too hard to visualize. As stated before, CP is the Riemann sphere.
Dividing each zi by z3 gives the equivalent coordinates ( z1

z3
, z2

z3
, 1) for z3 6= 0 and

the point at infinity introduced in the beginning is (0, 1, 0). Going back to the
definition of the group law and the result of Bezout’s Theorem, it is perhaps now
more clear why a line through any two points will intersect a third point on the
curve counting multiplicities.

Figure 4. The sum of the two intersection points of the line x=1
with the curve is the point at infinity

3.2. The Isomorphism. We now have all the tools we need to see that there is
an analytic one-to-one correspondence between the complex torus C/L and y2 =
4x3 − g2(L)x− g3(L) in CP2, though I will not prove it. The map that gives this
wonderful correspondence can be written as

(3.2) z 7→ (℘(z), ℘′(z), 1) for z 6= 0; 0 7→ (0, 1, 0).

By our equation (2.24) we know that the image of any nonzero z is in the xy-
plane satisfying y2 = f(x), and the point z = 0 maps to the point at infinity. In
fact, every x-value except for the ei’s and infinity have exactly two z’s such that
℘(z) = x. The values y = ℘′(z) coming from these z’s are the square roots of
f(x) = f(℘(z)). If xi is a root of f(x), then there is only one z such that ℘(z) = xi

and yi = ℘′(z) = 0 so this map is one-to-one. The inverse map is constructed
by taking path integrals from a fixed starting point to a variable endpoint. The
integrals change only by a lattice element if the path changes, so the map is well-
defined. For more information on this mapping, see one of my sources (or google
it).
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