Abstract
We classify the complete set of dimension-5 operators relevant for the resonant production of a singlet of spin 0 or 2 linearly coupled to the Standard Model (SM). We compute the decay width of such states as a function of the effective couplings, and provide the matching to various well-motivated New Physics scenarios. We then investigate the possibility that one of these neutral resonances be at the origin of the excess in diboson production recently reported by the ATLAS collaboration. We perform a shape analysis of the excess under full consideration of the systematic uncertainties to extract the width Γtot of the hypothetical resonance, finding it to be in the range 26 GeV < Γtot < 144 GeV at 95% C.L. We then point out that the three overlapping selections W W , W Z, ZZ reported by ATLAS follow a joint trivariate Poisson distribution, which opens the possibility of a thorough likelihood analysis of the event rates. The background systematic uncertainties are also included in our analysis. We show that the data do not require WZ production and could thus in principle be explained by neutral resonances. We then use both the information on the width and the cross section, which prove to be highly complementary, to test the effective Lagrangians of singlet resonances. Regarding specific models, we find that neither scalars coupled via the Higgs-portal nor the Randall-Sundrum (RS) radion can explain the ATLAS anomaly. The RS graviton with all matter on the infrared (IR) brane can in principle fit the observed excess, while the RS model with matter propagating in the bulk requires the presence of IR brane kinetic terms for the gauge fields.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].
D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].
C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].
G. von Gersdorff, E. Pontón and R. Rosenfeld, The Dynamical Composite Higgs, JHEP 06 (2015) 119 [arXiv:1502.07340] [INSPIRE].
R. Schabinger and J.D. Wells, A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1506.00962 [INSPIRE].
H.S. Fukano, M. Kurachi, S. Matsuzaki, K. Terashi and K. Yamawaki, 2 TeV Walking Technirho at LHC?, Phys. Lett. B 750 (2015) 259 [arXiv:1506.03751] [INSPIRE].
B.A. Dobrescu and Z. Liu, W ′ Boson near 2 TeV: Predictions for Run 2 of the LHC, Phys. Rev. Lett. 115 (2015) 211802 [arXiv:1506.06736] [INSPIRE].
A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1) X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].
K. Cheung, W.-Y. Keung, P.-Y. Tseng and T.-C. Yuan, Interpretations of the ATLAS Diboson Anomaly, Phys. Lett. B 751 (2015) 188 [arXiv:1506.06064] [INSPIRE].
D.B. Franzosi, M.T. Frandsen and F. Sannino, Diboson Signals via Fermi Scale Spin-One States, arXiv:1506.04392 [INSPIRE].
J. Hisano, N. Nagata and Y. Omura, Interpretations of the ATLAS Diboson Resonances, Phys. Rev. D 92 (2015) 055001 [arXiv:1506.03931] [INSPIRE].
J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, Symmetry Restored in Dibosons at the LHC?, JHEP 10 (2015) 182 [arXiv:1507.00013] [INSPIRE].
Y. Gao, T. Ghosh, K. Sinha and J.-H. Yu, SU(2) × SU(2) × U(1) interpretations of the diboson and Wh excesses, Phys. Rev. D 92 (2015) 055030 [arXiv:1506.07511] [INSPIRE].
A. Thamm, R. Torre and A. Wulzer, Composite Heavy Vector Triplet in the ATLAS Diboson Excess, Phys. Rev. Lett. 115 (2015) 221802 [arXiv:1506.08688] [INSPIRE].
Q.-H. Cao, B. Yan and D.-M. Zhang, Simple non-Abelian extensions of the standard model gauge group and the diboson excesses at the LHC, Phys. Rev. D 92 (2015) 095025 [arXiv:1507.00268] [INSPIRE].
A. Carmona, A. Delgado, M. Quirós and J. Santiago, Diboson resonant production in non-custodial composite Higgs models, JHEP 09 (2015) 186 [arXiv:1507.01914] [INSPIRE].
T. Abe, T. Kitahara and M.M. Nojiri, Prospects for Spin-1 Resonance Search at 13 TeV LHC and the ATLAS Diboson Excess, arXiv:1507.01681 [INSPIRE].
G. Cacciapaglia and M.T. Frandsen, Unitarity implications of a diboson resonance in the TeV region for Higgs physics, Phys. Rev. D 92 (2015) 055035 [arXiv:1507.00900] [INSPIRE].
B.A. Dobrescu and Z. Liu, Heavy Higgs bosons and the 2 TeV W ′ boson, JHEP 10 (2015) 118 [arXiv:1507.01923] [INSPIRE].
B.C. Allanach, B. Gripaios and D. Sutherland, Anatomy of the ATLAS diboson anomaly, Phys. Rev. D 92 (2015) 055003 [arXiv:1507.01638] [INSPIRE].
T. Abe, R. Nagai, S. Okawa and M. Tanabashi, Unitarity sum rules, three-site moose model and the ATLAS 2 TeV diboson anomalies, Phys. Rev. D 92 (2015) 055016 [arXiv:1507.01185] [INSPIRE].
L. Bian, D. Liu and J. Shu, Low Scale Composite Higgs Model and 1.8 ∼ 2 TeV Diboson Excess, arXiv:1507.06018 [INSPIRE].
M. Low, A. Tesi and L.-T. Wang, Composite spin-1 resonances at the LHC, Phys. Rev. D 92 (2015) 085019 [arXiv:1507.07557] [INSPIRE].
K. Lane and L. Prichett, Heavy Vector Partners of the Light Composite Higgs, arXiv:1507.07102 [INSPIRE].
A.E. Faraggi and M. Guzzi, Extra Z ′ s and W ′ s in heterotic-string derived models, Eur. Phys. J. C 75 (2015) 537 [arXiv:1507.07406] [INSPIRE].
P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].
L.A. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lüst and T.R. Taylor, Stringy origin of diboson and dijet excesses at the LHC, Phys. Lett. B 749 (2015) 484 [arXiv:1507.05299] [INSPIRE].
J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].
J.A. Aguilar-Saavedra, Triboson interpretations of the ATLAS diboson excess, JHEP 10 (2015) 099 [arXiv:1506.06739] [INSPIRE].
C.-H. Chen and T. Nomura, 2 TeV Higgs boson and diboson excess at the LHC, Phys. Lett. B 749 (2015) 464 [arXiv:1507.04431] [INSPIRE].
Y. Omura, K. Tobe and K. Tsumura, Survey of Higgs interpretations of the diboson excesses, Phys. Rev. D 92 (2015) 055015 [arXiv:1507.05028] [INSPIRE].
W. Chao, ATLAS Diboson Excesses from the Stealth Doublet Model, arXiv:1507.05310 [INSPIRE].
C.-W. Chiang, H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Diboson Resonance as a Portal to Hidden Strong Dynamics, JHEP 11 (2015) 015 [arXiv:1507.02483] [INSPIRE].
G. Cacciapaglia, A. Deandrea and M. Hashimoto, Scalar Hint from the Diboson Excess?, Phys. Rev. Lett. 115 (2015) 171802 [arXiv:1507.03098] [INSPIRE].
V. Sanz, On the compatibility of the diboson excess with a gg-initiated composite sector, arXiv:1507.03553 [INSPIRE].
H.M. Lee, D. Kim, K. Kong and S.C. Park, Diboson Excesses Demystified in Effective Field Theory Approach, JHEP 11 (2015) 150 [arXiv:1507.06312] [INSPIRE].
T. Plehn, Lectures on LHC Physics, Lect. Notes Phys. 844 (2012) 1 [arXiv:0910.4182] [INSPIRE].
B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].
M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].
L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].
K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
A.L. Fitzpatrick, J. Kaplan, L. Randall and L.-T. Wang, Searching for the Kaluza-Klein Graviton in Bulk RS Models, JHEP 09 (2007) 013 [hep-ph/0701150] [INSPIRE].
K. Agashe, H. Davoudiasl, G. Perez and A. Soni, Warped Gravitons at the LHC and Beyond, Phys. Rev. D 76 (2007) 036006 [hep-ph/0701186] [INSPIRE].
H.M. Lee, M. Park and V. Sanz, Gravity-mediated (or Composite) Dark Matter, Eur. Phys. J. C 74 (2014) 2715 [arXiv:1306.4107] [INSPIRE].
E. Dudas and G. von Gersdorff, Universal contributions to scalar masses from five dimensional supergravity, JHEP 10 (2012) 100 [arXiv:1207.0815] [INSPIRE].
T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].
S. Fichet and G. von Gersdorff, Anomalous gauge couplings from composite Higgs and warped extra dimensions, JHEP 03 (2014) 102 [arXiv:1311.6815] [INSPIRE].
W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].
J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-Wall Stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].
A.D. Medina and E. Ponton, Warped Universal Extra Dimensions, JHEP 06 (2011) 009 [arXiv:1012.5298] [INSPIRE].
J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing Electroweak Precision Observables in 5D Warped Models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].
C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].
D. Gonçalves, F. Krauss and M. Spannowsky, Augmenting the diboson excess for the LHC Run II, Phys. Rev. D 92 (2015) 053010 [arXiv:1508.04162] [INSPIRE].
ATLAS collaboration, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults.
S. Fichet, A. Tonero et al., Sharpening the statistical tools for new physics searches, work in progress.
K. Kawamura, The structure of multivariate poisson distribution, Kodai Math. J. 2 (1979) 337.
S.A. Li, C.S. Li, H.T. Li and J. Gao, Constraints on Randall-Sundrum model from the events of dijet production with QCD next-to-leading order accuracy at the LHC, Phys. Rev. D 91 (2015) 014027 [arXiv:1408.2762] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0: A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].
M. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].
B. Batell, T. Gherghetta and D. Sword, The Soft-Wall Standard Model, Phys. Rev. D 78 (2008) 116011 [arXiv:0808.3977] [INSPIRE].
A. Falkowski and M. Pérez-Victoria, Electroweak Breaking on a Soft Wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].
J.A. Cabrer, G. von Gersdorff and M. Quirós, Warped Electroweak Breaking Without Custodial Symmetry, Phys. Lett. B 697 (2011) 208 [arXiv:1011.2205] [INSPIRE].
S. Fichet, G. von Gersdorff, B. Lenzi, C. Royon and M. Saimpert, Light-by-light scattering with intact protons at the LHC: from Standard Model to New Physics, JHEP 02 (2015) 165 [arXiv:1411.6629] [INSPIRE].
T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1508.04814
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Fichet, S., von Gersdorff, G. Effective theory for neutral resonances and a statistical dissection of the ATLAS diboson excess. J. High Energ. Phys. 2015, 1–33 (2015). https://doi.org/10.1007/JHEP12(2015)089
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/JHEP12(2015)089