About: Postselection

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability theory, to postselect is to condition a probability space upon the occurrence of a given event. In symbols, once we postselect for an event , the probability of some other event changes from to the conditional probability . For a discrete probability space, , and thus we require that be strictly positive in order for the postselection to be well-defined. See also PostBQP, a complexity class defined with postselection. Using postselection it seems quantum Turing machines are much more powerful: Scott Aaronson proved PostBQP is equal to PP.

Property Value
dbo:abstract
  • En teoria de la probabilitat, la post-selecció és el fet de condicionar un espai de probabilitats a una ocurrència d'un esdeveniment donat. Això és, un cop s'ha post-seleccionat per un esdeveniment , la probabilitat d'un altre esdeveniment canvia de cap a la probabilitat condicional . Per una probabilitat discreta, , i per tant es requereix que sigui estrictament positiu per tenir ben definida la post-selecció. Alguns experiments quàntics utilitzen post-selecció després de l'experiment enlloc de la comunicació durant l'experiment, post-seleccionant el valor comunicat en una constant. (ca)
  • In probability theory, to postselect is to condition a probability space upon the occurrence of a given event. In symbols, once we postselect for an event , the probability of some other event changes from to the conditional probability . For a discrete probability space, , and thus we require that be strictly positive in order for the postselection to be well-defined. See also PostBQP, a complexity class defined with postselection. Using postselection it seems quantum Turing machines are much more powerful: Scott Aaronson proved PostBQP is equal to PP. Some quantum experiments use post-selection after the experiment as a replacement for communication during the experiment, by post-selecting the communicated value into a constant. (en)
dbo:wikiPageID
  • 23776575 (xsd:integer)
dbo:wikiPageLength
  • 2260 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1096534928 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En teoria de la probabilitat, la post-selecció és el fet de condicionar un espai de probabilitats a una ocurrència d'un esdeveniment donat. Això és, un cop s'ha post-seleccionat per un esdeveniment , la probabilitat d'un altre esdeveniment canvia de cap a la probabilitat condicional . Per una probabilitat discreta, , i per tant es requereix que sigui estrictament positiu per tenir ben definida la post-selecció. Alguns experiments quàntics utilitzen post-selecció després de l'experiment enlloc de la comunicació durant l'experiment, post-seleccionant el valor comunicat en una constant. (ca)
  • In probability theory, to postselect is to condition a probability space upon the occurrence of a given event. In symbols, once we postselect for an event , the probability of some other event changes from to the conditional probability . For a discrete probability space, , and thus we require that be strictly positive in order for the postselection to be well-defined. See also PostBQP, a complexity class defined with postselection. Using postselection it seems quantum Turing machines are much more powerful: Scott Aaronson proved PostBQP is equal to PP. (en)
rdfs:label
  • Post-selecció (ca)
  • Postselection (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License