初等幾何学または球面幾何学における球の大円(だいえん、英: great circle, orthodrome)は、球面と球の中心を通る平面との交線を言う。大円は、与えられた球面上に描くことのできるもっとも大きな円である。任意の大円の任意の直径はもとの球の直径に一致し、したがって任意の大円は互いに同じ中心と周長を持つ。大円はの特別の場合で、球面と中心を通らない平面との交線である「小円」と対照するものである。三次元ユークリッド空間内の任意の円は、ただ一つの球の大円となる。 極(および赤道)を導入し、大円上で最も極に近づく点を頂点、赤道と交わる点を交点と呼ぶ。 球面上の点からなるほとんどの対はその二点を通る大円が一意に決まる。例外はの対の場合で、対蹠点を通る大円は無限個存在する。二点を結ぶ大円の劣弧は、球面上でそれらを結ぶ最短経路となる。その意味で、この劣弧はユークリッド幾何学における直線の類似対応物である。リーマン幾何学において、大円の劣弧の長さを球面上の二点間の「距離」とするとき、それらを込めた意味での大円はと呼ばれる。これら大円は球面の測地線である。 より高次元の場合にも、ユークリッド空間 Rn+1 の原点を中心とするn-次元球面上の大円は、n-次元球面と原点を通る二次元平面との交叉として定義される。

Property Value
dbo:abstract
  • 初等幾何学または球面幾何学における球の大円(だいえん、英: great circle, orthodrome)は、球面と球の中心を通る平面との交線を言う。大円は、与えられた球面上に描くことのできるもっとも大きな円である。任意の大円の任意の直径はもとの球の直径に一致し、したがって任意の大円は互いに同じ中心と周長を持つ。大円はの特別の場合で、球面と中心を通らない平面との交線である「小円」と対照するものである。三次元ユークリッド空間内の任意の円は、ただ一つの球の大円となる。 極(および赤道)を導入し、大円上で最も極に近づく点を頂点、赤道と交わる点を交点と呼ぶ。 球面上の点からなるほとんどの対はその二点を通る大円が一意に決まる。例外はの対の場合で、対蹠点を通る大円は無限個存在する。二点を結ぶ大円の劣弧は、球面上でそれらを結ぶ最短経路となる。その意味で、この劣弧はユークリッド幾何学における直線の類似対応物である。リーマン幾何学において、大円の劣弧の長さを球面上の二点間の「距離」とするとき、それらを込めた意味での大円はと呼ばれる。これら大円は球面の測地線である。 より高次元の場合にも、ユークリッド空間 Rn+1 の原点を中心とするn-次元球面上の大円は、n-次元球面と原点を通る二次元平面との交叉として定義される。 (ja)
  • 初等幾何学または球面幾何学における球の大円(だいえん、英: great circle, orthodrome)は、球面と球の中心を通る平面との交線を言う。大円は、与えられた球面上に描くことのできるもっとも大きな円である。任意の大円の任意の直径はもとの球の直径に一致し、したがって任意の大円は互いに同じ中心と周長を持つ。大円はの特別の場合で、球面と中心を通らない平面との交線である「小円」と対照するものである。三次元ユークリッド空間内の任意の円は、ただ一つの球の大円となる。 極(および赤道)を導入し、大円上で最も極に近づく点を頂点、赤道と交わる点を交点と呼ぶ。 球面上の点からなるほとんどの対はその二点を通る大円が一意に決まる。例外はの対の場合で、対蹠点を通る大円は無限個存在する。二点を結ぶ大円の劣弧は、球面上でそれらを結ぶ最短経路となる。その意味で、この劣弧はユークリッド幾何学における直線の類似対応物である。リーマン幾何学において、大円の劣弧の長さを球面上の二点間の「距離」とするとき、それらを込めた意味での大円はと呼ばれる。これら大円は球面の測地線である。 より高次元の場合にも、ユークリッド空間 Rn+1 の原点を中心とするn-次元球面上の大円は、n-次元球面と原点を通る二次元平面との交叉として定義される。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 237037 (xsd:integer)
dbo:wikiPageLength
  • 3920 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 84815686 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:title
  • Great Circle (ja)
  • great circle (ja)
  • Great Circle (ja)
  • great circle (ja)
prop-en:urlname
  • GreatCircle (ja)
  • GreatCircle (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 初等幾何学または球面幾何学における球の大円(だいえん、英: great circle, orthodrome)は、球面と球の中心を通る平面との交線を言う。大円は、与えられた球面上に描くことのできるもっとも大きな円である。任意の大円の任意の直径はもとの球の直径に一致し、したがって任意の大円は互いに同じ中心と周長を持つ。大円はの特別の場合で、球面と中心を通らない平面との交線である「小円」と対照するものである。三次元ユークリッド空間内の任意の円は、ただ一つの球の大円となる。 極(および赤道)を導入し、大円上で最も極に近づく点を頂点、赤道と交わる点を交点と呼ぶ。 球面上の点からなるほとんどの対はその二点を通る大円が一意に決まる。例外はの対の場合で、対蹠点を通る大円は無限個存在する。二点を結ぶ大円の劣弧は、球面上でそれらを結ぶ最短経路となる。その意味で、この劣弧はユークリッド幾何学における直線の類似対応物である。リーマン幾何学において、大円の劣弧の長さを球面上の二点間の「距離」とするとき、それらを込めた意味での大円はと呼ばれる。これら大円は球面の測地線である。 より高次元の場合にも、ユークリッド空間 Rn+1 の原点を中心とするn-次元球面上の大円は、n-次元球面と原点を通る二次元平面との交叉として定義される。 (ja)
  • 初等幾何学または球面幾何学における球の大円(だいえん、英: great circle, orthodrome)は、球面と球の中心を通る平面との交線を言う。大円は、与えられた球面上に描くことのできるもっとも大きな円である。任意の大円の任意の直径はもとの球の直径に一致し、したがって任意の大円は互いに同じ中心と周長を持つ。大円はの特別の場合で、球面と中心を通らない平面との交線である「小円」と対照するものである。三次元ユークリッド空間内の任意の円は、ただ一つの球の大円となる。 極(および赤道)を導入し、大円上で最も極に近づく点を頂点、赤道と交わる点を交点と呼ぶ。 球面上の点からなるほとんどの対はその二点を通る大円が一意に決まる。例外はの対の場合で、対蹠点を通る大円は無限個存在する。二点を結ぶ大円の劣弧は、球面上でそれらを結ぶ最短経路となる。その意味で、この劣弧はユークリッド幾何学における直線の類似対応物である。リーマン幾何学において、大円の劣弧の長さを球面上の二点間の「距離」とするとき、それらを込めた意味での大円はと呼ばれる。これら大円は球面の測地線である。 より高次元の場合にも、ユークリッド空間 Rn+1 の原点を中心とするn-次元球面上の大円は、n-次元球面と原点を通る二次元平面との交叉として定義される。 (ja)
rdfs:label
  • 大円 (ja)
  • 大円 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of