dbo:abstract
|
- الغزل أو اللف المغزلي (بالإنجليزية: spin) أو التدويم أو هي خاصية تعبر عن دوران الجسيم الأولي حول نفسه. يعتبر اللف المغزلي خاصية جوهرية في كافة الجسيمات الأولية وتمثل ظاهرة ميكانيكية كمومية أصيلة. يمكن تقريب اللف المغزلي للإلكترون للأذهان عن طريق تشبيهها بدوران الأرض حول نفسها إضافة لدورانها حول الشمس، فكذلك يلف الإلكترون حول نفسه ويدور في نفس الوقت في مدار حول النواة. ويقترن اللف المغزلي للإلكترون بعزم مغناطيسي له، هو الأصل في ظاهرة مغناطيسية المواد. (ar)
- Spin je kvantová vlastnost elementárních částic, jejíž ekvivalent klasická fyzika nezná. Jde o vnitřní moment hybnosti částice v tom smyslu, že spiny částic přispívají k celkovému momentu hybnosti soustavy. Jeho velikost je pro každou částici přesně daná, nelze ji nijak měnit. Může nabývat celých nebo polocelých násobků redukované Planckovy konstanty . Hodnoty spinu proto značíme např. 0, 1/2, 1, 3/2, … Částice podle velikosti spinu a statistického chování rozdělujeme na
* fermiony – poločíselný spin (1/2, 3/2, …), Fermiho–Diracova statistika např. elektron, proton, neutron
* bosony – celočíselný spin (0, 1, 2, …), Bose-Einsteinova statistika, např. foton, bosony W a Z, Higgsův boson, …
* anyony – zlomkový spin i jiných než celých a polocelých hodnot, „zlomková“ statistika – pouze kvazičástice s omezením výskytu na dva rozměry (cs)
- En física, l'espín o spin és un moment angular intrínsec associat amb partícules microscòpiques. L'espín no està associat amb cap rotació interna de masses, sinó que és un fenomen que pertany a la mecànica quàntica, sense cap analogia en la mecànica clàssica, on el moment angular s'associa a la rotació d'un objecte extens. que és intrínsec a una partícula. Les partícules elementals com l'electró poden tenir espín diferent de zero malgrat que es creu que és una partícula puntual que no té estructura interna. Existeix una relació directa entre l'espín d'una partícula i l'estadística que es desprèn d'un sistema col·lectiu de moltes partícules. Aquesta relació, coneguda empíricament, és demostrable en la teoria quàntica de camps relativista. (ca)
- Στην φυσική το σπιν είναι η ιδιοστροφορμή των σωματιδίων. Πρόκειται για μια κβαντομηχανική ιδιότητα χωρίς αναλογία στην κλασική μηχανική. Ενώ στην κλασική μηχανική η στροφορμή είναι ιδιότητα που σχετίζεται με περιστροφές εκτεταμένων αντικειμένων το σπιν δεν σχετίζεται με περιστροφές εσωτερικών μαζών αλλά είναι εσωτερικό χαρακτηριστικό τού ίδιου τού σωματιδίου. Το ότι το spin δεν είναι ιδιοπεριστροφή, φαίνεται καθαρά στη σκέδαση σωματιδίων. Η ιδιοπεριστροφή των σωματιδίων προφανώς αλλάζει μετά τη σκέδαση. Το σπιν όμως όχι. Άρα είναι ένα καθαρά κβαντικό μέγεθος. Τα μποζόνια έχουν ακέραιο σπιν (1,2,3) και τα φερμιόνια ημιακέραιο (1/2, -1/2). (el)
- Pri anatomiaj kaj geologiaj signifoj de la vorto, vidu la artikolon spino. -- En kvantuma fiziko spino estas fundamenta kvantuma nombro indikanta la transformadan karakteron laŭ rotacio de speco de partiklo. Normale, spino estas nenegativa entjero aŭ duonentjero, t.e., nenegativa entjero plus duono. Spino povas ankaŭ esti pensata kiel la propra angula movokvanto de partiklo nerilata al movo (kiel spinmomanto); partiklo kun spino havas propra angula movokvanto , kie estas la reduktita konstanto de Planck. La spino de ia partiklo estas rilatita al sia statistiko: normale, partiklo kun entjera spino estas bosono kaj sekvas statistiko de Bose-Einstein; partiklo kun duonentjera spino estas fermiono kaj sekvas statistiko de Fermi-Dirac. (eo)
- Spin (von englisch spin ‚Drehung‘, ‚Drall‘) ist in der Teilchenphysik der Eigendrehimpuls von Teilchen. Bei den fundamentalen Teilchen ist er wie die Masse eine unveränderliche innere Teilcheneigenschaft. Er beträgt ein halb- oder ganzzahliges Vielfaches (Spinquantenzahl) des reduzierten planckschen Wirkungsquantums . Abgesehen davon, dass er nicht durch die (Dreh-)Bewegung einer Masse hervorgerufen wird, hat er alle Eigenschaften eines klassisch-mechanischen Eigendrehimpulses, insbesondere bezüglich Drehimpulserhaltung und Koordinatentransformationen, und ist damit auch ein Axialvektor. Der Spin kann nur quantenmechanisch verstanden werden. Das Spin-Statistik-Theorem verbindet den Spin eines Teilchens mit der Art der statistischen Beschreibung mehrerer gleicher Teilchen: Teilchen mit einer halbzahligen Spinquantenzahl befolgen die Fermi-Dirac-Statistik und heißen Fermionen, Teilchen mit einer ganzzahligen Spinquantenzahl befolgen die Bose-Einstein-Statistik und heißen Bosonen. Bisher sind fundamentale Teilchen mit Spins bekannt (s. nebenstehende Tabelle). Fundamentale Teilchen mit den Spins wurden postuliert, aber bislang nicht nachgewiesen. Bei zusammengesetzten Systemen, z. B. bei Proton, Neutron, Atomkern, Atom, Molekül, Exziton, Hadronen wie -Teilchen ergibt sich der Spin durch Addition der Spins und Bahndrehimpulse der Komponenten nach den Regeln der quantenmechanischen Drehimpulsaddition. Erstmals wurde 1925 dem Elektron ein Spin zugeschrieben, um eine Reihe unverstandener Details der optischen Spektren von Atomen mit einem einzigen Konzept konsistent erklären zu können (zur Entdeckung und Rezeption des Spin siehe Elektronenspin). Dem Proton wird der Spin seit 1928 zugeschrieben, weil eine Anomalie in der spezifischen Wärme von Wasserstoffgas nicht anders zu erklären ist. Der halbzahlige Spin kann weder anschaulich noch halbklassisch durch eine Drehbewegung erklärt werden. Eine formale Begründung wurde 1928 in der relativistischen Quantenmechanik entdeckt. Der halbzahlige Spin der Elektronen und Quarks führt über das Spin-Statistik-Theorem weiter zum Pauli-Prinzip, das grundlegend für den Aufbau der Atomkerne und der Atomhüllen ist. Das Pauli-Prinzip bestimmt damit auch das chemische Verhalten der Atome, wie es sich im Periodensystem der Elemente ausdrückt. Demnach spielt der halbzahlige Spin beim Aufbau der Materie bis hin zu ihren makroskopischen Eigenschaften eine bestimmende Rolle. Stephen Hawking benutzt in seinem Buch Eine kurze Geschichte der Zeit eine Pfeil-Analogie zur Veranschaulichung des Spins: „Ein Teilchen mit dem Spin 0 ist ein Punkt: Es sieht aus allen Richtungen gleich aus. Ein Teilchen mit dem Spin 1 ist dagegen wie ein Pfeil: Es sieht aus verschiedenen Richtungen verschieden aus. Nur bei einer vollständigen Umdrehung (360 Grad) sieht das Teilchen wieder gleich aus. Ein Teilchen mit dem Spin 2 ist wie ein Pfeil mit einer Spitze an jedem Ende. Es sieht nach einer halben Umdrehung (180 Grad) wieder gleich aus. Entsprechend sehen Teilchen mit höherem Spin wieder gleich aus, wenn man Drehungen um kleinere Bruchteile einer vollständigen Umdrehung vollzieht. [Zudem gibt] es Teilchen […], die nach einer Umdrehung noch nicht wieder gleich aussehen: Es sind dazu vielmehr zwei vollständige Umdrehungen erforderlich! Der Spin solcher Teilchen wird mit ½ angegeben.“ Wichtige Experimente zum Spin beruhen meist darauf, dass ein geladenes Teilchen mit Spin auch ein magnetisches Moment besitzt. Beim Einstein-de-Haas-Effekt versetzt die Änderung der Richtung der Elektronenspins in einem Eisenstab diesen in eine makroskopische Drehbewegung. Im Stern-Gerlach-Versuch ermöglichte der Elektronenspin den ersten direkten Nachweis der Richtungsquantelung. Die Effekte der magnetischen Kernspinresonanz bzw. Elektronenspinresonanz werden in Chemie (Kernspinresonanzspektroskopie NMR), Biologie und Medizin (Magnetresonanztomographie MRT) zur detaillierten Untersuchungen von Materialien, Geweben und Prozessen genutzt. Anders als der halbzahlige Spin der Leptonen ergibt sich der ganzzahlige Spin des Photons (Lichtquant) schon aus der lange bekannten Existenz elektromagnetischer Wellen mit zirkulärer Polarisation. Ein direkter experimenteller Nachweis gelang 1936 anhand der Drehbewegung eines makroskopischen Objekts nach der Wechselwirkung mit Photonen. (de)
- Spina (ingelesetik: spin, "bira") partikula subatomikoen propietate intrintseko bat da, horren ondorioz oinarrizko partikula bakoitzak balio jakin bateko berezko momentu angeluarra duena. 1925an , George Uhlenbeck eta sartu zuten mekanika kuantikoan. 1920an kimikari analitikoek atomoen elektroiak deskribatzeko, zenbaki kuantikoez gain, laugarren kontzeptu bat beharrezkoa zuten, elektroiaren spina. Honek, bere ardatzarekiko biratzean eremu magnetiko bat sortzen du, spin izenekoa. Gerora, spinaren kontzeptua protoi, neutroi eta antipartikulentzako zabaldu zen. (eu)
- El espín (del inglés spin 'giro, girar') es una propiedad física de las partículas elementales por el cual tienen un momento angular intrínseco de valor fijo. El espín fue introducido en 1925 por Ralph Kronig e, independientemente, por George Uhlenbeck y Samuel Goudsmit. La otra propiedad intrínseca de las partículas elementales es la carga eléctrica. (es)
- Le spin (/spin/) est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf paragraphe 2 de cet article, ou Précession de Thomas). Enfin, le moment cinétique intrinsèque (de spin) et le moment magnétique intrinsèque (de spin) sont tous deux confondus sous le terme de « spin ». Le spin a d'importantes implications théoriques et pratiques, il influence pratiquement tout le monde physique. Il est responsable du moment magnétique de spin et donc de l'effet Zeeman anomal (parfois incorrectement appelé anormal) qui en découle. Les particules sont classées selon la valeur de leur nombre quantique de spin (aussi appelé communément le spin) : les bosons qui ont un spin entier ou nul, et les fermions pour lesquels le spin est demi-entier (1/2, 3/2, 5/2...). Fermions et bosons se comportent différemment dans des systèmes comprenant plusieurs particules identiques ; le fait que l'électron soit un fermion est ainsi la cause du principe d'exclusion de Pauli et des irrégularités de la table périodique des éléments. L'interaction spin-orbite conduit à la structure fine du spectre atomique. Le spin de l'électron joue un rôle important dans le magnétisme. La manipulation des courants de spins dans des nano-circuits conduit à un nouveau champ de recherche : la spintronique. La manipulation des spins nucléaires par des champs radiofréquences conduit au phénomène de résonance magnétique nucléaire utilisé dans la spectroscopie RMN et l'imagerie médicale (IRM). Le spin du photon – ou plus exactement son hélicité – est associé à la polarisation de la lumière. (fr)
- San fhisic chandamach agus i bhfisic na mbuncháithníní, tugtar guairne ar airí áirithe bhunúsach a bhaineann leis na buncháithníní, leis na cáithníní comhshuite (na hadróin) agus le núicléis na n-adamh. Leis an nguairne a dhéanamh níos intuigthe ag an neamh-shaineolaí, is minic a deirtear gurb ionann é, ar bhealach, agus an buncháithnín a bheith ag casadh timpeall ar a ais, ach is gá cuimhne a choinneáil air nach bhfuil ann ach simpliú garbh. Thar aon rud eile tá sé tábhachtach a thuiscint nach ionann dlíthe an nádúir ar an micrileibhéal agus ar an macraileibhéal, agus dá réir sin, nach ionann an mhatamaitic a úsáidtear le cur síos a thabhairt ar an nguairne agus ar rothlú na réad macrascópach. Tá an chandamuimhir guairne chéanna ag na buncháithníní go léir den chineál chéanna, agus is cuid thábhachtach é luach na candamuimhreach seo de staid chandamach an cháithnín. Tá baint ag guairne na leictreon, de réir theoirim na staitisticí guairne, le prionsabal eisiaimh Wolfgang Pauli, agus sa deireadh, is toradh don phrionsabal sin é an dóigh a bhfuil na dúile ceimiceacha ag teacht sna sálaí ag a chéile i dtábla peiriadach na ndúl. Céim saoirse intreach thábhachtach é treo guairne an bhuncháithnín, agus ar mhaithe leis an ngiorracht tugtar guairne ar an treo guairne freisin go minic. Ba é Wolfgang Pauli an chéad fhisiceoir a thuig agus a shainmhínigh coincheap na guairne, cé nár cheap sé téarma ar leith le tagairt dó. Sa bhliain 1925, mhol , agus go ndealrófaí an ghuairne le rothlú an bhuncháithnín ar a ais féin. Ba é Pauli a d'oibrigh amach an taobh matamaiticiúil den scéal sa bhliain 1927. Sa bhliain 1928, leag Paul Dirac amach a chandam-mheicnic choibhneasaíoch, agus páirt lárnach ag coincheap na guairne inti. Tá dhá chineál móiminteam uilleach sa chandam-mheicnic: an móiminteam uilleach fithiseach, nach bhfuil ann go bunúsach ach ginearálú agus fairsingiú nádúrtha ar an móiminteam uilleach san fhisic chlasaiceach (L=r×p), agus an ghuairne, nach bhfuil cosúil le haon rud san fhisic chlasaiceach. Ós cineál móiminteam uilleach í an ghuairne, tá na toisí céanna aici agus ag an móiminteam uilleach, is é sin, J•s sna haonaid SI. Ní úsáidtear na haonaid SI le luach na guairne a thabhairt. Ina áit sin, úsáidtear ħ, an leagan laghdaithe de thairiseach Planck, mar aonad, agus ní scríobhtar an tairiseach sin féin amach - ní thugtar ach uimhir gan aonad, arb í an t-iolraí faoina bhfuil an tairiseach sin méadaithe. (ga)
- Dalam mekanika kuantum, spin adalah momentum sudut intrinsik yang berhubungan dengan partikel. Sebagai contoh, partikel dasar seperti elektron, mempunyai momentum sudut dari spin, sekalipun mereka (untuk maksud lain) adalah seperti partikel titik. Partikel subatomik lainnya, seperti Neutrino, yang tidak mempunyai muatan listrik, juga mempunyai spin. Salah satu cara membayangkan spin adalah membayangkan zarah sebagai gasing kecil yang berputar di sumbunya. Tapi,itu bisa menyesatkan karena dalam mekanika kuantum, zarah tak punya sumbu tetap. Spin zarah sendiri memberitahu kita bagaimana zarah kelihatan dari berbagai arah. Misalnya zarah berspin nol (0) (itu terlihat sama kalau dilihat dari berbagai arah. Zarah spin nol (0) bisa dibayangkan sama dengan titik. Sementara itu zarah spin satu (1), kelihatan berbeda bila dilihat dari berbagai arah, mirip dengan anak panah berujung satu atau mungkin mirip dengan kartu as.
* l
*
* s (in)
- Spin is a conserved quantity carried by elementary particles, and thus by composite particles (hadrons) and atomic nuclei. Spin is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. The orbital angular momentum operator is the quantum-mechanical counterpart to the classical angular momentum of orbital revolution and appears when there is periodic structure to its wavefunction as the angle varies. For photons, spin is the quantum-mechanical counterpart of the polarization of light; for electrons, the spin has no classical counterpart. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum. The existence of the electron spin can also be inferred theoretically from the spin–statistics theorem and from the Pauli exclusion principle—and vice versa, given the particular spin of the electron, one may derive the Pauli exclusion principle. Spin is described mathematically as a vector for some particles such as photons, and as spinors and bispinors for other particles such as electrons. Spinors and bispinors behave similarly to vectors: they have definite magnitudes and change under rotations; however, they use an unconventional "direction". All elementary particles of a given kind have the same magnitude of spin angular momentum, though its direction may change. These are indicated by assigning the particle a spin quantum number. The SI unit of spin is the same as classical angular momentum (i.e., N·m·s, J·s, or kg·m2·s−1). In practice, spin is given as a dimensionless spin quantum number by dividing the spin angular momentum by the reduced Planck constant ħ, which has the same dimensions as angular momentum, although this is not the full computation of this value. Very often, the "spin quantum number" is simply called "spin". The fact that it is a quantum number is implicit. (en)
- スピン角運動量(スピンかくうんどうりょう、英: spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。換算プランク定数 を単位として量子数 s で表す。なお、粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。 (ja)
- Spin is een fundamentele eigenschap, een kwantumgetal van atoomkernen, hadronen en elementaire deeltjes. Hoewel de spin eigenschappen heeft die doen denken aan een 'gewoon' impulsmoment — en het kort na zijn ontdekking ook zo werd opgevat — heeft spin niet te maken met een daadwerkelijke draaiing van een deeltje om zijn as. Het is een intrinsiek kwantummechanische grootheid die op geen enkele wijze met de klassieke mechanica is te beschrijven. Voor deeltjes, elementaire of samengestelde, met een spin ongelijk aan nul is de richting van de spin, doorgaans ook kortweg spin genoemd, een belangrijke intrinsieke vrijheidsgraad, die het intrinsieke impulsmoment beschrijft. Intrinsiek duidt erop dat de spin een positie-onafhankelijke eigenschap is. De spin is een van de in Leiden afgebeelde muurformules. (nl)
- 스핀(spin)은 양자역학에서 입자의 운동과 무관한 고유 각운동량이다. 예를 들어, 전자는 스핀 양자수 1/2, 광자는 스핀 양자수 1을 갖는다. 어원과는 달리, 실제로 입자는 어떤 축을 중심으로 고전적으로 회전하지 않는다. 드 하스 아인슈타인 실험에서 외부 자기장으로 스핀을 정렬시키자 전체 각운동량의 보존 때문에 시스템이 회전하는 현상이 보고되었다. 흔히 공간의 양자화로 부르는 양자화된 입자의 스핀의 양은 슈테른-게를라흐 실험으로 밝혀낼 수 있게 되었으며, 비균일 자기장에 대해 불연속적인 반응을 주는 내부 인자를 가리킨다. (ko)
- In meccanica quantistica lo spin (letteralmente "giro", "rotazione" in inglese) è una grandezza, o numero quantico, associata alle particelle, che concorre a definirne lo stato quantico. Lo spin è una forma di momento angolare, avendo di tale entità fisica le dimensioni e, pur non esistendo una grandezza corrispondente in meccanica classica, per analogia richiama la rotazione della particella intorno al proprio asse (viene anche definito come momento angolare intrinseco). È necessario chiarire però che lo spin non è associato a una reale rotazione della particella secondo il comune concetto applicato agli oggetti macroscopici; infatti i fotoni o gli elettroni, che sono considerati puntiformi, possiedono uno spin. Inoltre, a differenza della rotazione classica, nel caso di valore semintero lo spin viene descritto da un oggetto a due componenti (spinore) anziché da un vettore, rispetto al quale si trasforma ruotando le coordinate con un procedimento differente. Lo spin non era previsto dalla meccanica quantistica non relativistica, dove fu introdotto come grandezza ad hoc; è invece previsto dalla versione relativistica tramite l'equazione di Dirac. (it)
- Na mecânica quântica o termo spin ("giro", em inglês ) associa-se, sem rigor, às possíveis orientações que partículas subatômicas carregadas, como o próton e o elétron, e alguns núcleos atômicos podem apresentar quando imersas em um campo magnético. Embora o termo tenha surgido da ideia de que os elétrons "giravam" em torno de si mesmos, e embora geralmente associado à ideia de momento magnético das partículas uma vez que partículas carregadas, quando em movimento de rotação, da mesma forma que uma volta de fio percorrido por uma corrente elétrica, produzem campos magnéticos, esta descrição não é adequada para os nêutrons, que não possuem carga elétrica; também não é capaz de explicar valores de spin observados em certos núcleos atômicos, a exemplo para o U235. Nestes casos, o termo spin é encarado simplesmente como um quarto número quântico, necessário à definição dos estados quânticos destas partículas quando em estados discretos de energia em sistemas confinados, a exemplo nos orbitais em um átomo ou nos estados de energia em um gás de férmions. O termo spin em mecânica quântica liga-se ao vetor momento angular intrínseco de uma partícula e às diferentes orientações (quânticas) deste no espaço, embora o termo seja muitas vezes incorretamente atrelado não ao mas ao momento magnético intrínseco das partículas, por razões experimentais. Os vetores momentos angular e de uma partícula são acoplados através de um que depende da carga e da espécie de partícula, e uma partícula que tenha carga e spin (angular) não nulos terá um momento magnético não nulo. Experimentalmente o momento magnético é muito mais acessível do que o momento angular em si em virtude da interação deste com corpos magnéticos e eletromagnéticos, e o momento angular intrínseco (spin) de partículas carregadas, acaba sendo inferido a partir de seu momento magnético intrínseco. O spin é considerado hoje uma entidade matemática que estabelece qual dentre as estatísticas disponíveis, a citar: a estatística de Fermi-Dirac para férmions (partículas com spin semi-inteiro), a estatística de Maxwell–Boltzmann (para partículas clássicas não interagentes) e a estatística de Bose-Einstein para bósons (partículas com spin inteiro) deve ser utilizada para a correta descrição termodinâmica dos entes físicos em questão quando no âmbito da mecânica quântica. Estabelece também os detalhes da aplicação da estatística correta por definir o número máximo de partículas em cada estado energético disponível: para férmions, 2 partículas no caso de spin (elétrons na eletrosfera, nos orbitais de um átomo, a exemplo), 4 para spin , 6 para spin ... , para bósons com spin inteiros e infinitas partículas por estado disponível. Associa-se diretamente ao momento angular intrínseco das partículas, sendo necessário à descrição desta grandeza e portanto caracteriza-se não só como uma entidade matemática, mas também como uma entidade física indispensável à descrição dos Sistemas Quânticos. O Spin não possui uma interpretação clássica, ou seja, é um fenômeno estritamente quântico, e sua associação com o movimento de rotação das partículas sobre seu eixo - uma visão clássica - deixa muito a desejar. (pt)
- Spin – moment pędu (kręt) cząstki wynikający z jej natury kwantowej. W klasycznej fizyce moment pędu wynika z ruchu ciał w przestrzeni, spin zaś jest wewnętrzną właściwością cząstki, taką jak na przykład ładunek elektryczny. Spin nie wynika z ruchu obrotowego cząstek, lecz z symetrii ich funkcji falowej względem odpowiedniej grupy obrotów. Każdy rodzaj cząstek elementarnych ma właściwy sobie spin. Cząstki złożone (np. jądra atomów) mają spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych. (pl)
- Spinn är en kvantfysikalisk egenskap (frihetsgrad) hos partiklar i mikrokosmos. Spinn är ett rörelsemängdsmoment en partikel har utöver sitt banrörelsemängdsmoment. De kvanttal som beskriver en partikels totala spinn och dess projektion längs en godtycklig axel har beteckningarna s och ms. Spinn beskrivs matematiskt av sambanden där S2 och Sz är spinnoperatorer som verkar på vågfunktionen ψ. Utläst betyder de att S2 – en partikels spinn i kvadrat – är den reducerade Plancks konstant i kvadrat gånger partikelns spinntal s gånger sig själv plus ett, medan spinnet i en viss riktning ges av den reducerade Plancks konstant gånger ms. Dessa samband visar också att de möjliga kvantiseringarna längs en axel beror av det totala spinnet – som är specifikt för varje elementarpartikel – samt att både s och ms med nödvändighet är hel- eller halvtal. Partiklar med heltalsspinn kallas bosoner och de med halvtalsspinn fermioner. Ur sambanden kan man även utläsa att storleken på en partikels spinn är – alltså lite mer än ℏs. Det totala spinnet är alltså alltid större än spinnet i en viss riktning, ℏms (förutsatt att partikeln inte är spinnlös). Detta kan tolkas som att en partikels spinn alltid avviker något från den riktning man mäter i (vilket är ett exempel på Heisenbergs osäkerhetsrelation). (sv)
- Спин (от англ. spin, букв. — «вращение, вращать(-ся)») — собственный момент импульса элементарных частиц, имеющий как квантовую, так и классическую природу и тесно связанный с представлениями группы вращений и группы Лоренца (классические аспекты спина см. в книгах H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968), Alexei Deriglazov, Classical Mechanics (Second Edition, Springer 2017), Пенроуз и Риндлер, Спиноры и пространство-время). Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы. Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число (оно есть число, характеризующее представления группы вращений и группы Лоренца, то есть сколько в нём собственно квантовости и сколько неквантовости, сейчас неизвестно), которое обычно называют просто спином (одно из квантовых чисел). Спин свободной частицы измерить нельзя, так как для измерения требуется внешнее магнитное поле, а оно делает частицу несвободной. В связи с этим говорят о целом или полуцелом спине частицы. Полуцелый спин фундаментальнее, так как "из него" можно построить целый спин, но обратное невозможно (см. книгу Пенроуза и Риндлера). Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике: обменного взаимодействия. Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике. Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы. Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы. Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином описываются двухкомпонентной волновой функцией (спинор), со спином описываются трёхкомпонентной волновой функцией (вектор), со спином описываются пятикомпонентной волновой функцией (тензор). (ru)
- Спін (англ. spin — веретено) — фундаментальна характеристика частинки (наприклад атомного ядра чи елементарної частинки), яка в деякому відношенні аналогічна «власному моменту імпульсу частинки». Спін є квантовою властивістю частинок і не має аналогів у класичній фізиці. Тоді як класичний момент імпульсу виникає внаслідок обертання масивного тіла зі скінченними розмірами, спін властивий навіть частинкам, які на сьогодні вважаються точковими, і не пов'язаний із жодним обертанням мас всередині такої частки. Спін неточкових частинок, наприклад атомних ядер чи адронів, є векторною сумою спінів та орбітального моменту імпульсу її складових частин (нейтронів та протонів у випадку ядра, кварків у випадку адронів). Тобто і у цьому випадку спін лише частково пов'язаний з обертальним рухом всередині частинки. Спін може набувати лише певних (квантованих) значень:
* цілі: 0,1,2,3 …
* напівцілі: 1/2, 3/2, … Спін є важливою характеристикою елементарних частинок. Характеризується спіновим квантовим числом. (uk)
- 在量子力学中,自旋(英語:Spin)是粒子所具有的,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由拉尔夫·克勒尼希、喬治·烏倫貝克與塞缪尔·古德斯米特三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以通過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。 (zh)
|
rdfs:comment
|
- الغزل أو اللف المغزلي (بالإنجليزية: spin) أو التدويم أو هي خاصية تعبر عن دوران الجسيم الأولي حول نفسه. يعتبر اللف المغزلي خاصية جوهرية في كافة الجسيمات الأولية وتمثل ظاهرة ميكانيكية كمومية أصيلة. يمكن تقريب اللف المغزلي للإلكترون للأذهان عن طريق تشبيهها بدوران الأرض حول نفسها إضافة لدورانها حول الشمس، فكذلك يلف الإلكترون حول نفسه ويدور في نفس الوقت في مدار حول النواة. ويقترن اللف المغزلي للإلكترون بعزم مغناطيسي له، هو الأصل في ظاهرة مغناطيسية المواد. (ar)
- Στην φυσική το σπιν είναι η ιδιοστροφορμή των σωματιδίων. Πρόκειται για μια κβαντομηχανική ιδιότητα χωρίς αναλογία στην κλασική μηχανική. Ενώ στην κλασική μηχανική η στροφορμή είναι ιδιότητα που σχετίζεται με περιστροφές εκτεταμένων αντικειμένων το σπιν δεν σχετίζεται με περιστροφές εσωτερικών μαζών αλλά είναι εσωτερικό χαρακτηριστικό τού ίδιου τού σωματιδίου. Το ότι το spin δεν είναι ιδιοπεριστροφή, φαίνεται καθαρά στη σκέδαση σωματιδίων. Η ιδιοπεριστροφή των σωματιδίων προφανώς αλλάζει μετά τη σκέδαση. Το σπιν όμως όχι. Άρα είναι ένα καθαρά κβαντικό μέγεθος. Τα μποζόνια έχουν ακέραιο σπιν (1,2,3) και τα φερμιόνια ημιακέραιο (1/2, -1/2). (el)
- Spina (ingelesetik: spin, "bira") partikula subatomikoen propietate intrintseko bat da, horren ondorioz oinarrizko partikula bakoitzak balio jakin bateko berezko momentu angeluarra duena. 1925an , George Uhlenbeck eta sartu zuten mekanika kuantikoan. 1920an kimikari analitikoek atomoen elektroiak deskribatzeko, zenbaki kuantikoez gain, laugarren kontzeptu bat beharrezkoa zuten, elektroiaren spina. Honek, bere ardatzarekiko biratzean eremu magnetiko bat sortzen du, spin izenekoa. Gerora, spinaren kontzeptua protoi, neutroi eta antipartikulentzako zabaldu zen. (eu)
- El espín (del inglés spin 'giro, girar') es una propiedad física de las partículas elementales por el cual tienen un momento angular intrínseco de valor fijo. El espín fue introducido en 1925 por Ralph Kronig e, independientemente, por George Uhlenbeck y Samuel Goudsmit. La otra propiedad intrínseca de las partículas elementales es la carga eléctrica. (es)
- スピン角運動量(スピンかくうんどうりょう、英: spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。換算プランク定数 を単位として量子数 s で表す。なお、粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。 (ja)
- 스핀(spin)은 양자역학에서 입자의 운동과 무관한 고유 각운동량이다. 예를 들어, 전자는 스핀 양자수 1/2, 광자는 스핀 양자수 1을 갖는다. 어원과는 달리, 실제로 입자는 어떤 축을 중심으로 고전적으로 회전하지 않는다. 드 하스 아인슈타인 실험에서 외부 자기장으로 스핀을 정렬시키자 전체 각운동량의 보존 때문에 시스템이 회전하는 현상이 보고되었다. 흔히 공간의 양자화로 부르는 양자화된 입자의 스핀의 양은 슈테른-게를라흐 실험으로 밝혀낼 수 있게 되었으며, 비균일 자기장에 대해 불연속적인 반응을 주는 내부 인자를 가리킨다. (ko)
- Spin – moment pędu (kręt) cząstki wynikający z jej natury kwantowej. W klasycznej fizyce moment pędu wynika z ruchu ciał w przestrzeni, spin zaś jest wewnętrzną właściwością cząstki, taką jak na przykład ładunek elektryczny. Spin nie wynika z ruchu obrotowego cząstek, lecz z symetrii ich funkcji falowej względem odpowiedniej grupy obrotów. Każdy rodzaj cząstek elementarnych ma właściwy sobie spin. Cząstki złożone (np. jądra atomów) mają spin będący sumą wektorową spinów wchodzących w skład jego cząstek elementarnych. (pl)
- 在量子力学中,自旋(英語:Spin)是粒子所具有的,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由拉尔夫·克勒尼希、喬治·烏倫貝克與塞缪尔·古德斯米特三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以通過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。 (zh)
- En física, l'espín o spin és un moment angular intrínsec associat amb partícules microscòpiques. L'espín no està associat amb cap rotació interna de masses, sinó que és un fenomen que pertany a la mecànica quàntica, sense cap analogia en la mecànica clàssica, on el moment angular s'associa a la rotació d'un objecte extens. que és intrínsec a una partícula. Les partícules elementals com l'electró poden tenir espín diferent de zero malgrat que es creu que és una partícula puntual que no té estructura interna. (ca)
- Spin je kvantová vlastnost elementárních částic, jejíž ekvivalent klasická fyzika nezná. Jde o vnitřní moment hybnosti částice v tom smyslu, že spiny částic přispívají k celkovému momentu hybnosti soustavy. Jeho velikost je pro každou částici přesně daná, nelze ji nijak měnit. Může nabývat celých nebo polocelých násobků redukované Planckovy konstanty . Hodnoty spinu proto značíme např. 0, 1/2, 1, 3/2, … Částice podle velikosti spinu a statistického chování rozdělujeme na (cs)
- Spin (von englisch spin ‚Drehung‘, ‚Drall‘) ist in der Teilchenphysik der Eigendrehimpuls von Teilchen. Bei den fundamentalen Teilchen ist er wie die Masse eine unveränderliche innere Teilcheneigenschaft. Er beträgt ein halb- oder ganzzahliges Vielfaches (Spinquantenzahl) des reduzierten planckschen Wirkungsquantums . Abgesehen davon, dass er nicht durch die (Dreh-)Bewegung einer Masse hervorgerufen wird, hat er alle Eigenschaften eines klassisch-mechanischen Eigendrehimpulses, insbesondere bezüglich Drehimpulserhaltung und Koordinatentransformationen, und ist damit auch ein Axialvektor. Der Spin kann nur quantenmechanisch verstanden werden. Das Spin-Statistik-Theorem verbindet den Spin eines Teilchens mit der Art der statistischen Beschreibung mehrerer gleicher Teilchen: Teilchen mit eine (de)
- Pri anatomiaj kaj geologiaj signifoj de la vorto, vidu la artikolon spino. -- En kvantuma fiziko spino estas fundamenta kvantuma nombro indikanta la transformadan karakteron laŭ rotacio de speco de partiklo. Normale, spino estas nenegativa entjero aŭ duonentjero, t.e., nenegativa entjero plus duono. Spino povas ankaŭ esti pensata kiel la propra angula movokvanto de partiklo nerilata al movo (kiel spinmomanto); partiklo kun spino havas propra angula movokvanto , kie estas la reduktita konstanto de Planck. (eo)
- San fhisic chandamach agus i bhfisic na mbuncháithníní, tugtar guairne ar airí áirithe bhunúsach a bhaineann leis na buncháithníní, leis na cáithníní comhshuite (na hadróin) agus le núicléis na n-adamh. Leis an nguairne a dhéanamh níos intuigthe ag an neamh-shaineolaí, is minic a deirtear gurb ionann é, ar bhealach, agus an buncháithnín a bheith ag casadh timpeall ar a ais, ach is gá cuimhne a choinneáil air nach bhfuil ann ach simpliú garbh. Thar aon rud eile tá sé tábhachtach a thuiscint nach ionann dlíthe an nádúir ar an micrileibhéal agus ar an macraileibhéal, agus dá réir sin, nach ionann an mhatamaitic a úsáidtear le cur síos a thabhairt ar an nguairne agus ar rothlú na réad macrascópach. (ga)
- Le spin (/spin/) est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. (fr)
- Dalam mekanika kuantum, spin adalah momentum sudut intrinsik yang berhubungan dengan partikel. Sebagai contoh, partikel dasar seperti elektron, mempunyai momentum sudut dari spin, sekalipun mereka (untuk maksud lain) adalah seperti partikel titik. Partikel subatomik lainnya, seperti Neutrino, yang tidak mempunyai muatan listrik, juga mempunyai spin.
* l
*
* s (in)
- Spin is a conserved quantity carried by elementary particles, and thus by composite particles (hadrons) and atomic nuclei. Spin is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. The orbital angular momentum operator is the quantum-mechanical counterpart to the classical angular momentum of orbital revolution and appears when there is periodic structure to its wavefunction as the angle varies. For photons, spin is the quantum-mechanical counterpart of the polarization of light; for electrons, the spin has no classical counterpart. (en)
- In meccanica quantistica lo spin (letteralmente "giro", "rotazione" in inglese) è una grandezza, o numero quantico, associata alle particelle, che concorre a definirne lo stato quantico. Lo spin è una forma di momento angolare, avendo di tale entità fisica le dimensioni e, pur non esistendo una grandezza corrispondente in meccanica classica, per analogia richiama la rotazione della particella intorno al proprio asse (viene anche definito come momento angolare intrinseco). È necessario chiarire però che lo spin non è associato a una reale rotazione della particella secondo il comune concetto applicato agli oggetti macroscopici; infatti i fotoni o gli elettroni, che sono considerati puntiformi, possiedono uno spin. Inoltre, a differenza della rotazione classica, nel caso di valore semintero (it)
- Spin is een fundamentele eigenschap, een kwantumgetal van atoomkernen, hadronen en elementaire deeltjes. Hoewel de spin eigenschappen heeft die doen denken aan een 'gewoon' impulsmoment — en het kort na zijn ontdekking ook zo werd opgevat — heeft spin niet te maken met een daadwerkelijke draaiing van een deeltje om zijn as. Het is een intrinsiek kwantummechanische grootheid die op geen enkele wijze met de klassieke mechanica is te beschrijven. Voor deeltjes, elementaire of samengestelde, met een spin ongelijk aan nul is de richting van de spin, doorgaans ook kortweg spin genoemd, een belangrijke intrinsieke vrijheidsgraad, die het intrinsieke impulsmoment beschrijft. Intrinsiek duidt erop dat de spin een positie-onafhankelijke eigenschap is. (nl)
- Na mecânica quântica o termo spin ("giro", em inglês ) associa-se, sem rigor, às possíveis orientações que partículas subatômicas carregadas, como o próton e o elétron, e alguns núcleos atômicos podem apresentar quando imersas em um campo magnético. O Spin não possui uma interpretação clássica, ou seja, é um fenômeno estritamente quântico, e sua associação com o movimento de rotação das partículas sobre seu eixo - uma visão clássica - deixa muito a desejar. (pt)
- Spinn är en kvantfysikalisk egenskap (frihetsgrad) hos partiklar i mikrokosmos. Spinn är ett rörelsemängdsmoment en partikel har utöver sitt banrörelsemängdsmoment. De kvanttal som beskriver en partikels totala spinn och dess projektion längs en godtycklig axel har beteckningarna s och ms. Spinn beskrivs matematiskt av sambanden (sv)
- Спін (англ. spin — веретено) — фундаментальна характеристика частинки (наприклад атомного ядра чи елементарної частинки), яка в деякому відношенні аналогічна «власному моменту імпульсу частинки». Спін є квантовою властивістю частинок і не має аналогів у класичній фізиці. Тоді як класичний момент імпульсу виникає внаслідок обертання масивного тіла зі скінченними розмірами, спін властивий навіть частинкам, які на сьогодні вважаються точковими, і не пов'язаний із жодним обертанням мас всередині такої частки. Спін неточкових частинок, наприклад атомних ядер чи адронів, є векторною сумою спінів та орбітального моменту імпульсу її складових частин (нейтронів та протонів у випадку ядра, кварків у випадку адронів). Тобто і у цьому випадку спін лише частково пов'язаний з обертальним рухом всередині (uk)
- Спин (от англ. spin, букв. — «вращение, вращать(-ся)») — собственный момент импульса элементарных частиц, имеющий как квантовую, так и классическую природу и тесно связанный с представлениями группы вращений и группы Лоренца (классические аспекты спина см. в книгах H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968), Alexei Deriglazov, Classical Mechanics (Second Edition, Springer 2017), Пенроуз и Риндлер, Спиноры и пространство-время). Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри (ru)
|