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XII

ARISTARCHUS OF SAMOS

Historians of mathematies have, as a rule, given too little
attention to Aristarchus of Samos. The reason is no doubt
that he was an astronomer, and therefore it might be supposed
that his work would have no sufficient interest for the mathe-
matician. The Greeks knew better; they called him Aristar-
chus ‘ the mathematician’, to distinguish him from the host
of other Aristarchuses; he 1s also imcluded by Vitruvius
among the few great men who pnssv.ssml an equally profound
know l«-«lg(, of a,ll branches of seience, geometry, astronomy,
musice, &e.

“Men of this type are rare, men such ps were, in times past,
Aristarchus of Samos, Philoliwus and Al d\\tts of Tarentum,
Apollonius of Perga, Eratosthenes of Cyrene. Archimedes and
Scopinas of Syracuse, who left to posterity many mechanical
and gnomonie .-lppli:nw( s which t]u‘_) in\'cntml and explained
on mathematieal (lit. ‘numerieal’) principles.’?

That Aristarchus was a very capable geometer is proved by
his extant work Ou the sizes and distances of the Sun and
Moon which will be noticed later in this chapter: in the
mechanical line he is eredited with the discovery of an im-
proved sun-dial, the so-called axd¢y, which had, not a plane,
but a coneave hemispherical surface, with a pointer erected
vertically in the middle throwing shadows and so enabling
the direetion and the height of the sun to be read oft’ by means
of lines marked on the hluhwc of the hemisphere.  He also
wrote on vision, light and colours. His views on the latter
subjects were no doubt largely influenced by his master, Strato
of Lampsacus; thus Strato held that colours were emanations
from bodies, material molecules, as it were, which imparted to
the intervening air the same eolour as that possessed by the
body, while Aristarchus said that colours are * shapes or forms

Vitravius, De architectura, i. 1. 16.
© 1828.2 B



2 ARISTARCHUS OF SAMOS

stamping the air with impressions like themselves, as it were’,
that ‘colours in darkness have no colouring’, and that ‘ light
is the colour impinging on a substratum’.

Two facts enable us to fix Aristarchus’s date approximately.
In 281/280 B.c. he made an observation of the summer
solstice ; and a book of his, presently to be mentioned, was
published before the date of Archimedes’s Psammites or Sand-
reckoner, a work written before 216 B.c. Aristarchus, there-
fore, probably lived circa 310-230 B.C., that is, he was older
than Archimedes by about 25 years.

To Aristarchus belongs the high honour of having been
the first to formulate the Copernican hypothesis, which was
then abandoned again until it was revived by Copernicus
himself. His claim to the title of ¢ the ancient C'opernicm’ is
still, in my opinion, quite unshaken, notwithstanding the in-
genious and elaborate arguments brought forward hy Schia-
parelli to prove that it was Heraclides of Pontus who first
conceived the heliocentric idea. Heraclides is (along with one
Ecphantus, a Pythagorean) eredited with having been the first
to hold that the earth revolves about its own axis every 24
hours, and he was the first to discover that Mercury and Venus
revolve, like satellites, about the sun. But though this proves
that Heraclides came ncar, if he did not actually reach, the
hypothesis of Tycho Brahe, according to which the earth was
in the centre and the rest of the system, the sun with the
planets revolving round it, revolved round the earth, it docs
not suggest that he moved the earth away from the centre.
The contrary is indeed stated by Aétius, who says that < Hera-
clides and Ecphantus make the earth move, not ¢n the sense of
tramslation, but by way of turning on an axle, like a wheel,
from west to cast, about its own centre’! None of the
champions of Heraclides have been able to meet this positive
statement. But we have conclusive evidence in favour of the
claim of Aristarchus; indeed, ancient testimony is unanimous
on the point. Not only does Plutarch tell us that Cleanthes
held that Aristarchus ought to be indicted for the impiety of
¢ putting the Hearth of the Universe in motion’?; we have the
best possible testimony in the precise statement of a great

! Agt. iii. 13. 3, Vors. 1%, p. 341. 8.
2 Plutarch, De facie in orbe lunae, c. 6, pp. 922 F-923 A.



ARISTARCHUS OF SAMOS 3

contemporary, Archimedes. In the Sand-reckoner Archi-
medes has this passage.

“You | King Gelon] are aware that “universe” is the name
given by most astronomers to the sphere the centre of which
1s the ceptre of the carth, while its radius is equal to the
straight line hetween the centre of the sun and the centre of
the earth. This is the common account, as you have heard
from astronomers. But Aristarchus hrought out « hook con-
sisting of certaen hypotheses, whercin it appears, as a conse-
quence of the assumptions made, that the universe is many
times greater than the “universe ” just mentioned. His hypo-
theses are that the fixzed stars and the sun remuin unmoved,
that the earth revolves about the sun in the circumference of «
circle, the sun lying in the middle of the orhit, and that the
sphere of the fixed stars, situated about the same centre as the
sun, is so great that the eircle in which he supposes the earth
to revolve bears such a proportion to the distance of the fixed
stars as the centre of the sphere hears to its surface.

(The last statement is a variation of a traditional phrase, for
which there are many parallels (ef. Aristarchus’s Hypothesis 2
“that the earth is in the relation of a point and centre to the
sphere in which the moon moves’), and is a method of saying
that the “universe’ is infinitely great in relation not merely to
the size of the sun but even to the orbit of the earth in its
revolution about it: the assumption was necessary to Aris-
tarchus in order that he might not have to take account of
parallax.)

Plutarch, in the passage referred to above, also makes it
clear that Aristarchus followed Heraclides in attributing to
the carth the daily rotation about its axis. The bold hypo-
thesis of Aristarchus found few adherents.  Seleucus, of
Seleueia on the Tigris, is the only econvineed supporter of it of
whom we hear, and it was speedily abandoned altogether,
mainly owing to the great authority of Hipparchus. Norldo-
we find any trace of the heliocentric hypothesis in Aris-
tarchus’s extant work On the sizes and distunces of the
Swn and Moon. This is presumably beeause that work was
written before the hypothesis was formulated in the book
referred to by Archimedes. The geometry of the treatise
is, however, unaffected by the difference between the hypo-
theses,

B 2



4 ARISTARCHUS QF SAMOS

Archimedes also says that it was Aristarchus who dis-
covered that the apparent angular diameter of the sun is ahout
1/720th part of the zodiac circle, that is to say, half a degrec.
We do not know how he arrived at this pretty accurate figure :
but, as he is eredited with the invention of the oxd¢n, he may
have used this instrument for the purpose. But herc again
the discovery must apparently have been later than the trea-
tise On sizes and distances, for the value of the subtended
angle is there assumed to be 2° (Hypothesis 6). How Aris-
tarchus came to assume a valuc so excessive is uncertain.  As
the mathematics of his treatise is not dependent on the actual
value taken, 2° may have been assumed merely by way of
illustration ; or it may have been a guess at the apparent
diameter made before he had thought of attempting to mea-
sure it.  Aristarchus assumed that the angular diameters of
the sun and moon at the centre of the earth are equal.

The method of the treatise depends on the just observation,
which is Aristarchus’s third < hypothesis’, that < when the moon
appears to us halved, the great cirele which divides the dark
and the bright portions of the moon is in the direetion of our
eye’; the etfect of this (since the moon receives its light from
the sun), is that at the time of the dichotomy the centres of
the sun, moon and earth form a triangle right-angled at the
centre of the moon. Two other assumptions were necessary :
first, an estimate of the size of the angle of the latter triangle
at the centre of the earth at the moment of dichotomy : this
Aristarchus assumed (Hypothesis 4) to be “less than a quad-
rant by one-thirtieth of a quadrant’, i. ¢. 87°, again an inaccu-
rate estimate, the true value being 89° 507 ; secondly, an esti-
mate of the breadth of the carth’s shadow where the moon
traverses it: this he assumed to be ‘the breadth of two
moons’ (Hypothesis 5).

The inaccuracy of the assumptions does not, however, detract
from the mathematical interest of the suceceding investigation.
Here we find the logical sequence of propositions and the abso-
lute rigour of demonstration characteristic of Greek geometry ;
the only remaining drawback would be the practical difficulty
of determining the exact moment when the mbon “appears to
us halved’. The form and style of the book are thoroughly
classical, as befits the period between Euelid and Archimedes ;
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the Greek is even remarkably attractive. The content from
the mathematical point of view is no less interesting, for we
have here the first specimen extant of pure geometry used
with a trigonometricul object, in which respect it is a sort of
forerunmner of Archimedes’s Measurement of « Circle. Aristar-
chus does not actually cvaluate the trigonometrical ratios
on which the ratios of the sizes and distances to be obtained
depend ; he finds limits between which they lie, and that by
means of certain propositions which he assuines without proof,
and which therefore must have heen generally known to
mathematicians of his day. These propositions are the equi-
valents of the statements that,

(1) if o iy what we call the circular measure of an angle
and o 13 less than } o, then the ratio sin x/x decreases, and the
ratio tan o/x inereases, as o increases from 0 to 3 7

(2) if B be the circular measure of another angle less than
L, and a> B, then

sin < x < tan «
simfB8 " B

tan B.

Aristarchus of course deals, not with actual eircular measures,
sines and tangents, but with angles (expressed not in degrees
but as fractions of right angles), ares of cireles and their
chords.  Particular results obtained by Aristarchus are the
equivalent of the followh

T

T > sin 3% > [ Prop. 7]

ds > sin1? > &, [Prop. 11]
1 > cos1® > 83, [Prop. 12]
1 >cos?1” > 3%, [Prop. 13]

The book consists of cighteen propositions.  Beginning with
six hypotheses to the effeet already indicated, Aristarchus
deelares that he is now in a position to prove
(1) that the distance of the sun from the earth is greater than
cighteen times, but less than twenty times, the distance of the

moon from the carth;

(2) that the diameter of the sun has the same ratio as afore-
said to the dinmeter of the moon ;
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(3) that the diameter of the sun has to the diameter of the
earth a ratio greater than 19:3, but less than 43:6.

The propositions containing these results arc Props. 7, 9
and 15.

Prop. 1 is preliminary, proving that two equal spheres are
comprehended by one cylinder, and two unequal spheres by
one cone with its vertex in the direction of the lesser sphere,
and the eylinder or cone touches the spheres in circles at
right angles to the line of centres. Prop. 2 proves that, if
a sphere be illuminated by another sphere larger than itself,
the illuminated portion is greater than a hemisphere. Prop. 3
shows that the cirele in the moon which divides the dark from
the bright portion is least when the cone comprehending the
sun and the moon has its vertex at our eye. The ‘dividing
circle’, as we shall call it for short, which was in Hypothesis 3
spoken of as a great circle, is proved in Prop. 4 to be, not
a great circle, but a small circle not perceptibly different
from a great circle. The proof is typical and is worth giving
along with that of some connected propositions (11 and 12).

B is the centre of the moon, A that of the carth, CD the
diameter of the  dividing cirele in the moon’, K4 the parallel
diameter in the moon. BA wmeets the cireular scetion of the
moon through 4 and KF in @, and CD in L. GI, GK
are arcs cach of which is cqual to half the are CE. By
Hypothesis 6 the angle CAD is ¢ one-fifteenth of o sign’ = 2°,
and the angle BAC = 1°,

Now, says Aristarchus,

1°:45° [ > tan 1° :tan 45°]
> BC:CA,
and, a fortiori, )
BC:BA or BG:BA
< 1:45;
that is, BG < } BA
< & 0GA;
therefore, a fortiori,
BH < A HA.
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Now BH:HA [=sin HAB:sin 11BA]
>/HAB:/ HBA,
whence LIAB < } L HBA,
F b

—~

g C
and (taking the doubles) ZHAK < ;£ IIBK.
But ZHBK = £ KBC = g; B (where R is a right angle);
therefore LIAK < 55%5 R.

But ‘a magnitude (are I/K) scen under such an angle is
imperceptible to our eye’;
therefore, « fortior:, the arcs CE, DF are sceverally imper-
ceptible to our eye. Q.E. D.
An easy deduction from the same figure is Prop. 12, which
shows that the ratio of €D, the diameter of the “dividing
circle’, to ¥, the diameter of the moon, is < 1 but > §3.

We have LEBC = /£BAC = 1°;
therefore (are LC) = & (we EG),

and accordingly  (arc CG) : (are (715) = 89:90.
Doubling the ares, we have
(are CGD): (are KGF) = 89:90.
But CD:EF > (arc CGD): (are EGF)
Lequivalent to sina /sin B > o /B, where LUBD = 24,
and 28 =7];
therefore CD:LF [ =cos1°] > 89:90,
while obviously CD:KF < 1.
Prop. 11 finds limits to the ratio #/F: BA (the ratio of the
diameter of the moon to the distance of its centre from
the centre of the earth); the ratiois < 2:45 but > 1:30.
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The first part follows from the relation found in Prop. 4,
namely BC:BA < 1:45,
for EF =2 BC.

The second part requires the use of the cirele drawn with
centre A and radius AC. This cirele is that on which the
ends of the diameter of the ¢ dividing cirele” move as the moon
moves in a cirele about the carth. If 2 is the radius AC
of this circle, a chord in it equal to » subtends at the centre
A an angle of 2R or 60°; and the are CD subtends at 4
an angle of 2°.

But  (arc subtended by CD): (arc subtended by )

< CD:r,
or 2:60 < OD:r;
that is, ¢D:C4 > 1:30.

And, by similar triangles,
CL:CA=0CB:BA, or CD:(CA =2CB: BA = FE:BA.
Therefore FI:BA > 1:30. '

The proposition which is of the greatest interest on the
whole is Prop. 7, to the cffeet that the distance of the swun
from the earth is greuter thun 18 times, but less than 20
times, the distunce of the moon from the ewrth. 'This result
represents a great improvement on all previous attempts to
estimate the relative distances. The first speculation on the
subject was that of Anaximander (circe 611-545 B.c.), who
seems to have made the distances of the sun and moon from
the earth to be in the ratio 3:2.  EKudoxus, according to
Archimedes, made the diammmeter of the sun 9 times that of
the moon, and Phidias, Archimedes’s father, 12 times: and,
assuming that she angular diameters of the two bodies are
equal, the ratio of their distances would be the same.

Avristarchus’s proof is shortly as follows. A is the centre of
the sun, B that of the carth, and C that of the moon at the
moment of dichotomy, so that the angle ACHB is right. ABKF
is a square, and A% is a quadrant of the sun’s circular orbit.
Join BF, and biscct the angle ¥BE by BG, so that

LUGBE=1R or 221,
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I. Now, by Hypothesis 4, 2 ABC = 87°,

so that LHBE = £ BAC = 3°;
therefore LGBE:LHBE=1R:}R
=15:2,
A c
G
K LAWY
B ¢ E
L

so that GL:HE| =t GBE:taim IIBL| > £ GBE: £ HBE
> 15:2, (1)

The ratio which has to be proved > 18:1 is AB: BC or
Kl K1l

Now FG:GE = FB:BE,
whence FG?: G = FB*. BE* = 2:1,
and FG:GE =v2:1
>7:5

(this is the approximation to v/2 mentioned by Plato and
known to the Pythagoreans).
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Therefore FE:EG > 12:5 or 36:15.
Compounding this with (1) above, we have

FE<EH > 36:2 or 18:1.
II. To prove BA < 20 BC.

Let BH meet the circle A in D, and draw DK parallel
to £B. Circumseribe a cirele about the triangle BKD, and
let the chord BL be equal to the radius (r) of the cirele.

Now /.BDK = LDBE = % R,
so that are BK = ¢; (circumference of circle).

Thus (arc BK): (arc BL) = &5 : %,

=1:10.

And (arc BK'):(arc BL) < BK :»
[this is equivalent to o/ B < sina/sin B, where a < 8 < )
so that r < 10 BK,
and BD < 20 BK.

But BD:BK = AB: BC;
therefore ADB < 20 BC. Q.E.D.

The remaining results obtained in the treatise can be
visualized by means of the three figures annexed, which have
reference to the positions of the sun (centre A), the carth
(centre B) and the moon (centre C) during an celipse.  Fig. 1
shows the middle position of the moon relatively to the earth’s
shadow which is bounded by the cone comprehending the sun
and the earth. OX is the arc with centre B along which
move the extremities of the diameter of the dividing eirele in
the moon. Fig. 3 shows the same position of the moon in the
middle of the shadow, but on a larger scale. Fig. 2 shows
the moon at the moment when it has just entered the shadow ;
and, as the breadth of the carth’s shadow is that of two moons
(Hypothesis 5), the moon in the position shown touches BN at
Nand BL at L, where L is the middle point of the arc ON.
It should be added that, in Fig. 1, UV is the diameter of the
circle in which the sun is touched by the double cone with B
as vertex, which comprehends both the sun and the moon,
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while ¥, Z are the points in which the perpendicular through
A, the centre of the sun, to BA mects the eone enveloping the
sun and the earth.

N

Fia. 1.

This being premised, the main results obtained are as
follows :

Prop. 13.
(1) ON : (diam. of moon) < 2:1

but > 88:45.
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(2) ON :(diam. of sun) < 1:9
but > 22:225.
(3) ON:YZ > 979:10125.

Prop. 14 (Fig. 3).
BC:CS > 675: 1.

Prop. 15.
(Diam. of sun): (diam. of earth) > 19:3
but < 43:6.
Q
L c P cl k-
M P
\ R
° N T
8 8
F1a. 2. Fra. 3.
Prop. 17.

(Diam. of earth); (diam. of moon) > 108 : 43

but < 60:19.

It is worth while to show how these results are proved.
Prop. 13. i

(1) In Fig. 2 it is clear that

ON < 2LN and, « fortior:, < 2LP.
The triangles LON, CLN being similar,
ON:NL = NL: L0,
therefore ON:NL=NL:; Ll
> 89:45. (by Prop. 12)
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Hence ON:ILC =0N?%:NL2
> 89%:452;
therefore ON:LP > 7921:4050

> 88:45, says Aristarchus,
[If 3525 be developed as a continued fraction, we casily

. 1 1 1 . .. 88
obtain 1+ ’ .-y which is in Tact 45-]

+ 214 2
(2) 0N < 2 (diam. of moon).
But (diam. of moon) < #; (diam. of sun); (Prop. 7)
therefore ON < § (diam. of sun).

Again  0.V:(diam. of moon) > 88:45, from above,
and (diam. of moon) : (diam. of sun) > 1:20;  (Prop. 7)
thercfore, ex wequali,
Oy : (diam. of sun} > 88:900
> 22:2265.

(3) Sinee the same cone comprehends the sun and the moon,
the triangle BUV (Fig. 1) and the triangle BLN (Fig. 2) are
similar, and

LN :LP = UV: (diam. of sun)
= WU:UA

=UAd: AS
< UAd:AY.
But LN:LDP > 89:90; (Prop. 12)
therefore, « fortiory, UA:AY > 89:90.
And UA:AY =2UA:YZ
= (diam. of sun): YZ.
But O : (diam. of sun) > 22:225; (Prop. 13)

therefore, ex aequali,
ON:Y7Z > 89x22:90x 225
> 079:10125.
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Prop. 14 (Fig. 3).

The ares OM, ML, I.P, PN are all equal ; therefore so are
the chords. BM, BP are tangents to the circle MQP, so that
CM is perpendicular to BM, while BM is perpendicular to (L.
Therefore the triangles LOS, CMR are similar.

Therefore SO:MR = SL: RC.
But SO < 2 MR, since ON < 2 M P; (Prop. 13)
therefore SL < 2 RC,
and, a fortiori, SR< 2 RC, or SC < 3 RC,
that is, CR:CS>1:3.
Again, MC:CR = BC:CM
>45:1; (see Prop. 11)

therefore, ex aequali,
CM:CS > 15:1.

And BC:CM > 45:1;
therefore BC:('S > 675:1.
Prop. 15 (Fig. 1).

We have NO : (diam. of sun) < 1:9, (Prop. 13)
and, a fortiori, YZ:NO > 9:1:

therefore, by similar triangles, if Y0, ZN meet in X,
AX:XRER >9:1,
and convertendo, XA:AR < 9:38.
But AB > 18 BC, and, « fortiori, > 18 BR,
whence AB > 18(AR—AB), or 1948 > 18 AR;
that is, AR:AB < 19:18.

Therefore, ex uequali,
XA:AB < 19:18,

and, convertendo, AX:XB >19:3;
therefore (diam. of sun): (diam. of carth) > 19: 3.
Lastly, since CB:CR > 675:1, (Prop. 14)
CB:BR < 675:674.
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But AB:BC < 20:1;

therefore, ex aequali,
AB:BR < 13500:674
< 6750:337,

whence, by inversion and componendo,

RA:AB > 7087:6750. 1)
But AX:XR = YZ:NO
< 10125:979; (Prop. 13)

therefore, conrertendo,
NA:AR > 10125:9146.
From this and (1) we have, ex aequali,
XA:AB > 10125 x 7087 :9146 x 6750
> 71755875:61735500
> 43:37, a fortior:.

1 1
6+ 6°
which suggests that 43:37 was obtained by developing the
ratio as a continued fraction.]

[Tt is difficult not to see in 43 :37 the expression 1+

Therefore, convertendo,
XA:XB < 13:8,
whenee (diam. of sun) : (diam. of carth) < 43:6. Q. E.D.



XIII

ARCHIMEDES

THE sicge and capture of Syracuse by Marcellus during the
second Punic war furnished the oceasion for the appearance of
Archimedes as a personage in history ; it is with this histori-
cal event that most of the detailed stories of him are con-
nected ; and the fact that he was killed in the sack of the city
in 212 B.C., when he is supposed to have been 75 years of age,
enables us to fix his date at about 287-212 B.c. He was the
son of Phidias, the astronomer, and was on intimate terms
with, if not related to, King Hicron and his son Gelon. It
appears from a passage of Diodorus that he spent some time
in Egypt, which visit was the oceasion of his discovery of the
so-called Archimedean serew as a means of pumping water.'
It may be inferred that he studied at Alexandria with the
successors of Euclid, It was probably at Alexandria that he
made the acquaintance of Conon of Samos (for whom he had
the highest regard both as a mathematician and a friend) and
of Eratosthencs of Cyrenc. To the former he was in the habit
of communicating his discourses before their publication
while it was to Eratosthenes that he sent The Method, with an
introductory letter which is of the highest interest, as well as
(f we may judge by its heading) the famous Cattle-Problem.

Traditions.

It is natural that history or legend should say more of his
mechanical inventions than of his mathematical achicvements,
which would appeal less to the average mind. Iis wachines
were used with great effect against the Romans in the siege
of Syracuse. Thus he contrived (so we are told) catapults so
ingeniously constructed as to be equally serviceable at long or

' Diodorus, v. 37. 3.
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short range, machines for discharging showers of missiles
through holes made in the walls, and others consisting of
long movable poles projecting beyond the walls which either
dropped heavy weights on the enemy’s ships, or grappled,
their prows by means of an iron hand or a beak like that of
a crane, then lifted them into the air and let them fall again.!
Marcellus is said to have derided his own engineers with the
words, ‘Shall we not make an end of fighting against this
geometrical Briareus who uses our ships like cups to ladle
water from the sea, drives off our sambuce ignominiously
with cudgel-blows, and by the multitude of missiles that he
hurls at us all at once outdoes the hundred-handed giants of
mythology ?’; but all to no purpose, for the Romans were in
such ahject terror that, <if they did but sce a piece of rope
or wood projeeting above the wall, they would ery “there it
is”, declaring that Archimedes was setting some engine in
motion against them, and would turn their backs and run
away’.> These things, however, were merely the ¢ diversions
of geometry at play’? and Archimedes himself attached no
importance to them.  According to Plutarch,

“though these inventions had obtained for him the renown of
more than human sagacity, he yet would not even deign to
leave behind him any written work on such subjects, but,
regarding as ignoble and sordid the business of mechanics and
every sort of art which is directed to use and profit, he placed
his whole ambition in those speculations the beauty and
subtlety of which is untainted by any admixture of the com-
mon needs of life,” 4

(a) Astronomy.

Archimedes did indeed write one mechanical book, On
Sphere-making, which is lost ; this deseribed the construction
of a sphere to imitate the motions of the sun, moon and
planets.” Cicevo saw this contrivance and gives a deseription
of it; he says that it represented the periods of the moon
and the apparent motion of the sun with such accuracy that
it would even (over a short period) show the cclipses of the
sun and moon.*  As Pappus speaks of ¢ those who understand

' Polybius, Hist. viii. 7, 8; Livy xxiv. 34; Plutarch, Marcellus, cc. 15-17.

2 Ib.,c. 17, 3 Ib., c. 14. 4 Ib., c. 17.

® Carpus in Pappus, viii, p. 1026. 9; Proclus on Eucl. I, p. 41. 16.
¢ Cicero, De rep. i. 21, 22, Tusc. i. 63, De nat. deor-. ii. 88.

1528.2 C
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the making of spheres and produce a model of the heavens by
means of the circular motion of water’, it is possible that
Archimedes’s sphere was moved by water. In any case Archi-
medes was much occupied with astronomy. Livy calls him
‘unicus spectator caeli siderumque’.! Hipparchus says, ¢ From
these observations it is clear that the differences in the years
are altogether small, but, as to the solstices, I almost think
that Archimedes and I have both erred to the extent of a
quarter of a day both in the observation and in the deduction
therefrom’.? Archimedes then had evidently considered the
length of the year. Macrobius says he discovered the dis-
tances of the plancts?® and he himself deseribes in his Sand-
reckoner the apparatus by which he measured the apparent
angular diameter of the sun.

(B) Mechanics.

Archimedes wrote, as we shall see, on theoretical mechanics,
and it was by theory that he solved the problem To move a
gwen weight by a given force, for it was in reliance “on the
irresistible cogency of his proof’ that he deelared to Hieron
that any- given weight could be moved by any given foree
(however small), and boasted that, ¢if he were given a place to
stand on, he could move the earth’ (w@ B®, kai kwd rav yav,
as he said in his Dorie dialeet). The story, told by Plutarch,
is that, ‘when Hicron was struck with amazement and asked
Archimedes to reduce the problem to practice and to give an
illustration of some great weight moved by a small foree, he
fixed upon a ship of burden with three masts from the king’s
arsenal which had only been drawn up with great labour by
many men, and loading her with many passengers and a full
freight, himself the while sitting far off, with no great effort
but only holding the end of a compound pulley (roAdomasros)
quictly in his hand and pulling at it, he drew the ship along
smoothly and safcly as if she were moving through the sea. 4

The story that Archimedes set the Roman ships on fire hy
an arrangement of burning-glasses or coneave mirrors is not
found in any authority earlier than Lucian; but it is quite

! Livy xxiv. 34. 2. ? Ptolemy, Syntawxis, 111. 1, vol. i, p. 194. 23.

* Macrobius, Tn Somn. Scip. ii. 3; cf. the figures in Hippolytus, Refut.,

p. 66. 52 sq., ed. Duncker.
4 Plutarch, Marcellus, c. 14.
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likely that he discovered some form of burning-mirror, e.g. a
paraboloid of revolution, which would reflect to one point all
rays falling on its concave surface in a ddirection parallel to
its axis,

Archimedes’s own view of the relative importance of his
many discoveries is well shown by his request to his friends
and relatives that they should place upon his tomb a represen-
tation of a cylinder circumseribing a sphere, with an inserip-
tion giving the ratio which the (,ylmdel bears to the sphere;
from which we may infer that he regarded the diseovery of
this ratio as his greatest achicvement. Cicero, when quaestor
in Sicily, found the tomb in a negleeted state and repaired it?;
but it has now disappeared, and no one knows where he was
buried.

Archimedes’s entire preoccupation by his abstract studies is
illustrated by a number of stories.  We are told that he would
forget all about his food and such necessities of life, and would
be drawing geometrieal figrures in the ashes of the fire or, when
anointing himself, in the oil on his body.2  Of the same sort
is the tale that, when he discovered in a bath the solution of
the question referred to him by Hieron, as to whether a certain
crown supposed to have been made of gold did not in fact con-
tain a certain proportion of silver, he ran naked through the
street to his home shouting elpyka, efpyka.® He was killed
in the sack of Syracuse by a Roman soldier. The story is
told in various forms: the most picturesque is that found in
Tzetzes, which represents him as saying to a Roman soldier
who found him intent on some diagrams which he had drawn
in the dust and came too close, « Stand away, fellow, from my

diangram’, whereat the man was so enraged that he killed
him.#

Summary of main achievements.

In geometry Archimedes’s work consists in the main of
original investigations into the quadrature of curvilinear
plane figures and the guadrature and cubature of curved
surfaces.  These investigations, beginning where Euelid’s
Book XIT left off, actually (in the words of Chasles) ¢ gave

' Cicero, Tusc. v. 64 sq. ® Plutarch, Marcellus, c. 17.

P Vitravius, De architectira, ix. 1.9, 10.
4 Tzetzes, Chiliad. ii. 35. 135.

c 2
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birth to the calculus of the infinite conceived and brought to
perfection successively by Kepler, Cavalieri, Fermat, Leibniz
and Newton’. He performed in fact what is equivalent to
integration in finding the area of a parabolic segment, and of
a spiral, the surface and volume of a sphere and a segment of
a sphere, and the volumes of any segments of the solids of
revolution of the second degree. In arithmetic he calculated
approximations to the value of 7, in the course of which cal-
culation he shows that he could approximate to the value of
square roots of large or small non-square numbers; he further
invented a system of arithmetical terminology by which he
could express in language any number up to that which we
should write down with 1 followed by 80,000 million million
ciphers. In mechanics he not only worked out the principles of
the subject but advanced so far as to find the centre of gravity
of a segment of a parabola, a semicircle, a cone, a hemisphere,
a segment of a sphere, a right segment of a paraboloid and
a spheroid of revolution. His mechanies, as we shall sce, has
become more important in relation to his geometry since the
discovery of the treatise called The Method which was formerly
supposed to be lost. Lastly, he invented the whole seience of
hydrostatics, which again he carried so far as to give a most
complete investigation of the positions of rest and stability of
a right segment of a paraboloid of revolution floating in a
fluid with its base either upwards or downwards, but so that
the base is either wholly above or wholly below the surface of
the fluid. This represents a sum of mathematical achieve-
ment unsurpassed by any one man in the world’s history.

Character of treatiscs.

The treatises are, without exception, monuments of mathe-
matical exposition; the gradual revelation of the plan of
attack, the masterly ordering of the propositions, the stern
elimination of everything not immediately relevant to the
purpose, the finish of the whole, are so impressive in their
perfection as to create a feeling akin to awe in the mind of
the reader. As Plutarch said, ‘It is not possible to find in
geometry more difficult and troublesome questions or proofs
set out in simpler and clearer propositions’.! There is at the

1 Plutarch. Marcellus, c. 17.
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same time a certain mystery veiling the way in which he
arrived at his results. For it is clear that they were not
discovered by the steps which lead up to them in the finished
treatises. If the gcometrical treatises stood alone, Archi-
medes might scem, as Wallis said, ‘as it were of set purpose
to have covered up the traces of his investigation, as if he had
grudged posterity the secret of his method of inquiry, while
he wished to extort from them assent to his results’. And
indeed (again in the words of Wallis) ‘not only Archimedes
but nearly all the ancicnts so hid from posterity their method
of Analysis (though it is clear that they had one) that more
modern  mathematicians found it easier to invent a new
Analysis than to seck out the old’. A partial exception is
now furnished by The Method of Archimedes, so happily dis-
covered by Heiberg. In this book Archimedes tells us how
he discovered eertain theorems in quadrature and cubature,
namely by the use of mechanies, weighing elements of
tigure against elements of another simpler figure the mensura-
tion of which was alrecady known. At the same time he is
areful to insist on the difference  between (1) the means
which may be sufficient to suggest the truth of theorems,
although nct furnishing seientitic proofs of them, and (2) the
rigorous demonstrations of them by orthodox geometrical
methods which must follow before they can he finally aceepted
as established :

ceertain things’, he says, “first became elear to me by a
mechanical method, although Lhcy had to be demonstrated by
geometry afterwards because theinr investigation by the said
method did not furnish an actual dumun.stl ation. But it is
of course casier, when we have previously aequired, by the
method, some knowledge of the guestions, to supply the proof
than it is to find it without any previous knowledge.”  <This’,
he adds, “is o reason why, in the case of the t]n,olems that
the volumes of & cone and a pyramid are one-third of the
volumes of the cylinder and prism respectively having the
same base and equal height, the proofs of which Eudoxus wa
the first to discover, no small share of the eredit should be
given to Democeritus who was the first to state the fact.
though without proof.

Finally, he says that the very first theorem which he found
out by means of mechanies was that of the sepuarate treatise
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on the Quadrature of the purabole, namely that the urea of uny
segment of u section of a right-angled cone (i.e. a purabola) is
Jour-thirds of that of the triangle which hus the same base and
height. The mechanical proof, however, of this theorem in the
Quadrature of the Parabolu is different from that in the
Method, and is more complete in that the argument is clinched
by formally applying the method of exhaustlon

List of works still extant.

The extant works of Archimedes in the order in which they
appear in Heiberg’s second edition, following the order of the
manuscripts so far as the first seven treatises are concerned,
are as follows:

(5) On the Spheve and Cylinder: two Books.
(9) Measwrement of « Circle.

(7) On Conoids and Spheroids.

(6) On Spirals.

(1) On Plane Equilibriums, Book 1.

(3) » » ” Book I1.

(10) The Sund-reckoner (Psaninites).

(2) Quadratwre of the Purabolu.

(8) On Floating Bodies: two Books.

? Stomachion (a fragment).

(4) The Method.

This, however, was not the order of composition; and,
Judging («) by statements in Archimedes’s own prefaces to
certain of the treatises and () by the use in certain treatises
of results obtained in others, we can make out an approxi-
mate chronological order, which [ have indicated in the above
list by figures in brackets. The treatise On Floating Bodies
was formerly only known in the Latin translation by William
of Moerbeke, but the Greek text of it has now been in great
part restored by Heiberg from the Constantinople manuscript
which also contains T/:e Method and the fragment of the
Stomauchion.

Besides these works we have a colleetion of propositions
(Liber assumptorum) which has reached us through the
Arabie.  Although in the title of the translation hy Thabit b.
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Qurra the book is attributed to Archimedes, the propositions
cannot be his in their present form, since his nane is several
times mentioned in them; but it is quite likely that some
of them are of Archimedean origin, notably those about the
geometrical figures called dpByhos (‘shoemaker’s knife ’) and
gdlwov (probably ‘salt-cellur’) respectively and Prop. 8 bear-
ing on the trisection of an angle. ‘

There is also the Cuttle-Problem in epigrammatic form,
which purports by its heading to have been eornmunicated by
Archimedes to the mathematicians at Alexandria in a letter
to Eratosthemes. Whether the epigrammatic form is due to
Archimedes himself or not, there is no sufficient reason for

doubting the possibility that the substance of it was set as a
problem by Archimedes,

Traces of lost works.

Of works which are lost we have the following traces.

L. Investigations relating to polyhedre ave referred to by
Pappus who, after alluding to the five regular polyhedra,
deseribes thirteen others discovered by Arvchimedes which are
semi-regular, being contained by polygons equilateral and
cquiangular but not all simila!

2. There was a book of arithmetical content dedieated to
Zeuxippus. We learn from Arvchimedes himself that it dealt
with the wawming of wwmlbers (xarovépages rév dpiBpav)? and
expounded the system, which we find in the Send-reckoner, of
expressing numbers higher than those which eould he written
in the ordinary Greek notation, numbers in fact (as we have
said) up to the enormous figure represented by 1 followed by
80,000 million million ciphers,

3. One or more works on meehanies are alluded to contain-
ing propositions not included in the extant treatise On Plane
Fquilibriwms. Pappus mentions a work O n Balanees or Levers
(mepl {uydr) in which it was proved (as it also was in Philon’s
and Herow's Mechanics) that * greater cireles overpower lesser
circles when they revolve about the same eentre 2.3 Heron, too,
speaks of writings of Archimedes “whieh bear the title of

! Pappus, v, pp. 352 8.

? Archimedes, vol. ii, pp. 216. 18, 236. 17-22; cf. p. 220, 4.
* Pappus, viii, p. 1068,
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“works on the lever”’.! Simplicius refers to problems on the
centre of gravity, xevrpoPapikd, such as the many elegant
problems solved by Archimedes and others, the object of which
is to show how to find the centre of gravity, that is, the point
in a body such that if the body is hung up from it, the body
will remain at rest in any position.? This recalls the assump-
tion in the Quadratiure of the Parabola (6) that, if a body hangs
at rest from a point, the centre of gravity of the body and the
point of suspension are in the same vertical line. Pappus has
a similar remark with reference to a point of support, adding
that the centre of gravity is determined as the intersection of
two straight lines in the body, through two points of support,
which straight lines are vertical when the body is in equilibrium
so supported. Pappus also gives the characteristic of the centre
of gravity mentioned by Simplicius, obscrving that this is
the most fundamental principle of the theory of the centre of
gravity, the elementary propositions of which are found in
Archimedes’s On Kquilibriums (mwepl {goppomidr) and Heron’s
Mechanics. Archimedes himself cites propositions which must
have been proved elsewhere, e.g. that the centre of gravity
of a cone divides the axis in the ratio 3:1, the longer segment
being that adjacent to the vertex3; he also says that ‘it is
proved in the Equilibriums’ that the centre of gravity of any
segment of a right-angled conoid (i. e. paraboloid of revolution)
divides the axis in such "a way that the portion towards the
vertex is double of the remainder® It is possible that there
was originally u larger work by Archimedes On Equwilibriums
of which the surviving books On Plune Eqwilibriums formed
only a part ; in that case wepl fvyadv and kevrpoBapikd may
only be alternative titles. Finally, Heron says that Archi-
medes laid down a certain procedure in a book bearing the
title < Book on Supports’.®

4. Theon of Alexandria quotes a proposition from a work
of Archimedes called Catoptrica (properties of mirrors) to the
effect that things thrown into water look larger and still
larger the farther they sink.® Olympiodorus, too, mentions

! Heron, Mechanics, i. 32.

? Simpl. on Arist. De caelo, ii, p. 508 a 30, Brandis; p. 543. 24, Heib.
3 Method, Lemma, 10. ' * On Floating Bodies, ii. 2,

5 Heron, Mechanics, i. 25.

¢ Theon on Ptolemy’s Syntaxis, i, p. 29, Halma.
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that Archimedes proved the phenomenon of refraction ‘by
means of the ring placed in the vessel (of water)’.! A scholiast
to the Pseudo-Euclid’s Catoptrica quotes a proof, which he
attributes to Archimedes, of the equality of the angles of
in¢idence and of reflection in a mirror.

The text of Archimedes.

Heron, Pappus and Theon all cite works of Archimedes
which no longer survive, a fact which shows that such works
were still extant at Alexandria as late as the third and fourth
centuries A.D. But it is evident that attention came to be
concentrated on two works only, the Measurement of a Circle
and Ow the Sphere and Cylinder. Eutocius ( fl. about A. . 500)
only wrote commentaries on these works and on the Plane
Equilibriums, and he does not seem even to have been
acquainted with the Quadrature of the Parahole or the work
O n Spirals, although these have survived.  Isidorus of Miletus
revised the commentaries of Eutocius on the Measurement
of « Uircle and the two Books Ow the Sphere and Cylinder,
and it would seem to have been in the school of Isidorus
that these treatises were turned from their original Dorice
into the ordinary language, with alterations designed to make
them mote intelligible to clementary pupils.  But neither in
[sidorus’s time nor earlier was there any collected edition
of Archimedes’s works, so that those which were less read
tended to disappear.

In the ninth century Leon, who restored the University
of Constantinople, collected together all the works that he
could find at Constantinople, and had the manuseript written
(the archetype, Heiberg’s A) which, through its derivatives,
was, up to the discovery of the Constantinople manuseript (C)
containing The Method, the only souree for the Greek text.
Leon’s manuseript came, in the twelfth century, to the
Norman Court at Palermo, and thenee passed to the House
of Hohenstaufen. Then, with all the library of Manfred, it
was given to the Pope by Charles of Anjou after the battle
of Benevento in 1266. It was in the Papal Library in the
years 1269 and 1311, but, some time after 1368, passed into

' Olympiodorus on Arist. Meteorologica, ii, p. 94, Ideler; p. 211,18,
Busse.
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private hands. In 1491 it belonged to Georgius Valla, who
translated from it the portions published in his posthumous
work De expetendis et fugiendis rebus (1501), and intended to
publish the whole of Archimedes with Eutocius’s commen-
taries. On Valla’s death in 1500 it was bought by Albertus
Pius, Prince of Carpi, passing in 1530 to his nephew, Rodolphus
Pius, in whose possession it remained till 1544. At some
time between 1544 and 1564 it disappeared, leaving no
trace.

The greater part of A was translated into Latin in 1269
by William of Moerbeke at the Papal Court at Viterbo. This
translation, in William’s own hand, exists at Rome (Cod.
Ottobon. lat. 1850, Heiberg’s B), and is one of our prime
sources, for, although the translation was hastily done gnd
the translator sometimes misunderstood the Greek, he followed
its wording so closely that his version is, for purposes of
collation, as good as a Greek manuscript. William used also,
for his translation, another manuscript from the same library
which contained works not included in A. This manuscript
was a collection of works on mechanics and opties; William
translated from it the two Books On Floating Bodies, and it
also contained the Plune Equiltbriums and the Quadrature
of the Parabola, for which books William used both manu-
scripts.

The four most important extant Greek manuseripts (exeept
C, the Constantinople manuseript discovered in 1906) were
copied from A, The earliest is E, the Veniee manuscript
(Marcianus 305), which was written between the years 1449
and 1472. The next is D, the Florence manuscript (Laurent.
XXVIIL 4), which was copied in 1491 for Angelo Poliziano,
permission having been obtained with some difficulty in con-
sequence of the jealousy with which Valla guarded his treasure.
The other two are G (Paris. 2360) copied from A after it had
passed to Albertus Pius, and H (Paris. 2361) copied in 1544
by Christopherus Auverus for Georges d’Armagnac, Bishop
of Rodez. These four manuscripts, with the translation of
William of Moerbeke (B), enable the readings of A to be
inferred.

A Latin translation was made at the instance of Pope
Nicholas V about the year 1450 by Jacobus Cremonensis.
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It was made from A, which was therefore accessible to Pope
Nicholas though it does not secm to have belonged to him.
Regiomontanus made a copy of this translation about 1468
and revised it with the help of E (the Venice manuseript of
the Greek text) and a copy of the same translation belonging
to Cardinal Bessarion, as well as another ‘old copy’ which
seems to have been B.

The editio princeps was published at Basel (upud Herva-
gium) by Thomas Gechauft Venatorius in 1544. The Greek
text was based on a Niurnberg MS. (Norimberg. Cent. V,
app. 12) which was copied in the sixteenth century from A
but with interpolations derived from B; the Latin transla-
tion was Regiomontanus’s revision of Jacobus Cremonensis
(Norimb. Cent. V, 15).

A translation by F. Commandinus published at Venice in
1558 contained the Meuswrement of « Cerele, On Spirals, the
Quadrature of the Purabola, On Conoids and Spheroids, and
the Sand-reckoner.  This translation was based on the Basel
edition, but Commandinus also consulted E and other Greek
manuseripts.

Torelli’s edition (Oxford, 1792) also followed the editio
prowceps in the main, but Torelli also collated E.  The book
was bhrought out after Torelli’s death by Abram Robertson,
who also collated five more manuseripts, including D, G
and H. The collation, however, was not well done, and the
edition was not properly corrected when in the press.

The second edition of Heiberg's text of all the works of
Archimedes with Eutocius’s commentaries, Latin translation,
apparatus criticus, &e., is now available (1910-15) and, of
course, supersedes the first edition (1880-1) and all others.
It naturally includes The Method, the fragment of the Stoma-
“chion, and so much of the Greek text of the two Books On
Floating Bodies as could be restored from the newly dis-
covered Constantinople manuseript.!

Contents of The Method.

Our description of the extant works of Archimedes
may suitably begin with The Method (the full title is On

Y The Works of Archimedes, edited in modern notation by the present
writer in 1897, was based on Heiberg's first edition, and the Supplement
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Mechanical Theorems, Method (communicated) to Eratosthenes).
Premising certain propositions in mechanics mostly taken
from the Plane Equiltbriwms, and a lemma which forms
Prop. 1 of On Conoids and Spheroids, Archimedes obtains by
his mechanical method the following results. The area of any
segment of a section of a right-angled cone (parabola) is 4 of
the triangle with the same base and height (Prop. 1). The
right cylinder eircumseribing a sphere or a spheroid of revolu-
tion and with axis equal to the diameter or axis of revolution
of the sphere or spheroid is 1} times the sphere or spheroid
respectively (Props. 2, 3). Props. 4,7,8,11 find the volume of
any segment cut off, by a plane at right angles to the axis,
from any right-angled conoid (paraboloid of revolution),
sphere, spheroid, and obtuse-angled conoid (hyperboloid) in
terms of the cone which has the same base as the segment and
equal height. In Props.5,6,9, 10 Archimedes uses his method
to find the centre of gravity of a segment of a paraboloid of
revolution, a sphere, and a spheroid respectively. Props.
12-15 and Prop. 16 are concerned with the cubature of two
special solid figures. (1) Suppose a prism with a square buse
to have a cylinder inscribed in it, the circular bases of the
cylinder being circles inseribed in the squares which are
the bases of the prism, and suppose a plane drawn through
one side of one base of the prism and through that diameter of
the circle in the opposite base which is parallel to the said
side. This plane cuts off a solid bounded by two planes and
by part of the curved surface of the cylinder (a solid shaped
like a hoof cut off' by a plane); and Props. 12-15 prove that
its volume is one-sixth of the volume of the prism. (2) Sup-
pose a cylinder inseribed in a cube, so that the circular bases
of the cylinder are cireles inseribed in two opposite faces of
the cube, and suppose another cylinder similarly inseribed
with reference to two other opposite faces. The two eylinders
enclose a certain’ solid which is actually made up of eight
‘hoofs’ like that of Prop. 12. Prop. 16 proves that the
volume of this solid is two-thirds of that of the cube. Archi-
medes observes in his preface that a remarkable fact about

(1912) containing The Method, on_the original edition of Heiberg (in
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these solids respectively is that each of them is equal to a
solid enclosed by plunes, whereas the volume of curvilinear
solids (spheres, spheroids, &c.) is generally only expressible in
terms of other curvilinear solids (cones and cylinders). In
accordance with his dictum that the results obtained by the
mechanical method are merely indicated, but not actually
proved, unless confirmed by the rigorous methods of pure
geometry, Archimedes proved the facts about the two last-
named solids by the orthodox method of exhaustion as
regularly used by him in his other geometrical treatises; the
proofs, partly lost, were given in Props. 15 and 16.

We will first illustrate the method' by giving the argument
of Prop. 1 about the area of a parabolic segment.

Let A B! be the segment, BD its diameter, ('F the tangent
at (v Let P be any point on the segment, and let AKF,

F
M E _
T W c
H
| K N
G P,
5 (M)
A

OPNM he drawn parallel to BD.  Join (/B and produce it to
meet MO in N and FA in K, and let K[ be made equal to
K.
Now, by a proposition « proved in a lemma ’ (cf. Quadrature
of the Parabola, Prop. 5)
MO:0P = ("4 : 40
=CK:KN
= IIK:KN.

Also, by the property of the parabola, EB = B, so that
MN = NO and FK = KA.

It follows that, if IIC be regarded as the bar of a balance,
a line 7'G cqual to PO and placed with its middle point at H
balances, about A, the straight line MO placed where it is,
i.c. with its middle point at V.

Similarly with «ll lines, as MO, IO, in the triangle CFA
and the segment CBA respectively.

And there are the same number of these lines. Therefore
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the whole segment of the parabola acting at H balances the
triangle CFA placed where it is.

But the centre of gravity of the triangle CFA is at W,
where CW = 2 WK [and the whole triangle may be taken as
acting at W].

Therefore (segment AB('): ACFA = WK : KH
=1:3,
so that (segment ABC) = 1 ACFA
= 4AABC. Q.E.D.

It will be observed that Archimedes takes the segment and
the triangle to be made up of parallel lines indefinitely close
together. In reality they are made up of indefinitely narrow
strips, but the width (dz, as we might say) being the same
for the elements of the triangle and segment respectively,
divides out. And of course the weight of each element in
both is proportional to the area. Archimedes also, without
mentioning moments, in effect assumes that the sum of the
moments of each particle of a figure, acting where it is, is
equal to the moment of the whole figure applied as one mass
at its centre of gravity.

We will now take the casc of any segment of a spheroid
of revolution, because that will cover several propositions of
Archimedes as particular cases.

The ellipse with axes A4’, BB’ is a section made by the
plane of the paper in a spheroid with axis A4’. Tt is required
to find the volume of any right segment ADC' of the spheroid
in terms of the right cone with the same base and height.

Let DC be the diameter of the circular base of the segment.
Join AB, AB’, and produce them to meet the tangent at 4’ to
the ellipse in K, K’, and DC produced in E, F.

Conceive a cylinder described with axis 44" and base the
circle on KK’ as diameter, and cones deseribed with AG as
axis and bases the circles on EF, DC as diameters,

Let N be any point on AG, and let MOPQNQ'I’O’'M’ be
drawn through N parallel to BB’ or DC as shown in the
figure.

Produce A’A to H sothat HA = AA".
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Now HA:AN=A"A: AN
) =KA:4Q
= MN:NQ
= MN?%: MN .NQ.
It is now necessary to prove that 'MN. NQ = NP?%+ NQ*.

H

av/xj\\\,’

K Al K'

By the property of the ellipse,
AN.NA':NP? = (J AA’)*: (3 BB')*

= ANZ: NQ2;
therefore NQ*:NIP2=AN*2: AN . NA’
= NQ%: NQ.QM,
whence NP2 = MQ.QN.

Add NQ? to cach side, and we have
NP2+ NQ? = MN . NQ.
Therefore, from above,
HA:AN = MN?: (NP?+ NQ?). (1)

But MN2, NP2, NQ? arc to onc another as the areas of the
circles with MM’, PP’, QQ’ respectively as diameters, and these
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circles are sections made by the plane though .V at right
angles to 44’ in the cylinder, the spheroid and the cone AEF
respectively.

Therefore, if HAA’ be a lever, and the scctions of the

spheroid and cone be both placed with their centres of gravity
at H, these sections placed at I balance, about 4, the section
MM’ of the cylinder where it is.
+ Treating all the corresponding sections of the segment of
the spheroid, the cone and the cylinder in the same way,
we find that the eylinder with axis A, where it is, balanees,
about 4, the conec AEF and the segment 4 DC together, when
both are placed with their centres of gravity at H; and,
if W be the centre of gravity of the eylinder, i.c. the middle
point of AG,

HA: AW = (cylinder, axis AG): (cone AEF +segmt. ADC).

If we call ¥V the volume of the cone AEF, and S that of the
segment of the spheroid, we have

AAZ

(cylinder): (V+S5) =3 V. Al (V+N),
while HA:AW = AA":}AG.
AAr” .
Therefore AA’:1AG=3V. ek ((V+RS),
. A4’
and (V+S Z%V'AG’
344’
whence V(ZA(: )
Again, let V’ he the volume of the cone 4 DC.
Then V:V'= EG*: DG*
BB
— 2. Y2
—AA’Z'AG :DG2.
But DG*: AG.GA’ = BB?: AA"
Therefore V:V'=AG*: AG.GA’

=AG:GA".
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AG 3A4’
GA'\24G ~ )
3AA'—AG

_ 7 'E___m_”_n_____
=V A6
A4+ AG
A

which is the result stated by Archimedes in Prop. 8.

The result is the same for the segment of a sphere. The
proof, of ecourse slightly simnpler, is given in Prop. 7.

In the particular case where the segment is half the sphere
or spheroid, the relation hecomes |

S=2V, (Props. 2, 3)

It-follows that S= V"’.

=V’

and it follows that the volume of the whole sphere or spheroid
is 4V, where V’ is the volume of the cone ABB’; i.e. the
volume of the sphere or spheroid is two-thirds of that of the
circumseribing cylinder.

In order now to find the centre of gravity of the segment
of a spheroid, we must have the segment acting where it is,
not at 1.

Therefore formula (1) above will not serve. But we found

that . MN.NQ = (NP?+ NQY,
whence  MN?%: (NP?+ NQ?) = (NP*+NQ?% : NQ?;
therefore HA:AN = (NP*+ NQ3%) : NQ>

(This is separately proved by Archimedes for the sphere
in Prop. 9.)

From this we derive, as usual, that the cone AEF and the
segment ADC both acting where they «re balance a volume
cqual to the cone A KF placed with its centre of gravity at H.

Now the centre of gravity of the cone AEF is on the line
A at o distance 34 from 4. Lot X be the required centre
of gravity of the segment. Then, taking moments about 4,

we have V.HA =8.4AX +V.3A4G,
or V(AA'-3AG) = 8. AX

3 ’
=V (7:1;3— - 1) AX, from above.



34 ARCHIMEDES

Therefore AX:AG = (A4'—3AG):(344"-AQG)
= (444'—3AG): (644" —1AG);
whence AX:XG = (4AA" -3AG):(244"— AG)
=(AG+44’G): (AG+24'G),

which is the result obtained by Archimedes in Prop. 9 for the
sphere and in Prop. 10 for the spheroid.

In the case of the hemi-spheroid or hemisphere the ratio
AX : X@ becomes 5:3, a result obtained for the hemisphere in
Prop. 6.

The cases of the paraboloid of revolution (Props. 4, 5) and
the hyperboloid of revolution (Prop. 11) follow the same course,
and it is unnecessary to reproduce them.

For the cases of the two solids dealt with at the end of the
treatise the reader must be referred to the propositions them-
selves. Incidentally, in Prop. 13, Archimedes finds the centre
of gravity of the half of a cylinder cut by a plane through
the axis, or, in other words, the centre of gravity of a semi-
circle.

We will now take the other treatises in the order in which
they appear in the editions.

On the Sphere and Cylinder, I, II.

The main results obtained in Book I are shortly stated in
a prefatory letter to Dosithcus. Archimedes tells us that
they are new, and that he is now publishing them for the
first time, in order that mathematicians may he able to ex-
amine the proofs and judge of their value. The results are
(1) that the surface of a sphere is four times that of a great
circle of the sphere, (2) that the surface of any segment of a
sphere is equal to a circle the radius of which is equal to the
straight line drawn from the vertex of the segment to a point
on the circumference of the base, (3) that the volume of a
cylinder circumseribing a sphere and with height equal to the
diameter of the sphere is 3 of the volume of the sphere,
(4) that the surface of the circumscribing cylinder including
its bases is also § of the surface of the sphere. It is worthy
of note that, while the first and third of these propositions
appear in the book in this order (Props. 33 and 34 respec-
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tively), this was not the order of their discovery; for Archi-
medes tells us in The Method that

“from the thecorem that a sphere is four times as great as the
cone with a great circle of the sphere as base and with height
cqual to the radius of the sphere I coneeived the notion that
the surface of any sphere is four times as great as a great
cirele in it ; for, judging from the fact that any circle is equal
to a triangle with base equal to the circumference and height
equal to the radius of the cirele, I apprchended that, in like
manner, any sphere is equal to a cone with base equal to the
surface of the sphere and height equal to the radius’.

Book I hegins with definitions (of ‘concave in the same
direction” as applied to curves or broken lines and surfaces, of
a ‘solid seetor’ and a ‘solid rhombus’) followed by five
Assumptions, all of importance.  Of «ll lines awhich harve the
same ertrenities the straight Uine is the least, and, if there are
two eurved or bent lines in a plane having the same extremi-
ties and concave in the same direction, but one is wholly
included by, or partly ineluded by and partly common with,
the other, then that which is ineluded is the lesser of the two.
Similarly with plane surfaces and surfaces concave in the
same direction.  Lastly, Assumption 5 is the famous ¢ Axiom
of Archimedes’, which however was, according to Archimedes
himself, used by earlier geometers (Eudoxus in particular), to
the effect that Of wnequal magnitudes the greater exceeds
the less by sweh « mugnitude as, when added to itself, can be
made to exceed «ny assigned magnitude of the same kind;
the axiom is of course practically equivalent to Euel. V, Def. 4,
and is closely econneeted with the theorem of Euel. X. 1.

As, in applying the method of exhaustion, Archimedes uses
both circumseribed and inseribed figures with a view to com-
pressing them into coaleseence with the curvilinear figure to
be measured, he has to begin with propositions showing that,
given two unequal magnitudes, then, however near the ratio
of the greater to the less is to 1, it is possible to find two
straight lines such that the greater is to the less in a still less
ratio (> 1), and to circumseribe and inseribe similar polygons to
a circle or seetor such that the perimeter or the area of the
circumseribed polygon is to that of the inner in a ratio less
than the given ratio (Props. 2 6): also, just as Euclid proves
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that, if we continually double the number of the sides of the
regular polygon inscribed in a circle, segments will ultimately be
left which are together less than any assigned area, Archimedes
has to supplement this (Prop. 6) by proving that, if we increase
the number of the sides of a circumscribed regular polygon
sufficiently, we can make the excess of the arca of the polygon
over that of the circle less than any given area. Archimedes
then addresses himself to the problems of finding the surface of
any right cone or cylinder, problems finally solved in Props. 13
(the cylinder) and 14 (the cone). Circumseribing and insecrib-
ing regular polygons to the bases of the cone and cylinder, he
erects pyramids and prisms respectively on the polygons as
bases and circumscribed or inscribed to the cone and eylinder
respectively. In Props. 7 and 8 he finds the surface of the
pyramids inseribed and circumseribed to the cone, and in
Props. 9 and 10 he proves that the surfaces of the insecribed
and circumscribed pyramids respectively (excluding the base)
are less and greater than the surfacec of the cone (excluding
the base). Props. 11 and 12 prove the same thing of the
prisms inscribed and circumnseribed to the cylinder, and finally
Props. 13 and 14 prove, by the method of exhaustion, that the
surface of the cone or cylinder (excluding the hases) is equal
to the circle the radius of which is a mean proportional
between the ‘side’ (i.e. generator) of the cone or cylinder and
the radius or diameter of the base (i.e. is equal to 778 in the
case of the cone and 2m7s in the case of the cylinder, where
 is the radius of the base and s a generator). As Archimedes
here applies the method of exhaustion for the first time, we
will illustrate by the case of the cone (Prop. 14).

Let A4 be the base of the cone, €' a straight line equal to its

©

radius, D a line equal to a generator of the cone, £ a mean
proportional to C, D, and B a circle with radius equal to £.

omoO
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If 8 is the surface of the cone, we have to prove that S= B.
For, if S is not equal to B, it must be either greater or less.

1. Suppose B < S.

Circumseribe a regular polygon about B,and inseribe a similar
polygon in it, such that the former has to the latter a ratio less
than 8: B (Prop. 5). Describe about 4 a similar polygon and
set up from it a pyramid circumseribing the cone,

Then (polygon about A): (polygon about B)

=(C%: k2
=C:D
= (polygon about 4):(surface of pyramid).

Therefore  (surface of pyramid) = (polygon about B)

But (polygon alout B): (polygon in B) < §:.B
therefore  (surface of pyramid): (polygon in B) < 8: B

But this is impossible, since (surface of pyramid) > N, while
(polygon in B) < B;
therefore B is not less than S.

II. Suppose B > 8.

Circumseribe and inseribe similar regular polygons to B
such that the former has to the latter a ratio < B:S. Inseribe
in A a similar poly(ron and ercet on 4 the inseribed pyramid.

Then  (polygon in A):(polygon in B) = (/2: k2

> (polygon in A4): (surface of pyramid).

(The latter inference is clear, because the ratio of C': D is
greater than the ratio of the perpendiculars from the centre of
A and from the vertex of the pyramid respectively on any
side of the polygon in A4; in other words, if 8 < a < }m,
sina > sinB.)

Therefore  (surface of pyramid) > (polygon in B).

But (polygon about B):(polygon in B) < B:8,
whence (a'fortiors)

(polygon about B): (surface of pyramid) < B: S,
which is impossible, for (polygon about B) > B, while (surface
of pyramid) < 8.
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Therefore B is not greater than S.
Hence S, being neither greater nor less than B, is equal to B.

Archimedes next addresses himself to the problem of finding
the swface and volume of a sphere or a scgment thereof, but
has to interpolate some propositions about ‘solid rhombi’
(figures made up of two right cones, unequal or equal, with
bases coincident and vertices in opposite directions) the neces-
sity of which will shortly appear.

Taking a great circle of the sphere or a segment of it, he
inscribes a regular polygon of an even number of sides bisceted

D
c
8 E
F
]
ANT/x Ta /C [o N A
8’ E'
c
D‘
Fic. 1.

by the diameter AA4’, and approximates to the surface and
volume of the sphere or segment by making the polygon
revolve about A4’ and measuring the surface and volume of
solid so inscribed (Props. 21-7). He then docs the same for the
a circumseribed solid (Props. 28-32). Construct the inscribed
polygons as shown in the above figures. Joining BB, ce’, ...,
CB’, DC”’ ... we see that BB’,CC’ .., are all parallel, and so ave
AB,CH, DC'....
Therefore, by similar triangles, BF: FA = A’B:BA, and
BF:FA = B'F:FK
=0G:GK
=C'G:GL

= E’I: T4’ in Fig. 1
(= PM:MN in Fig. 2),
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whence, adding antecedents and consequents, we have
(Fig. 1) (BB’+CC’'+...+EE’): AA" = A’B: BA, (Prop. 21)
(Fig. 2) (BB'+CC’+...+3PP):AM = A’B: BA. (Prop. 22)

When we make the polygon revolve about 44, the surface
of the inseribed figure so obtained is made up of the surfaces
of cones and frusta of cones; Prop. 14 has proved that the
surface of the conec ABB’ is what we should write 7. AB . BF,
and Prop. 16 has proved that the surface of the frustum
BCU'B is w.BC (BF+(CG). 1t follows that, since AB =

BC = ..., the surface of the inseribed solid is

. AB {(} BB + (BB +CC')+ ...},
thatis, w.AB(BB' +CC’+...+EL’) (Fig.1), (Prop. 24)
or w. AB (BB +CC' +...+3PI) (Fig. 2). (Prop. 35)

Henee, from above, the surface of the inseribed solid is
m. A'B.AA” or w.A’B.AM, and is therefore less than
w. AA" (Prop. 25) or w. A’A . AM, that is, w . AP? (Prop. 37).

Similar propositions with regard to surfaces formed by the
revolution about 44’ of regular circumseribed solids prove
that their surfaces are greater than n.44’% and 7w.4P*
respectively (Props. 28-30 and Props. 39-40). The case of the
segment is more complicated because the circumseribed poly-
gon with its sides parallel to AB, BC ... DI’ circumscribes
the sector POP’. Consequently, if the segment is less than a
semicircle, as C'/A(", the basc of the circumseribed polygon
(¢¢’) is on the side of C(” towards A4, and therefore the circum-
seribed polygon leaves over a small strip of the inseribed. This
complication is dealt with in Props. 39-40. Having then
arrived at circamseribed and inseribed figures with surfaces
greater and less than 7. 44’2 and m. AP? respectively, and
having proved (Props. 32, 41) that the surfaces of the circum-
seribed and inseribed figures arve to one another in the duplicate
ratio of their sides, Archimedes proceeds to prove formally, by
the method of exhaustion, that the surfaces of the sphere and
segment are equal to these cireles respectively (Props. 33 and
42); 7. AA’% s of course equal to four times the great circle
of the sphere. The segment is, for convenience, taken to be
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less than a hemisphere, and Prop. 43 proves that the same
formula applies also to a segment greater than a hemisphere.

As regards the volumes different considerations involving
‘solid rhombi’ come in. For convenience Archimedes takes,
in the case of the whole sphere, an inscribed polygon of 4n
sides (Fig. 1). It is easily seen that the solid figure formed
by its revolution is made up of the following : first, the solid
rhombus formed by the revolution of the quadrilateral ABOB’
(the volume of this is shown to be equal to the cone with base
equal to the surface of the cone ABB’ and height equal to p,
the perpendicular from O on AB, Prop. 18); secondly, the
extinguisher-shaped figure formed by the revolution of the
triangle BOC about AA’ (this figure is equal to the difference
between two solid rhombi formed by the revolution of TBOB’
and TCO(C" respectively about AA4’, where T' is the point of
intersection of CB, (B’ produced with A’A produced, and
this difference is proved to be equal to a cone with base equal
to the surface of the frustum of a cone described by BC in its
revolution and height equal to p the perpendicular from O on
BC, Prop. 20); and so on; finally, the figure formed by the
revolution of the triangle COD about AA’ is the difference
between a cone and a solid rhombus, which is proved equal to
a cone with base equal to the surface of the frustum of a cone
described by CD in its revolution and height p» (Prop.19).
Consequently, by addition, the volume of the whole solid of
revolution is equal to the cone with base equal to its whole
surface and height p (Prop. 26). But the whole of the surface
of the solid is less than 4 =72 and p<; therefore the volume
of the inscribed solid is less than four times the cone with
base 772 and height » (Prop. 27).

It is then proved in a similar way that the revolution of
the similar circumscribed polygon of 4n sides gives a solid
the volume of which is greater than four times the same cone
(Props. 28-31 Cor.). Lastly, the volumes of the circumseribed
and inscribed figures are to one another in the triplicate ratio of
their sides (Prop. 32); and Archimedes is now in a position to
apply the method of exhaustion to prove that the volume of
the sphere is 4 times the cone with base #7* and height r
(Prop. 34). ‘

Dealing with the segment of a sphere, Archimedes takes, for
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convenience, a segment less than a hemisphere and, by the
same chain of argument (Props. 38, 40 Corr., 41 and 42), proves
(Prop. 44) that the volume of the sector of the sphere bounded
by the surface of the seginent is equal to a cone with base
equal to the surface of the segment and height equal to the
radius, i. e. the cone with base 7. AP? and height » (Fig. 2).

It is noteworthy that the proportions obtained in Props. 21,
22 (see p. 39 above) can be expressed in trigonometrical form.
1f 4m is the number of the sides of the polygon inseribed in
the cirele, and 2n the number of the sides of the polygon
inscribed in the segment, and if the angle AOP is denoted
by «, the trigonometrical equivalents of the proportions are
respectively

m

m . 27 . m
SIn = sin-— +...+sm(2n—1) — = cot —;
(1) ml2’11,+ql"2n .o tsing )2w 4n’

. . 20 . o} .
(2) 2 591110f +sin — +... +S]ll(n—1)—~} + sin
n " n

{
x
= (1—cosn) coté—'; .

Thus the two proportions give in effect a summation of the
series
sin@+sin26+... +sin(n—1)80,

both generally where 10 is equal to any angle a less than 7
and in the particular ecasec where o is even and 8 = 7 /n.
Props, 24 and 35 prove that the areas of the circles equal to
the surfaces of the solids of revolution deseribed by the
polygons inseribed in the sphere and segment are the above

series multiplied by 4m#?sin in and 772, 2 sin i respectively

. ™ ; x
and are therefore 4m72?cos in and 71%.2 cos oT (1 ~cosa)
n :

respectively.  Archimedes’s results for the.surfaces of the
sphere and segment, 477 and 277?(1—cosa), are the
limiting values of these expressions when n is indefinitely

. ™ "
increased and when therefore cos in and cos o become

unity. And the two series multiplied by 47r')"‘sin% and
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.o . . . .
w72, 28in o respectively are (when 7 is indefinitely increased)

precisely what we should represent by the integrals

w
41r'r2.%J sin 0d6, or 4712,
0

a
and Tr f 2sin 0d 0, or 27r?(1 —cos ).
(1]

Book 11 contains six problems and three theorems. Of the
theorems Prop. 2 completes the investigation of the volume of
any segment of a sphere, Prop. 44 of Book I having only
brought us to the volume of the corresponding sector. If
ABB be a segment of a sphere cut off by a plane at right
angles to AA4’, we learnt in 1. 44 that the volume of the sector

OBAB is equal to the cone with base equal to the surface

of the segment and height equal to the radius, i.e. 37. AB%. 7,

where 7 is the radius. The volume of the segment is therefore
wm.AB*.r—%w.BM*.0OM.

Archimedes wishes to express this as a cone with base the
same as that of the segment. Let AM, the height of the seg-
ment, = h.

Now AB?: BM* = A’A: A’M = 27r:(2r—h).

Therefore

2
1m(AB.r—BM®. OM) = .gﬂ.BMZ{Zf__T_ﬁ ~(r—h}
3r—h
. § 2 o .
=1imw.BM .k(zr_k)

That is, the segment is equal to the cone with the same
base as that of the segment and height h(37—1)/(2r—1).
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This is expressed by Archimedes thus. If /{M is the height
of the required cone,

HM:AM = (OA’ + A'M): A'M, (1)

and similarly the cone equal to the segment A’BB’ has the
height H’M, where

IPM:AM = (OA+AM): A (2)

His proof is, of course, not in the above form but purely
geometrical.

This proposition leads to the most important proposition in
the Book, Prop. 4, which solves the problem 7o cut « given
sphere by « plane in such a way that the volumes of the
segments are to one another in @ given ratio.

Cubic equation arising out of II. 4.

If m:n be the given ratio of the cones which are equal to
the segments and the heights of which are Z, &/, we have
3r—h m ., 3r—n
IRy = e (3T,
2r—"L nwo \2r—Jh
and, if we climinate 2’ by means of the relation A+4 = 27,
we easily obtain the following cubic equation in Z,

4m

=0
m+ n

W —3h2r +

Archimedes in effect reduces the problem to this equation,
which, however, he treats as a particular case of the more
general problem corresponding to the equation

(r+4):0=c*:(2r—1)3,
where b is a given length and ¢? any given area,
or a?(u—x) = be?, where @ = 2r—L and 37 = a.
Archimedes obtains his cubic cquation with one unknown

by means of a geometrical climination of 1, H’ from the
cquation Hil = %.H’M, where HAM, H'M have the values
determined by the proportions (1) and (2) above, after which
the one variable point M remaining corresponds to the one
unknown of the cubic equation. His method is, first, to find
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values for each of the ratios A’H’: H'M and H'H: A’H’ which
are alike independent of H, H” and then, secondly, to equate
the ratio compounded of these two to the known value of the
ratio HH': H'M.

(o) We have, from (2),

A'H :HM=0A:(0A+AM). (3)
(B) From (1) and (2), separando,
AH:AM = 0A4':4'M, (4)
A'H :A'M=0A:AM. (5)
Equating the values of the ratio A’M: AM given by (4), (5),
we have 0A4":AH = A’I": 04
= 0II' : 01,
whence HH :OH'= OH": A’H’, (sinecc 04 = 04")
or HH A'Il' = 01",
so that HH :A’H = 01["*: A" (6)

But, by (5), OA : A’H = AM:A’M,
and, componendo, OH': A’H' = AA’: A’M.
By substitution in (6),

HH :A'II' = AA™: A’M*. (7)
Compounding with (3), we obtain
HH :HM=(AA?%:A'M?%).(OA:0A+AM). (8)

[The algebraical equivalent of this is

m+n _ 43

n T @ REa k)

m+n 49
ich reduces to L
whie m 3hir—h3’
or IA—3h%r + 73 = 0, as above.]

m+n

Archimedes expresses the result (8) more simply by pro-
" ducing OA to D so that 04 = AD, and then dividing AD at
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E so that AD:DE = HH' :H'M or (m+mn):n. We have
then OA = AD and OA+AM = MD, so that (8) reduces to

AD:DE = (AA™: A’M?) . (AD: MD),
or MD:DE = AA’2: A’M>,

Now, says Archimedes, D) is given, since A/) = 0A. Also,
AD:DE being a given ratio, DE is given. Hence the pro-
blem reduces itself to that of dividing A’D into two parts at
M such that

MD: (a given length) = (a given area) : A’ M2,
That is, the generalized equation is of the form

2% (a—x) = be?, as above.

(i) Archimedes’s own solution of the cubic.

Archimedes adds that, <if the problem is propounded in this
gencral form, it requires a Stoptopds [i.c. it is necessary to
investigate tne limits of possibility], but if the conditions are
added which exist in the present case [i.e. in the actual
problem of Prop, 4], it does not require a Stoptopuds’ (in other
words, a solution is always possible). He then promises to
give ‘at the end’ an analysis and synthesis of both problems
[i.c. the Siopiopubs and the problem itself]. The promised
solutions do not appear in the treatise as we have it, but
Eutocius gives solutions taken from ‘an old book’ which he
managed to discover after laborious search, and which, since it
was partly written in Archimedes’s favourite Dorie, he with
fair reason assumed to contain the missing addendum by
Archimedes.

In the Archimedean fragment preserved by Eutocius the
above cquation, z®(« —x) = be?, ig solved by means of the inter-
section of a parabola and a rectangular hyperbola, the equations
of which may be written thus

. €2 b
@’ = —Y, (¢—z)y = ab.

The dtoptapuds takes the form of investigating the maximum
possible value of #?(a —x), and it is proved that this maximum
value for a real solution is that corresponding to the value
Z = %a. This is established by showing that, if bc* = #a?,
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the curves touch at the point for which @ = 2a. If on the
other hand be? < £;a? it is proved that there are two real
solutions. In the particular case arising in Prop. 4 it is clear
that the condition for a real solution is satisfied, for the

m
-—47% and it is only

expression corresponding to bc? is
m+n

m N
necessary that ——- 423 should be not greater than % «* or
m+n S 27

473, which is obviously the casc.

(ii) Solution of the cubic by Dionysodorus.

It is convenient to add here that Eutocius gives, in addition
to the solution by Archimedes, two other solutions of our
problem. One, by Dionysodorus, solves the eubic equation in
the less general form in which it is required for Avchimedes's
proposition. This form, obtained from (8) above, by putting
A'M =, is

4r2:02 = (3r—u): r,
m+n
and the HO]llt]Oll is obtained by drawing the parabola and
y
D
s R

the rectangular hyperbola which we should represent hy the
cquations

"
r(83r—ux) = 9y% and -— - 2 —
m+n ( ) =y anc mtn 2t =Y

referred to 4’4 and the perpendicular to it through 4 as axes
of , y respectively.

(We make FA equal to 04, and draw the perpendicular
AH of such a length that

FA:AH =CE:ED = (m+mn):n.)
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(iii} Solution of the original problem of II. 4 by Diocles.

Diocles proceeded in a different manner, satisfying, by
a geometrical construction, not the derivative cubic equation,
but the three simultancous relations which hold in Archi-
medes's proposition, namely

HM:-I'M =m:n
HA: L. = r:h},
IHa’: 1w = r:h

with the slight gencralization that he substitutes for » in
these equations another length «.

F - Y
1 '
' P
)
¢ v \Q E
H R A M 1
o H ORI X
a
\")
K N K’

P

The problem is, given a straight line AA4’, a ratio m:n, and
another straight line AKX (= a), to divide A4’ at a point M
and at the same time to find two points M, I’ on AA’
produced such that the above relations (with « in place
of 7) hold.

The analysis leading to the construction is very ingenious.
Place AK (= a) at right angles to AA”, and draw A’K’ equal
and parallel to it.

Suppose the problem solved, and the points M, H, II’ all
found.

Join KM, produce it, and comnplete the rectangle KGEK'.
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Draw QMN through M parallel to AK. Produce K'M to
meet KG produced in F.
By similar triangles,

FA:AM =K'A’:A’'M, or FA:h =a:FV,
whence FA = AH (k, suppose).
Similarly A’E = A’Il’ (I, suppose).
Again, by similar triangles,
FA+AM):(A'K'+ A’M) = AM:A'M
=(AK+AM):(EA"+ A'M),
or (k+k):(@+l) = («+h):(K+ V),
ie. (k+h)y (K +1') = (@+h) (a+1). (1)
Now, by hypothesis,
m:n=K+h):(K"+h")
= (k+h) (& +h'): (K+ 1)
= (a+h) («+ k') : (' + k)% [by (1)]. (2)
Measure AR, A’R’ on AA’ produced both ways equal to a.
Draw RP, R’P’ at right angles to RR’ as shown in the figure.

Measure along MN the length MV equal to MA’ or /', and
draw PP’ through V, A’ to meet R, R'}”.

Then QV=IK+k, PV=V2(+h),
PV=4v2(@+h),
whence LV.PV=2uw+h)(w+h’);

and, from (2) above,
2m:in=2(u+h)(@+h): (& +1)*
=PV.PV:QV2 (3)
Therefore @ is on an ellipse in which °/” is a diameter, and

QV is an ordinate to it.
Again, O GQNK is equal to 0 AA’K’K, whence

GQ.QN = AA" A'K' = (h+¥)a = 2ra, (4)

and therefore @ is on the rectangular hyperboly with KF,
KK’ as asymptotes and passing through 4’.
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How this ingenious analysis was suggested it is not possible
to say. It is the equivalent of reducing the four unknowns
Ly W, kK to two, by putting h=r+z, ' =r—z and ¥’ =y,
and then reducing the given relations to two equations in =z, y,
which are coordinates of a point in relation to Ox, Oy as axes,
where O is the middle point of 447, and Oz lies along 0A’,
while Oy is perpendicular to it.

Our original relations (p. 47) give

al’ r—a ah r4+a m h+k

’I::k':————-:b - =5 = - - nao —= ——--
y e YT W r—u nw o WM+

We have at onee, from the first two equations,
r+4+ 2
ky=« "~ y=da*
Y r—u Y »
whence (r+a)y =a(r—ux),

and . (+r)(y+a)=2rq,

which is the rectangular hyperbola (1) above.

m h+k (r+) (1 + ;'-(:T')

wo o+ ) = @
(r=n) (14 )

Again,

whenee we obtain a cubie equation in .,
. m o X
(r+a)?(r+a—ur) = n (r—a) (r+a+x),
which gives

m W2k I A 0w
: (r——.r)-( ) = (r+u)*—a®
n r4a
0 « 4+ r—.r r4+a+.w
But 4= -—, whenee Jr o= e )
r—x  r4x r—x r4+e

and the equation becomes
m : 2 o
"y r—a) = (r+ -2
0

which is the cllipse (3) above.

. - g—— - = m— e &

1823.2 B
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To return to Archimedes. Book II of our treatise contains
further problems: To find a sphere equal to a given cone or
cylinder (Prop. 1), solved by reduction to the finding of two
mean proportionals; to cut a sphere by a plane into two
segments having their surfaces in a given ratio (Prop. 3),
which is easy (by means of I. 42, 43); given two segments of
spheres, to find a third segment of a sphere similar to one
of the given segments and having its surface equal to that of
the other (Prop. 6); the same problem with volume substituted
for surface (Prop. 5), which is again reduced to the finding
of two mean proportionals; from a given sphere to cut off
a segment having a given ratio to the cone with the same
base and equal height (Prop. 7). The Book concludes with
two interesting theorems. If a sphere be cut by a plane into
two segments, the greater of which has its surface equal to S
and its volume equal to V, while S/, V" are the surface and
volume of the lesser, then V:V’ < 82:872 but > S%:873
(Prop. 8): and, of all segments of spheres which have their
surfaces equal, the hemisphere is the greatest in volume

(Prop. 9).

Measurement of a Circle.

The book on the Measurement of « Cirele consists of three
propositions only, and is not in its original form, having lost
(as the treatise On the Sphere and Cylinder also has) prac-
tically all trace of the Doric dialect in which Archimedes
wrote ; it may be only a fragment of a larger treatise. The
three propositions which survive prove (1) that the area of
a circle is equal to that of a right-angled triangle in which
the perpendicular is equal to the radius, and the base to the
circumference, of the circle, (2) that the area of a cirele is to
the square on its diameter as 11 to 14 (the text of this pro-
position is, however, unsatisfactory, and it cannot have been
placed by Archimedes before Prop. 3, on which it depends),
(3) that the ratio of the circumference of any circle to its
diameter (i.e. w) i8 < 3% but > 3%3. Prop. 1 is proved by
the method of exhaustion in Archimedes’s usual form: he
approximates to the area of the circle in both directions
. (@) by inscribing successive regular polygons with a number of
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sides continually doubled, beginning from a square, (b) by
circumseribing a similar set of regular polygons beginning
from a square, it being shown that,*if the number of the
sides of these polygons be continually doubled, more than half
of the portion of the polygon outside the circle will be taken
away each time, so that we shall ultimately arrive at a circum-
seribed polygon greater than the circle by a space less than
any assigned area.

Prop. 3, containing the arithmetical approximation to wr, is
the most interesting. The method amounts to calculating
approximately the perimeter of two regular polygons of 96
sides, one of which is circumseribed, and the other inscribed,
to the cirele: and the calculation starts from a greater and
a lesser limit to the value of 43, whicll Archimedes assumes
without remark as known, namely

265 1351
183 < V3 < Bl

How did Archimedes arrive at these particular approxi-
mations?  No puzzle has excreised more fascination upon
writers interested in the history of mathematies. De Lagny,
Mollweide, Buzengeiger, Hauber, Zeuthen, P. Tannery, Heiler-
mann, Hultsch, Hunrath, Wertheim, Bobynin: these are the
names of some of the authors of different conjectures. The
simplest supposition is certainly that of Hunrath and Hultsch,
who suggested that the formula used was

b

b
2 -
wt , >V (@E1b) >at 201

2¢
where a® is the nearest square number above or helow «* + b,
as the case may be.  The use of the first part of this formula
by Heron, who made a number of such approximations, is
proved by a passage in his Metrica?, where a rule equivalent
to this is applied to v/720; the second part of the formula is
used by the Arabian Alkarkhi (eleventh century) who drew
from Greck sources, and one approximation in Heron may be
obtained in this way.* Another suggestion (that of Tannery

' Heron, Metrica, 1. 8. o
2 Stereom. ii, p. 184. 19, Hultsch; p. 154. 19, Heib. /54 =7} =7y%
instead of 7 7.

E2
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and Zeuthen) is that the successive solutions in integers of
the equations

@£r— 3yt = %

a3yt = —2

may have been found in a similar way to those of the
equations 2?—2y* = +1 given by Theon of Smyrna after
the Pythagoreans. The rest of the suggestions amount for the
most part to the use of the method of continued fractions
more or less disguised.

Applying the above formula, we casily find

2—-1>v3>2-3%
or I>4v/3>4%.

Next, clearing of fractions, we consider 5 as an approxi-
mation to /3. 3% or /27, and we have

5+16 >3v3>5+47,
whence 28 > V3> 41

Clearing of fractions again, and taking 26 as an approxi-
mation to v/3.15% or v/675, we have

26— > 1573 > 26—y,

which reduces to
'735551‘ > V'3 > %—g%.

Archimedes first takes the casc of the eircumscribed polygon.
Let CA be the tangent at 4 to a circular arc with centre 0.
Make the angle AOC equal to one-third of a right angle.
Bisect the angle AOC by OD, the angle AOD by OF, the
angle AOE by OF, and the angle AOF by OG. Produce G4
to AH, making AH equal to AG. The angle GOII is then
equal to the angle FOA which is Fth of a right angle, so
that GH is the side of a circumscribed regular polygon with
96 sides.

Now UOA:AC[= v3:1] > 265:153, (1)

and 0C:CA =2:1=306:153. (2)
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And, since 0D bisects the angle COA,
CO:0A=CD:DA,

so that (CO+0A4):04 =CA: DA,
or (CO+04):CA=04:4D,.
Henee 0A4:AD > 571:153, by (1) and (2).

%nm o

And OD?:AD? = (0A*+ AD?) : AD?
) > (57141537 :153%
> 349450 : 23409,
Therefore, says Arvchimedes,
OD: DA > 5915 :153.

Next, just as we have found the limit of OD:AD
from OC:CA and the limit of 04 : AC, we find the limits
of OA:AE and OF: ALK from the limits of OD:DA and
OA:AD, and so on. This gives ultimately the limit of
OA:AQ. .

Dealing with the inscribed polygon, Archimedes gets a
similar serics of approximations. ABC being a semicircle, the
angle BAC is made equal to one-third of a right angle.  Then,
if the angle BAC is bisected by AD, the angle BAD by AL,
the angle BAK by AF, and the angle BAF by AG, the
straight line B is the side of an inscribed polygon with
96 sides,
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Now the triangles ADB, BDd, ACd are similar;
therefore AD:DB=BD:Dd= AC:Cd
= AB: Bd, since AD bisects Z BAC,
= (AB+AC): (Bd + Cd)

=(AB+ AC): BC.

But AC:CB < 1351:780,
while BA:BC =2:1=1560:780.

Therefore AD:DB < 2911:780.

o A
Hence AB*: BD* < (2911% + 780%): 780*

< 9082321:608400,
and, says Archimedes,

AB:BD < 30133 : 780.

Next, just as a limit is found for AD: DB and AB: BD
from AB: BC and the limit of AC:CB, so we find limits for
AE:EB and AB: BE from the limits of AB: BD and AD: DB,
and so on, and finally we obtain the limit of AB: BG.

We have therefore in both cases two series of terms «,, «,,
ty ...y and by, b,, b, ... b,, for which the rule of formation is
= ay+b,y, uy=0a,+0,, ...,
where by =+ (02 +¢%, by = V(a2 +¢% ... ;

and in the first case
@y, = 265, [)0 =306, c¢= 153,
while in the second case

w, = 1351, b, = 1560, ¢ = 780.
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The series of values found by Archimedes are shown in the
following table :

b c N a b

c
306 153 0 1351 1560 780
571 > [V/(571%+153%)] 153 1 2911 < #/(2911*+780% 780
> 5911 < 301331 %
11623 > |/ {(11623)*+158%)] 153 2592411 780
>11723 1823 (< +/(1823%+ 240%) 240}
{ < 1838%
23343 >[ v/ {(23343)*+153¢}] 153 3 3661 240 1
> 23391 1007 (<+/(1007*+66%) 66
{ < 1009
46733 153 4 2016%—{< v {(20163)" +66*} 66
< 20173

and, bearing in mind that in the first case the final ratio
i ¢ is the ratio OA: AG = 204 : GH, and in the second case
the final ratio 1)4 ¢ is the ratio AB: BG, while GII in the first
figure and B in the second are the sides of regular polygons
of 96 sides circumseribed and inseribed respectively, we have

tinally
96 X 153 96 X 66
6733 777 20171
Archimedes simply infers from this that
31 >a > 331

96 x 153 6671 6671
. . - =3, lsoand o CE =1
As a matter of fact 46731 4673%’ ! 4b722 7

» 1 1
It is also to be observed that 333 =3+ 7T 10’ and it may
have heen arrived at by a method equivalent to developing
the fraction 2601 in the form of & continued fraction.
It should be notul that, in the text as we have it, the values
of by, b, by, b, are simply stated in their final form without
the intermediate step containing the radieal except in the first

) *+ Here the ratios of @ to ¢ are in the first instance reduced to lower
erms.
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case of all, wherec we are told that OD?: AD? > 349450:23409
and then that OD: DA > 591%:153. At the points marked
* and 1 in the table Archimedes simplifies the ratio a,:c and
«, : ¢ before calculating b,, b, respeetively, by multiplying each
term in the first case by 1% and in the sccond case by %§.
He gives no explanation bf the exact figure taken as the
approximation to the square root in each case, or of the
method by which he obtained it. We may, however, be sure
that the method amounted to the use of the formula (« + b)*
= a?+2ab + 0% much as our method of extracting the square
root also depends upon it.

We have already seen (vol. 1, p. 232) that, according to
Heron, Archimedes made a still closer approximation to the
value of .

On Conoids and Spheroids.

The main problems attacked in this treatise are, in Archi-
medes’s manner, stated in his preface addressed to Dositheus,
which also sets out the premisses with regard to the solid
figures in question. 'These premisses consist of definitions and
obvious inferences from them. The figures ave (1) the right-
angled conoid (paraboloid of revolution), (2) the ohtuse-angled
conoid (hyperboloid of revolution), and (3) the spheroids
() the oblong, deseribed by the revolution of an ellipse about
its ¢ greater diameter’ (major axis), (b) the flul, described by
the revolution of an ellipse about its ‘ lesser diameter’ (minor
axis). Other definitions are those of the vertex and wiris of the
figures or segments thereof, the vertex of a segment being
the point of contact of the tangent plane to the solid which
is parallel to the base of the segment. The centre is only
recognized in the case of the spheroid; what corresponds to
the centre in the casc of the hyperboloid is the ‘vertex of
the enveloping cone’ (described by the revolution of what
Archimedes calls the ‘nearest lines to the section of the
obtuse-angled cone’, i.c. the asymptotes of the hyperbola),
and the line between this point and the vertex of the hyper-
boloid or segment is called, not the axis or diameter, but (the
line) ‘adjacent to the axis’. The axis of the segment is in
the case of the paraboloid the line through the vertex of the
segment parallel to the axis of the paraboloid, in the case
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of the hyperboloid the portion within the solid of the line
joining the vertex of the enveloping cone to the vertex of
the segment and produced, and in the case of the spheroids the
line joining the points of contact of the two tangent planes
parallel to the base of the segment. Definitions are added of
a ‘segment of a cone’ (the figure cut off towards the vertex by
an elliptical, not circular, section of the cone) and a ‘ frustum
of a eylinder’ (cut off by two parallel elliptical sections).
Props. 1 to 18 with a Lemma at the beginning are preliminary
to the main subject of the treatise. The Lemma and Props. 1, 2
are general propositions needed afterwards.  They include
propositions in summation,
2{a+20+3a+..+n0e) >n.n0>2{a+20+ .. +(n—1)a}

(Lemma)
(this is clear from S, = 3n(n+1)a):
(n4+1) (na)i+a(e+2a+3a+... +na)
= 3{a*+(2a)*+ (3¢)* + ... + (na)?};

(Lemma to Prop. 2)
whenee (Cor.)

3L+ (2a)* + (3a)* + ...+ (na)?) > n(nw)? B
> 3{u*+(2u) + ...+ (n—10)%);
lastly, Prop. 2 gives limits for the sum of n terms of the
series x4, . 2+ (20)% . 324 (32)% ..., in the form of
inequalities of ratios, thus:
wia . ne+ (ne)?) S0 a e+ (re)?)
> (a+nx): (Fe+%nr)
> nla.ne+ (ne)?) 2" a.re+ (rz)?).
Prop. 3 proves that, if Q@ be a chord of a parabola bisected
at ¥ by the diameter PV, then, if PV be of constant length,
the areas of the triangle PQE" and of the segment PR are
also constant, whatever be the direction of Q; to prove it
Archimedes assumes a proposition * proved in the conies’ and
by no means easy, namely that, if @) be perpendicular to P17,
and if p, p, be the parameters corresponding to the ordinates
parallel to Q" and the principal ordinates respectively, then
QV:QD* = p:p,.

Props. 4-6 deal with the area of an ellipse, which is, in the
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first of the three propositions, proved to be to the area of
the auxiliary circle as the minor axis to the major; equilateral
polygons of 47 sides are inscribed in the circle and compared
with corresponding polygons inscribed in the ellipse, which are
determined by the intersections with the ellipse of the double
ordinates passing through the angular points of the polygons
inscribed in the cirele, and the method of exhaustion is then
applied in the usual way. Props. 7, 8 show how, given an ellipse
with centre (' and a straight line CO in a plane perpendicular to
that of the ellipse and passing through an axis of it, (1) in the
case where OC is perpendicular to that axis, (2) in the case
where it is not, we can find an (in general oblique) circular
cone with vertex O such that the given ellipse is a section of it,
or, in other words, how we can find the circular sections of the
cone with vertex O which passes through the circumference of
the ellipse; similarly Prop. 9 shows how to find the circular
sections of a cylinder with (/O as axis and with surface passing
through the circumference of an cllipse with centre ¢/, where
€O is in the planc through an axis of the ellipse and perpen-
dicular to its plane, but is not itself perpendicular to that
axis. Props. 11-18 give simple properties of the conoids and
spheroids, easily derivable from the properties of the respective
conics; they explain the nature and relation of the sections
made by planes cutting the solids respectively in different ways
(planes through the axis, parallel to the axis, through the centre
or the vertex of the enveloping cone, perpendicular to the axis,
or cutting it obliquely, respectively), with especial reference to
the elliptical sections of each solid, the similarity of parallel
elliptical sections, &e. Then with Prop. 19 the reul business
of the treatise begins, namely the investigation of the volume
of segments (right or oblique) of the two conoids and the
spheroids respectively.

The method is, in all cases, to circumseribe and inscribe to
the segment solid figures made up of cylinders or ‘frusta of
cylinders’, which can be made to differ as little as we please
from one another, so that the circumsecribed and inseribed
figures are, as it were, compressed together and into coincidence
with the segment which is intermediate between them.

In each diagram the plane of the paper is a plane through
the axis of the conoid or spheroid at right angles to the plane
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of the.section which is the base of the segment, and which
is a circle or an ellipse according as the said base is or is not
at right angles to the axis; the plane of the paper cuts the
base in a diameter of the circle or an axis of the ellipse as
the case may be.

Al
C
E A
L/ N/
—/ Yo,
M/
L7Q NS
P
a D
3 A F
[ —
1 JL

S —"

P N P
B, {; B’
E‘ A, F’

The nature of the inseribed and circumseribed figures will
be seen from the above figures showing segments of a para-
boloid, a hyperboloid and a spheroid respectively, cut off
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by planes obliquely inclined to the axis. The base of the
segment is an ellipse in which BB’ is an axis, and its plane is
at right angles to the plane of the paper, which passes through
the axis of the solid and cuts it in a parabola, a hyperbola, or
an ellipse respectively. The axis of the segment is cut into a
number of equal parts in each case, and plancs are drawn
through each point of section parallel to the base, cutting the
solid in ellipses, similar to the base, in which PP, Q) &c., are
axes. Describing frusta of cylinders with axis A.D and passing
through these elliptical sections respectively, we draw the
circumscribed and inseribed solids consisting of these frusta.
It is evident that, beginning from A4, the first inseribed frustum
is equal to the first circumseribed frustum, the second to the
second, and so on, but there is one more cireumseribed frustum
than inscribed, and the difference between the circumseribed
and inscribed solids is equal to the last frustum of which BB’
1s the base, and ND is the axis. Since ND can be made as
small as we please, the difference between the eircumseribed
and inscribed solids can be made less than any assigned solid
whatever. Hence we have the requirements for applying the
method of exhaustion.

Consider now separately the cases of the paraboloid, the
hyperboloid and the spheroid.

L. The paraboloid (Props. 20-22).

The frustuin the base of which is the ellipse in which PP’ is
an axis is proportional to PP or PN*, i.c. proportional to
AN. Suppose that the axis AD (= ¢) is divided into «» equal
parts. Archimedes compares each frustum in the inseribed
and circumseribed figure with the frustum of the whole eylinder
BF cut oft' by the same planes. Thus

(first frustumn in BF): (first frustwn in inseribed figure)
= BD?: PN*
=AD: AN

= BD:TN.
Similarly

(second frustum in BF) : (second in inseribed figure)
= HN : SM,

and so on. The last frustum in the eylinder BF has none to
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correspond to it in the inseribed tigure, and we should write
the ratio as (BD : zero).

Archimedes concludes, by means of a lemma in proportions
forming Prop. 1, that

(frustum BF') : (inscribed figure)
= (BD+HN+..):(TN+SM+...+X0)
= n2k:(k+2k+3k+... +n—1k),
where XO = £, so that BD = nk.
In like manner, he concludes that
(frustum BF') : (circumscribed figure)
=n*k:(k+2k+3k+ ...+ nk).
But, by the Lemma preceding Prop. 1,
k+2k43k+...+n—1k < 2nl < b+ 2k+3k+ ... +nk,
whence
(frustum BF):(inser. tig.) > 2 > (frustum BF): (circumser. fig.).

This indieates the desired result, which is then confirmed by
the method of exhaustion, namely that

(frustum BF) = 2 (segment of paraboloid),

or, if V be the volume of the segment of a cone’, with vertex
4 and base the same as that of the segment,  *

(volume of segment) = V.

Archimedes, it will be seen, proves in effeet that, if & be
indefinitely diminished, and 1 indefinitely increased, while nk
remains equal to ¢, then

limit of & {k+2L+3L+...+(n— 1)k} = §¢

that is, in our notation,

C
J xdw = Fc*
0

Prop. 23 proves that the volume is constant for a given
length of axis A.D, whether the segment is cut oft by a plane
perpendicular or not perpendicular to the axis, and Prop. 24
shows that the volumes of two segments are as the squares on
their axes.
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II. In the case of the hyperboloid (Props. 25, 26) let the axis
AD be divided into n parts, each of length 4, and let 44" =c.
Then the ratio of the volume of the frustum of a eylinder on
the ellipse of which any double ordinate Q) is an axis to the
volume of the corresponding portion of the whole frustum BF
takes a different form; for, it AM = rh, we have
(frustum in BF): (frustum on base Q@)
= BD*:QM*
=AD.A’'D:AM.A’M
= {a.nh+(nh)}: {«.rh+(rh)%}.

By means of this relation Archimedes proves that

(frustum BF'): (inscribed figure)

= n{w.nh+(nh)?} : S . rh+(rh)*},
and

(frustum BF') : (circumseribed figure)
=n{c¢.nh+ mk)?} 3" (@.rh+ (rh)%}.
But, by Prop. 2,
n{a.nh+(nh)?; :Z " a.rh+ (rh)2} > (a+nh): (3¢ +3nh)
> n{a.nh+@h)?} X {a.rh+(rh)?}.
From these relations it is inferred that
(frustum BF) : (volume of segment) = (¢ +nk): (3a + 5 nh),
or (volume of segment) : (volume of cone ABB’)
=(AD+3CA):(AD+2CA);

and this is confirmed by the method of exhaustion.

The result obtained by Archimedes is equivalent to proving
that, if & be indefinitely diminished while n is indefinitely
increased but nk remains always equal to b, then

limit of n(ab+b%) /8, = (a+b) /(3¢ +4D),

or limit of ;:Sn = 0% (3a+310),
where

S,=ah+2h+3h+...+nh)+ {2+ (2h)%2+ (3R)2+... + (nh)?}



ON CONOIDS AND SPHEROIDS 63

so thay
Sy = ah (h+2k+ ...+ nh) 4k (R2 4+ (2R)2 4 ..+ (nk)? ).

The limit of this latter expression is what we should write
b
f (az+a?) da = 1? (o + 3b),
0

and Archimedes’s procedure is the equivalent of this integration.

ITII. In the case of the spheroid (Props. 29, 30) we take
a segment less than half the spheroid.
As in the case of the hyperboloid,

(frustum in BF): (frustum on base Q@)
= BD*: QM?
=AD.A'D:AM.A'M,;

bhut, in order to reduce the summation to the same as that in
Prop. 2, Archimedes expresses AM. A’M in a different form
cquivalent to the following.

Let AD (=b) be divided into » equal parts of length &,
and suppose that AA"= a, CD = }ec.

Then AD.A’'D = ta®—1c?,
and AM.A’M = }a®— (3c+rh)? (DM = rh)
=AD.A’D— {c.rl+(rh)?}
=cb+b*—{c.rh+(rh)*}
Thus in this case we have

(frustum BF) : (inscribed figure)
= n(ch+6%) : [n(ch +b*) —="{c. rh + (rh)?}]

and
(frustum BF') : (circumscribed figure)
= n(chb+b%) : [n(chb+b%)—=,2"1 ¢, rh+ (rh)?}].
And, since b = nh, we have, by means of Prop. 2,
n(ch+ 6% :[n(ch+b%) —2"{c.rh+ (rh)*}]
>(c+bd): {c+b—(3c+1ib)}
> n(ch +b%): [n(ch+b%) =" {c.rh + (rh)*}].
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The conclusion, confirmed as usual by the method of ex-
haustion, is that

(frustumn BF') : (segment of spheroid)=(c +0) : {c+ b — (3¢ +3D)}
=(c+b):(3c+2D),
whenee  (volume of segment) : (volume of cone 4ABB)
= (3c+2b):(c+0)
= (3CA—AD):(2CA—AD), since CA = }c+0b.

As a particular case (Props. 27, 28), half the spheroid is
double of the corresponding cone.

Props. 31, 32, concluding the treatise, deduce the similar
formula for the volume of the greater segment, namely, in our
figure,

(greater segmt.) : (cone or segmt. of cone with same base and axis)

= (CA+AD): AD.

On Spirals.

The treatise On Spirals begins with a preface addressed to
Dositheus in which Archimedes mentions the death of Conon
as a grievous loss to mathematics, and then summarizes the
main results of the treatises On the Sphere und Cylinder and
On Conoids and Spheroids, observing that the last two pro-
positions of Book II of the former treatise took the place
of two which, as originally cnunciated to Dositheus, were
wrong; lastly, he states the main results of the treatise
On Spirals, premising the definition of a spiral which is as
tollows:

‘If a straight line one extremity of which remains fixed be
made to r¢volve at a uniform rate in a planc until it returns
to the position from which it started, and if, at the same time
as the straight line is revolving, a point move at a uniform
rate along the straight line, starting from the fixed extremity,
the point will describe a spiral in the plane.’

As usual, we have a secries of propositions preliminary to
the main subject, first two propositions about uniform motion,
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then two simple geometrical propositions, followed by pro-
positions (5-9) which are all of one type. Prop. 5 states that,
given a circle with centre 0, a tangent to it at 4, and ¢, the

Fic. 1.

circumference of any civcle whatever, it is possible to draw
a straight line OPF meeting the cirele in P and the tangent
in F such that

FP:0OP < (arc AD) : c.

Archimedes takes D a straight line greater than ¢, draws
OI1 parallel to the tangent at A and then says ‘let ’H he
placed equal to D wverging (vedovoa) towards A°. This is the
usual phraseology of the type of problem known as vedous
where a straight line of given length has to be placed between
two lines or curves in such a position that, if produced, it
passes through a given point (this is the meaning of verging).
Each of the propositions 5-9 depends on a vedaus of this kind,

Fl

Fie. 2.

which Archimedes assumes as ¢ possible” without showing how
it is effected. Except in the case of Prop. 5, the theoretical
solution cannot be effected by means of the straight line and
circle; it depends in general on the solution of an equation
of the fourth degree, which can be solved by means of the
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points of intersection of a certain rectangular hyperhola
and a certain parabola. It is quite possible, however, that
such problems were in practice often solved by a mechanical
method, namely by placing a ruler, by trial, in the position of
the required line: for it is only necessary to place the ruler
so that it passes through the given point and then turn it
round that point as a pivot till the intercept becomes of the
given length. In Props. 6-9 we have a circle with centre O,
a chord A B less than the diameter in it, OM the perpendicular
from O on AB, BT the tangent at B, OT the straight line
through O parallel to AB; D:E is any ratio less or greater,
as the case may be, than the ratio BM:MO. Props. 6, 7
(Fig. 2) show that it is possible to draw a straight line OFP

Fia, 3.

meeting A B in F and the circle in P such that FP:PPB=D: E
(OP meeting AB in the case where D:E < BM: MO, and
meeting AB produced when D: E > BM : MO). In Props.8,9
(Fig. 3) it is proved that it is possible to draw a straight line
OFP meeting AB in F, the circle in P and the tangent at B in
@, such that FP: BG=D: E (OP meeting AB itsclf in the case
where D:E < BM: MO, and meeting AB produced in the
case where D:E > BM : MO).

We will illustratc by the constructions in Props. 7, 8,
as it is these propositions which are actually cited later.
Prop. 7. If D: £ is any ratio > BM : MO, it is required (Fig. 2)
to draw OP’F’ meeting the circle in P’ and AB produced in
F’ 50 that

F'P:PPB=D:E.

Draw OT parallel to AB, and let the tangent to the cirele at
B meet OT in T.
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Then D:E > BM: MO, by hypothesis,
> OB: BT, by similar triangles.

Take a straight line I”II” (less than BT) such that D: E
= OB:P'I", and place P’II’ between the circle and OT
¢ verging towards B’ (construction assumed).

Then Fr.rrp=0or.rir
=O0B:I"H’
=D:LE
Prop. 8. If D: kK is any given ratio < BM: MO, it is required

to dvaw OFPG mceting AB in F, the circle in P, and the
tangent at B to the circle in G so that

FP:BG=D:FL.

If OT is parallel to A B and meets the tangent at B in T,
BM : MO = OB: BT, by similar triangles,
~vhence D:FK < OB:BT.
Produce 7'B to C, making BC of such length that

D:E=0B:BC,

i that BC > BT.

Describe a cirele through the three points O, T, C and let OB
roduced meet this circle in K.

¢ Then, since BC > BT, and OK is perpendicular to CT), it is
rossible to place QG [between the circle 7K C and BC'] equal to
BK and verging towards O’ (construction assumed).

F 2
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Let QGO meet the original circle in P and AB in F. Then
OFP@ is the straight line required.

For CG.GT =0G.GQ =0G. BK.
But OF:0G = BT:GT, by parallels,
whence OF.G@T = 0G . BT.
Thercforc CG.GT:0F.GT = OG.BK :0G . BT,
whence CG:0F = BK : BT
= BC:0B
= BC:0D.
Therefore OPF:0F = BC: (G,
and hence PF:0P = BG: BC,
or PF.:BG=0B:BC=D:FL.

Pappus objects to Archimedes’s use of the vedois assumed in
Prop. 8, 9 in these words:

‘it seems to be a grave crror into which geometers fall
whenever any one discovers the solution of a plane problem
by means of conies or linear (higher) curves, or generally
solves it by means of a foreign kind, as is the case c.g. (1) with
the problem in the fifth Book of the Conics of Apollonius
relating to the parabola, and (2) when Archimedes assumes in
his work on the spiral a vedois of a “solid” character with
reference to a circle; for it is possible without calling in the
aid of anything solid to find the proof of the theorem given by
Archimedes, that is, to prove that the circumnference of the
circle arrived at in the first revolution is equal to the straight
line drawn at right angles to the initial line to meet the tangent
to the spiral (i.e. the subtangent).

There is, however, this excuse for Archimedes, that he only
assumes that the problem cun be solved and does not assume
the actual solution. Pappus?® himself gives a solution of the
particular vedois by means of conics. Apollonius wrote two
Books of vedaets, and it is quite possible that by Archimedes’s
time there may already have been a collection of such problems
to which tacit reference was permissible.

Prop. 10 repeats the result of the Lemma to Prop. 2 of On

! Pappus, iv, pp. 298-302.
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Conoids wnd Spheroids involving the summation of the series
124224+ 324+ ...+ 02 Prop 11 proves another proposition in
summation, namely that

(n—1) (ne)?: {a®+ (202 +(3a) +... + (n—1)a)?}
> (na)?: {na.a+3(ne—a)?}
> (n—1) (na)?: {(2a)*+ (3a)* +... + (nw)?}.

The same proposition is also true if the terms of the series
are % (a+0)% (a+20)%... (@ +n—1D)% and it is assumed in
the more general form in Props. 25, 26.

Archimedes now introduces his Definitions, of the spiral
itsclf, the origin, the initial line, the first distance (= the
radius veetor at the end of one revolution), the second distance
(= the equal length added to the radius vector during the
sccond complete revolution), and so on; the first arec (the area
bounded by the spiral described in the first revolution and
the “first distance’), the second area (that bounded by the spiral
deseribed in the second revolution and the ¢second distance’),
and so on; the first circle (the circle with the ®first distance’
as radius), the second cercle (the cirele with radius equal to the
sum of the ‘first’ and ‘sceond distances’, or twice the first
distance), and so on.

Props. 12, 14, 15 give the fundamental property of the
spiral conneeting the length of the radius vector with the angle
through which the initial line has revolved from its original
position, and corresponding to the equation in polar coordinates
r=a6. As Archimedes does not speak of angles greater
than 7, or 27, he has, in the ease of points on any turn after
the first, to use multiples of the circumference
of a circle as well as ares of it. He uses the

.

“first cirele’ for this purpose. Thus, if P, @ ??

are two points on the first turn, SA R
OP:0Q = (arc AKP): (avec AKQ');

if P, Q are points on the nth turn of the
spiral, and ¢ is the circumference of the first cirele,

OP:0Q = {(n—1)c+arc AKP'} : {(n—1)c+arc AKQ'}.

K

Prop. 13 proves that, if a straight line touches the spiral, it
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touches it at one point only. For, if possible, let the tangent
at P touch the spiral at another point ¢. Then, if we bisect
the angle POQ by OL mecting PQ in L and the spiral in R,
OP +0Q =20R by the property of the spiral. But by
the property of the triangle (assumed, but easily proved)
OFP +0Q > 20L, so that OL < OR, and some point of PQ
lies within the spiral. Hence PQ cuts the spiral, which is
contrary to the hypothesis,

Props. 16, 17 prove that the angle made by the tangent
at a point with the radius vector to that point is obtuse on the
‘forward’ stde, and acute on the ‘backward ’ side, of the radius
vector.

Props. 18-20 give the fundamental proposition about jhe
tangent, that is to say, they give the length of the subtangen!
at any point P (the distance between O and the point of inter-
section of the tangent with the perpendicular from O to OP).
Archimedes always deals first with the first turn and then
with any subsequent turn, and with each complete turn before
parts or points of any particular turn. Thus he deals with
tangents in this order, (1) the tangent at A the end of the first
turn, (2) the tangent at the end of the second and any subse-
quent turn, (3) the tangent at any intermediate point of the
first er any subsequent turn. We will take as illustrative
the case of the tangent at any intermediate point I’ of the first
turn (Prop. 20).

If OA be the initial line, P any point on the first turn, PT
the tangent at P and O7' perpendicular to OP, then it is to be
proved that, if ASP be the circle through P> with centre O,
meeting PT in 8, then '

(subtangent OT') = (arc ASP).

I. If possible, let OT be greater than the are ASP.

Measure off OU such that OU > arc ASP but < OT.

Then the ratio P0:0U is greater than the ratio °0: 07,
i.e. greater than the ratio of 1 PS to the perpendicular from O
on PS.

Therefore (Prop. 7) we can draw a straight line OQF meeting
TP produced in F, and the circle in @, such that

FQ:PQ=PO:0U.
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Let, OF meet the spiral in Q'.
Then we have, alternundo, since PO = QO,
FQ:Q0 = PQ:0U

< (arc Q) : (are ASP), by hypothesis and « fortiori,

Componendo, FO:QO0 < (arc ASQ) : (arc ASD)
< 0@ :OP.

But QO = OP; thereforc FO < 0Q’; which is impossible.
Therefore 07" is not greater than the arc ASP.

II. Next suppose, if possible, that OT < arc ASP.

Measure OV along OT such that PV is greater than OT but
less than the arc ASP.

Then the ratio PO : OV is less than the ratio PO: 07T, i.e.
than the ratio of 3PS to the perpendicular from O on PS;
therefore it is possible (Prop. 8) to draw a straight line OF"RG
meeting P8, the circle ’SA, and the tangent to the circle at P
in F’, R, G respectively, and such that

F'R:GQP = PO:0V.
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Let OF’G meet the spiral in R’
Then, since PO = RO, we have, alternando,
F'R:RO=GP:0V
> (arc PR): (arc ASP), a fortior:,
whence F’0 : RO < (arc ASR): (arc ASP)
< OR': OP,

so that F'O < OR’; which is impossible.
Therefore OT' is not less than the are ASP. And it was
proved not greater than the same arc. Therefore

0T = (arc ASP).

As particular cascs (separately proved by Archimedes), if
P be the extremity of the first turn and ¢, the circumference
of the first circle, the subtangent = ¢,; if P be the extremity
of the second turn and ¢, the circumference of the ‘second
circle’, the subtangent = 2¢,; and generally, if ¢, be the
circumference of the wth circle (the ecircle with the radius
vector to the extremity of the mth turn as radius), the sub-
tangent to the tangent at the extremity of the ath turn = nc,,.

If P is a point on the mth turn, not the extremity, and the
circle with O as centre and OP as radius cuts the initial line
in K, while p is the circumference of the circle, the sub-
tangent to the tangent at P = (n—1) p+arc K’ (measured
‘forward’).!

The remainder of the book (Props. 21-8) is devoted to
finding the areas of portions of the spiral and its several
turns cut off by the initial line or any two radii vectores.
We will illustrate by tlle general case (Prop. 26). Take
OB, 0C, two bounding radii vectores, including an arc BC
of the spiral. With centre O and radius OC describe a circle.
Divide the angle BOC into any number of equal parts by
radii of this circle. The spiral meets these radii in points
P, Q... Y, Z such that the radii vectores OB, OP,0Q ... 0Z,0C

! On the whole course of Archimedes’s proof of the property of the
subtangent, see note in the Appendix.
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are in.arithmetical progression. Draw ares of circles with
radii OB, OP, OQ) ... as shown; this produces a figure circum-
scribed to the spiral and consisting of the sum of small scctors
of circles, and an inscribed figure of the same kind. As the
first sector in the circumscribed figure is equal to the second
sector in the inscribed, it is casily seen that the areas of the
circumscribed and inscribed figures differ by the difference
between the sectors 02C and OBp’; therefore, by increasing
the number of divisions of the angle BOC, we can make the

-

difference between the areas of the circumseribed and in-
seribed figures as small as we please; we have, therefore, the
clements necessary for the application of the method of
exhaustion.

1f there arc n radii OB, 0L ... 0C, there are (n—1) parts of
the angle BOC. Since the angles ofsall the small sectors are
cqual, the sectors are as the square on their radii.

Thus (whole sector OV’'C) : (circumscribed figure)
= (n—1)0C%*: (OP2+ 0Q*+... + 0C?),
and (whole sector Ob'(V) : (inseribed figure)

= (n=1)0C2: (OB + 0P+ OQ2 + ... + 072),



74 ARCHIMEDES

And OB, OP, 0Q, ... 0Z, OC is an arithmetical progression
of n terms; therefore (cf. Prop. 11 and Cor.),

(n—1)0C%: (0P + 0Q*+... + 0C?)
< 0C%:{0C.0B+3}(0C—0B)?}
< (n—1)0C%:(0B*+0P%*+...+ 07%).

. Compressing the circumscribed and inscribed figures together
in the usual way, Archimedes proves by exhaustion that

(sector 0b’C) : (area of spiral OBC)
= 00*%: {0C.0B+%(0C—-0B)%}.
If OB=b, OC=¢, and (¢c—b) = (n—1)k, Archimedes’s
result is the equivalent of saying that, when A diminishes and
2 increases indefinitely, while ¢—b remains constant,

limit of & {02+ (b+h)2+(b+2R) + ... + (b+n—2R)%)
= (c—b) {cb+5(c—b)*}

. I T
that is, with our notation,

re
J xtde = 3 (c*—b3).
b

In particular, the area included by the first turn and the
initial line is bounded by the radii vectores 0 and 27u;
the area, therefore, is to the circle with radius 27a as 3 (2w a)?
to (27«)? that is to say, it is } of the circle or im(27a)%
This is separately proved in Prop. 24 by means of Prop. 10
and Corr. 1, 2.

The area of the ring added while the radius vector describes
the second turn is the area bounded by the radii vectores 27wa
and 47a, and is to the circle with radius 47« in the ratio
of {ryr+%(r,—1)?%} to 7% where r, = 27a and r, = 47a;
the ratio is 7:12 (Prop. 25).

If R, be the area of the first turn of the spiral bounded by
the initial line, R, the area of the ring added by the sccond
complete turn, R, that of the ring added by the third turn,
and so on, then (Prop. 27)

R3 =2R,, R4 = 3R2, R5 = 4R2, Rn = ('n,— I)RZ.
Also R2 = 6R1.
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Lastly, if £ be the portion of the sector 4’0OC bounded by
U’ B, the arc b'zC of the circle and the arc BC of the spiral, and
F the portion cut off between the arc BC of the spiral, the
radius OC and the arc intercepted between OB and OC of
the circle with centre O and radius OB, it is proved that

E:F={0B+2(0C—=0B)}: {0OB+%(OC—-0B)} (Prop. 28).

On Plane Equilibriums, I, IL

In this treatise we have the fundamental principles of
mechanics established by the methods of geometry in its
strictest sense. There were doubtless earlier treatises on
mechanies, but it may be assumed that none of them had
been worked out with such geometrical rigour. Archimedes
begins with seven Postulates including the following prin-
ciples. Equal weights at equal distances balance; if unequal
weights operate at equal distances, the larger weighs down
the smaller. If when equal weights arc in equilibrium some-
thing be added to, or subtracted from, one of them, equilibrium
is not maintained but the weight which is increased or is not
diminished prevails. When equal and similar plane figures
coincide if applicd to one another, their centres of gravity
similarly coincide; and in figures which are unequal but
similar the centres of gravity will be ‘similarly situated’.
In any figure the contour of which is concave in one and the
same direction the centre of gravity must be within the figure.
Simple propositions (1-5) follow, deduced by reductio ad
absurdum ; these lead to the fundamental theorem, proved
first for commensurable and then by reductio ad absurdum
for incommensurable magnitudes, that 7Two magnitudes,
whether commensurable or incommensurable, balance at dis-
tunces reciprocally proportional to the magnitudes (Props.
6, 7). Prop. 8 shows how to find the centre of gravity of
a part of a magnitude when the centres of gravity of the
other part and of the whole magnitude are given. Archimedes
then addresses himself to the main problems of Book I, namely
to find the centres of gravity of (1) a parallelogram (Props.
9, 10), (2) a triangle (Props. 13, 14), and (3) a parallel-
trapezium (Prop. 16), and here we have an illustration of the
extraordinary rigour which he requires in his geometrical
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proofs. We do not find him here assuming, as in The Method,
that, if all the lines that can be drawn in a figure parallel to
(and including) one side have their middle points in a straight
line, the centre of gravity must lie somewhere on that straight
line; he is not content to regard the figure as made up of an
infinity of such parallel lines; pure geometry recalizes that
the parallelogram is made up of elementary parallelograms,
indefinitely narrow if you please, but still parallelograms, and
the triangle of elementary trapezia, not straight lines, so
that to assume directly that the centre of gravity lies on the
straight line bisecting the parallelograms would really be
a petitio principii. Accordingly the result, no doubt dis-
covered in the informal way, is clinched by a proof by reductio
ud absurdum in each case. In the case of the parallelogram
ABCD (Prop. 9), if the centre of gravity is not on the straight
line EF bisecting two opposite sides, let it be at H. Draw
HK parallel to AD. Then it is possible by bisecting AL, D,
then bisecting the halves, and so on, ultimately to reach
a length less than KH. Let this be done, and through the

i

points of division of AD draw parallels to 4B or DC making
a number of equal and similar parallelograms as in the figure.
The centre of gravity of each of these parallelograms is
similarly situated with regard to it. Hence we have a number
of cqual magnitudes with their centres of gravity at cqual
distances along a straight line. Therefore the centre of
gravity of the whole is on the line joining the centres of gravity
of the two middle parallelograms (Prop. 5, Cor. 2). But this
is impossible, because I[ is outside those parallelograms.
Therefore the centre of gravity cannot but lie on EF.

Similarly the centre of gravity lies on the straight line
bisecting the other opposite sides AB, C'D; therefore it lies at
the intersection of this line with KF, i.c. at the point of
intersection of the diagonals.
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The- proof in the case of the triangle is similar (Prop. 13).
Let AD be.the median through A. The centre of gravity
must lie on AD.

For, if not, let it be at H, and dvaw Il parallel to BC.
Then, if we biseet DC, then bisect the halves, and so on,
we shall arrvive at a length DE less than TH. Divide BC into
lengths equal to DE, draw parallels to DA through the points
of division, and complete the small parallelograms as shown in
the figure.

The centres of gravity of the whole parallelograms SN, TP,
FQ lie on AD (Prop. 9); therefore the centre of gravity of the

tigure formed by them all lies on AD; let it he 0. Join OH,
and produce it to meet in V the parallel through C to AD.

Now it is casy to sce that, if % be the number of parts into
which DC, AC are divided respectively,

(sum of small As AMR, MLS ... ARN, NUP ...): (2 ABC)
=n. AN*: AC?

=1:n;
whence

(sum of small As): (sum of parallelograms) = 1: (n—1).

Therefore the centre of gravity of the figure made up of all
the small triangles is at a point X on O produced such that

XH = (n-1)0H.
But VH:10 < CE:ED or (n—1):1; therefore XH > VH.

It follows that the centre of gravity of all the small
triangles taken together lies at X notwithstanding that all
the triangles lic on one side of the parallel to 4D drawn
through X : which is impossible.
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Hence the centre of gravity of the whole triangle cannot
but lie on AD.

It lies, similarly, on cither of the other two medians; so
that it is at the intersection of any two medians (Prop. 14).

Archimedes gives alternative proofs of a direct character,
both for the parallelogram and the triangle, depending on the
postulate that the centres of gravity of similar figures are
‘similarly situated’ in regard to them (Prop. 10 for the
parallelogram, Props. 11, 12 and part 2 of Prop. 13 for the
triangle).

The geometry of Prop. 15 deducing the centre of gravity of
a trapezium is also interesting. It is proved that, if AD, BC
are the parallel sides (4D being the smaller), and EF is the
straight line joining their middle points, the centre of gravity
is at a point G on KF such that

GE:GF = (2BC+AD): (2AD + BO).

Book II of the treatise is entircly devoted to finding the
centres of gravity of a parabolic segment (Props. 1-8) and
of a portion of it cut off by a parallel to the hase (Props. 9, 10).
Prop. 1 (really a particular case of 1. 6, 7) proves that, if I, i

B8

] /
L /m /4 //o
N7

R,

A

B’

be the arcas of two parabolic segments and 1), & their centres
of gravity, the centre of gravity of both taken together is
at a point C on DE such that

P:P =CE:CD.
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This is merely preliminary. Then begins the real argument,
the course of which is characteristic and deserves to be set out.
Archimedes uses a series of figures inscribed to the segment,
as he says, ‘in the recognized manner’ (yvepipws). The rule
is as follows. Inscribe in the segment the triangle ABRB’ with
the same base and height; the vertex 4 is then the point
of contact of the tangent parallel to BB’. Do the same with
the remaining segments cut off by AB, AB’, then with the
segments remaining, and so on. If BRQPAFP'QYR'B is such
a figure, the diameters through @, @', P, P/, R, R’ bisect the
straight lines AB, AR, AQ, AQ), @B, QB respectively, and
BB’ is divided by the diameters into parts which are all
equal. It is easy to prove also that PF’, QQ’, RR’ are all
parallel to BB/, and that AL:LM:MN:NO =1:3:5:7, the
same relation holding if the number of sides of the polygon
is increased ; i.e. the segments of 40 are always in the ratio
of the successive odd numbers (Lemmas to Prop. 2). The
centre of gravity of the inseribed figure lies on 40 (Prop. 2).
If there be two parabolic segments, and two figures inscribed
in them ‘in the recognized manner’ with an equal ntunber of
sides, the centres of gravity divide the respective axes in the
same proportion, for the ratio depends on the same ratio of odd
numbers 1:3:5:7 ... (Prop. 3). The eentre of gravity of the
par abolic segment 1tse1f lies on the diameter 40 (thisis proved
in Prop. 4 by reductio «d absurdum in exactly the same way
as for the triangle in I. 13). It is next proved (Prop. 5) that
the centre of gravity of the segment is nearer to the vertex 4
than the centre of gravity of the inseribed figure is; but that
it 1s possible to inscribe in the segment in the recognized
manner a figure such that the distance between the centres of
gravity of the segment and of the inscribed figure is less than
any assigned length, for we have only to increase the number
of sides sufficiently (Prop. 6). Incidentally, it is observed in
Prop. 4 that, if in any segment the triangle with the same
base and equal height is inseribed, the triangle is greater than
half the segment, whence it follows that, cach time we increase
the number of sides in the inscribed figure, we take away
more than half of the segments remaining over; and in Prop. 5
that corresponding segments on opposite sides of the axis, e.g.
QRB, 'R'B’ have their axes equal and therefore are equal in
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area. Lastly (Prop. 7), if there be two parabolic segments,
their centres of gravity divide their diameters in the same
ratio (Archimedes enunciates this of similar segments only,
but it is true of any two segments and is required of any two
segments in Prop. 8). Prop. 8 now finds the centre of gravity
of any segment by using the last proposition. It is the
geometrical cquivalent of the solution of a simple equation in
the ratio (m, say) of AG to A0, where G is the centre of
gravity of the segment.

Since the segment = 4 (A ABB’), the sum of the two seg-
ments AQB, AQ'B’'= % (A ABB).

Further, if D, @’D’ are the diameters of these segments,
QD, QD are cqual, and, since the centres
of gravity I, H” of the segments divide
D, (/D" proportionally, IIH’ is parallel
to @@, and the centre of gravity of the
two segments together is at K, the point
where I[11” meets AO.

Now 40 = 4AV (Lemma 3 to Prop.
2), and QD =340 -AV=AV. But
H divides QD in the same ratio as G
divides A0 (Prop. 7); therefore

VK =QU =m.QD=m.AV.

Taking moments about 4 of the segment, the triangle A BB’

and the sum of the small segments, we have (dividing out by
AV and A ABB)

s(14+m)+2.4=%.4m,
or 15m =9,

and m = .
That is, AG =340, or AG:(GO = 3:2,

The final proposition (10) finds the centre of gravity of the
portion of a parabola cut oft between two parallel chords P/,
BB'. If PP’ is the shorter of the chords and the diameter
bisecting PP, BB’ meets them in N, O respectively, Archi-
medes proves that, if NO be divided into five equal parts of
which L2 is the middle one (L being nearer to N than M is),
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the centre of gravity G of the portion of the parabola between
PP’ and BF divides LM in such a way that
LG:GM = BO*. (2PN + BO): PN*.(2BO + PN).
The geometrical proof is somewhat difficult, and uses a very
remarkable Lemma which forms Prop. 9. 1If @, b,¢,d, z, y are
straight lines satisfying the conditions

a b ¢
)= E_fl<a>b>c>d)’
d _ x
a—d~ Ea—c)’ \
2+ 4b+6¢+3d Ji
and = s
5¢+1004+10c+5d a—c
then must L4y = %a.

The proof is entirely geometrical, but amounts of course to
the elimination of three quantities b, ¢, ¢ from the above four
equations.

The Sand-reckoner (Psammites or Arenarius).

I have already described in a previous chapter the remark-
able system, explained in this treatise and in a lost work,
Apxai, Principles, addressed to Zeuxippus, for expressing very
large numbers which were beyond the range of the ordinary
Greek arithmetical notation. Archimedes showed that his
system would enable any number to be expressed up to that
which in our notation would require 80,000 million million
ciphers and then proceeded to prove that this system more
than sufficed to express the number of grains of sand which
it would take to fill the universe, on a reasonable view (as it
seemed to him) of the size to be attributed to the universe.
Interesting as the book is for the course of the argument by
which Archimedes establishes this, it is, in addition, a docu-
ment of the first importance historically. It is here that we
learn that Aristarchus put forward the Copernican theory of
the universe, with the :S;un in the centre and the planets
including the earth revolving round it, and that Aristarchus
turther discovered the angular diameter of the sun to be w35th
of the circle of the zodiac or half a degree. Since Archimedes,
in order to calculate a safe tigure (not too small) for the size

1528.2 G
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of the universe, has to make certain assumptions as to the
sizes and distances of the sun and moon and their relation
to the size of thec universe, he takes the opportunity of
quoting earlier views. Some have tried, he says, to prove
that the perimeter of the earth is about 300,000 stades; in
order to be quite safe he will take it to be about ten times
this, or 3,000,000 stades, and not greater. The diameter of
the earth, like most earlier astronomers, he takes to be
greater than that of the moon but less than that of the sun.
Eudoxus, he says, declared the diameter of the sun to be nine
times that of the moon, Phidias, his own father, twelve times,
while Aristarchus tried to prove that it is greater than 18 but
less than 20 times the diameter of the moon; he will again be
on the safe side and take it to be 30 times, but not more. The
position is rather more difficult as regards the ratio of the
distance of the sun to the size of the universe.  Here he seizes
upon a dictum of Aristarchus that the sphere of the fixed
stars is so great that the circle in which he supposes the earth
to revolve (round the sun) ‘bears such a proportion to the
distance of the fixed stars as the centre of the sphere bears to
its surface’. If this is taken in a strictly mathematical sense,
it means that the sphere of the fixed stars is infinite in size,
which would not suit Archimedes’s purpose ; to get another
meaning out of it he presses the point that Aristarchus’s
words cannot be taken quite literally because the eentre, being
without magnitude, cannot be in any ratio to any other mag-
nitude ; hence he suggests that a reasonable interpretation of
the statement would be to suppose that, if we conceive a
sphere with radius ecqual to the distance hetween the centre
of the sun and the centre of the carth, then

(diam, of carth):(diam. of said sphere)
= (diam. of said sphere) : (diam. of sphere of fixed stars).

This is, of course, an arbitrary interpretation; Aristarchus
presumably meant no such thing, but merely that the size of
the earth is negligible in comparison with that of the sphere
of the fixed stars. However, the solution of Archimedes's
problem demands some assumption of the kind, and, in making
this assumption, he was no doubt aware that he was taking
a liberty with Aristarchus for the sake of giving his hypo-
thesis an air of authority.
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Archimedes has, lastly, to compare the diameter of the sun
with the circumference of the circle described by its centre.
Aristarchus had made the apparent diameter of the sun ,345th
of the said circumference; Archimedes will prove that the
said circumfercnce cannot contain as many as 1,000 sun’s
diamecters, or that the diameter of the sun is greater than the
side of a regular chiliagon inscribed in the circle. First he
made an experiment of his own to determine the apparent
diameter of the sun. With a small eylinder or dise in a plane
at right angles to a long straight stick and moveable along it,
he observed the sun at the moment when it cleared the
horizon in rising, moving the dise till it just covered and just
failed to cover the sun as he looked along the straight stick.
He thus found the angular diameter to lie between 13z R and
z50 8, where R is a right angle. But as, under his assump-
tions, the size of the earth is not negligible in comparison with
the sun’s circle, he had to allow for parallax and find limits
for the angle subtended by the sun at the centre of the earth.
This he does by a geomeprical argument very much in the
manner of Aristarchus.

Let the circles with centres O, C represent sections of the sun
and carth respectively, £ the position of the observer observing

G2
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the sun when it has just cleared the horizon. Draw from &
two tangents EP, EQ to the circle with centre O, and from
C let CF, CG be drawn touching the same circle. With centre
C and radius CO describe a circle: this will represent the path
of the centre of the sun round the earth. Let this circle meet
the tangents from C in A, B, and join AB meeting CO in M.
Archimedes’s observation has shown that

18z > L PEQ > 335 R;
and he procceds to prove that AB is less than the side of a
regular polygon of 656 sides inscribed in the circle AOB,
but greater than the side of an inscribed regular polygon of
1,000 sides, in other words, that

12z B >LFCG > 315 R.
The first relation is obvious, for, since CO > KO,

£ PEQ > £ FCG.

Next, the perimeter of any polygon inseribed in the circle
AOB is less than 4% CO (i.e. %2 times the diameter);

Therefore AB < §ig-4* 00 or 1135 CO0,
and, a fortior, AB < 135 CO.

Now, the triangles CAM, COF being equal in all respects,
AM = OF, so that AB = 20F = (diameter of sun) > CH + 0K,
since the diameter of the sun is greater than that of the earth;

therefore CH+ OK < 13500, and HK > £5%CO0.

And CO > CF, while HK < K, so that EQ > 28 CF.
We can now compare the angles OCF, O0KQ ;

for A_(LCF [> tan 00'7111
o Z0EQL” tan OEQJ
1Q
> oF

> 2%, u fortiore.
Doubling the angles, we have
LFCG > £55. L PEQ
> zoosu B, since LPKQ > 555 R,
> 53R
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Hence AB is greater than the side of a regular polygon of
812 sides, and a fortior: greater than the side of a regular
polygon of 1,000 sides, inseribed in the circle AOB.

The perimeter of the chiliagon, as of any regular polygon
with more sides than six, inscribed in the circle AOB is greater
than 3 times the diameter of the sun’s orbit, but is less than
1,000 times the diameter of the sun, and « fortior: less than
30,000 times the dimmeter of the earth;
therefore (diameter of sun’s orbit) < 10,000 (diam. of earth)

< 10,000,000,000 stades.

But (diam. of earth) : (diam. of sun’s orbit)

= (diam. of sun’s orbit) : (diam. of universe);
therefore the universe, or the sphere of the fixed stars, is less
than 10,000% times the sphere in which the sun’s orbit is a
great cirele.

Archimedes takes a quantity of sand not greater than
a poppy-seed and assumes that it contains not more than 10,000
grains; the diameter of a poppy-sced he takes to be not less
than Ath of a finger-breadth; thus a sphere of diameter
1 finger-breadth is not greater than 64,000 poppy-seeds and
therefore contains not more than 640,000,000 grains of sand
(‘6 units of second order + 40,000,000 units of first order’)
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