Property |
Value |
dbo:abstract
|
- チェビシェフの不等式(チェビシェフのふとうしき、英: Chebyshev's inequality)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフによって初めて証明された。 標本または確率分布は、平均の周りに、ある標準偏差をもって分布する。この分布と標準偏差との間の、どのような標本・確率分布でも成り立つ関係を示したのが、チェビシェフの不等式である。例えば、平均から標準偏差の 2 倍以上離れた値は、全体の 1/4 以下である。一般に、標準偏差の n 倍以上離れた値は全体の 1/n2 以下である。 (ja)
- チェビシェフの不等式(チェビシェフのふとうしき、英: Chebyshev's inequality)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフによって初めて証明された。 標本または確率分布は、平均の周りに、ある標準偏差をもって分布する。この分布と標準偏差との間の、どのような標本・確率分布でも成り立つ関係を示したのが、チェビシェフの不等式である。例えば、平均から標準偏差の 2 倍以上離れた値は、全体の 1/4 以下である。一般に、標準偏差の n 倍以上離れた値は全体の 1/n2 以下である。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4734 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- チェビシェフの不等式(チェビシェフのふとうしき、英: Chebyshev's inequality)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフによって初めて証明された。 標本または確率分布は、平均の周りに、ある標準偏差をもって分布する。この分布と標準偏差との間の、どのような標本・確率分布でも成り立つ関係を示したのが、チェビシェフの不等式である。例えば、平均から標準偏差の 2 倍以上離れた値は、全体の 1/4 以下である。一般に、標準偏差の n 倍以上離れた値は全体の 1/n2 以下である。 (ja)
- チェビシェフの不等式(チェビシェフのふとうしき、英: Chebyshev's inequality)は、不等式で表される、確率論の基本的な定理である。パフヌティ・チェビシェフによって初めて証明された。 標本または確率分布は、平均の周りに、ある標準偏差をもって分布する。この分布と標準偏差との間の、どのような標本・確率分布でも成り立つ関係を示したのが、チェビシェフの不等式である。例えば、平均から標準偏差の 2 倍以上離れた値は、全体の 1/4 以下である。一般に、標準偏差の n 倍以上離れた値は全体の 1/n2 以下である。 (ja)
|
rdfs:label
|
- チェビシェフの不等式 (ja)
- チェビシェフの不等式 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |