数学(解析学)の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 f(x, y, …) の変数 x に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。

Property Value
dbo:abstract
  • 数学(解析学)の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 f(x, y, …) の変数 x に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。 (ja)
  • 数学(解析学)の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 f(x, y, …) の変数 x に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。 (ja)
dbo:wikiPageID
  • 68747 (xsd:integer)
dbo:wikiPageLength
  • 7527 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90701785 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Partial derivative (ja)
  • Partial Derivatives (ja)
  • Partial derivative (ja)
  • Partial Derivatives (ja)
prop-en:urlname
  • Partial_derivative (ja)
  • PartialDerivative (ja)
  • Partial_derivative (ja)
  • PartialDerivative (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学(解析学)の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 f(x, y, …) の変数 x に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。 (ja)
  • 数学(解析学)の多変数微分積分学における偏微分(へんびぶん、partial derivative)は、多変数関数に対して一つの変数のみに関する(それ以外の変数は)微分である(全微分では全ての変数を動かしたままにするのと対照的である)。偏微分はベクトル解析や微分幾何学などで用いられる。 函数 f(x, y, …) の変数 x に関する偏微分は など様々な表し方がある。一般に函数の偏微分はもとの函数と同じ引数を持つ函数であり、このことを のように記法に明示的に含めてしまうこともある。偏微分記号 ∂ が数学において用いられた最初の例の一つは、1770年以降マルキ・ド・コンドルセによるものだが、それは偏差分の意味で用いられたものである。現代的な偏微分記法はアドリアン=マリ・ルジャンドル が導入しているが、後が続かなかった。これを1841年に再導入するのがカール・グスタフ・ヤコブ・ヤコビである。 偏微分は方向微分の特別の場合である。また無限次元の場合にこれらはガトー微分に一般化される。 (ja)
rdfs:label
  • 偏微分 (ja)
  • 偏微分 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of