進化的計算における差分進化(さぶんしんか、英: Differential evolution、略称: DE)とは、与えられた評価尺度に関するを反復的に改良していき、問題を最適化する手法である。このような手法は、最適化の対象となる問題に関する仮定を一切置かないか、あるいはわずかしか置かないメタヒューリスティクスであり、広範な解の候補の空間を探索できる。ただし、DEのようなメタヒューリスティクスは真の最適解を見つけられる保証はない。DEは多次元空間での実数値関数に対して用いることができるが、最適化対象である関数(目的関数)の勾配は使用しない。つまり、最急降下法や準ニュートン法のような古典的な最適化手法が要求する次の条件 「最適化問題が微分可能」 をDEは必要としない。それゆえ、DEは関数が連続でない場合やノイズの多い場合、時間変化する場合の最適化問題に対しても用いることができる。DEは単純な式に従って候補解集団を更新し、最適化問題に対して最良のスコアまたは最良の当てはまりを示した候補解を保持しておく。これにより、最適化すべき目的関数は解の候補に評価尺度を与える単なるブラックボックスと見なせて、その勾配の値を必要としない。DEは元々はStomおよびPriceの着想である。並列計算、、の分野に於いて、DEの使用に関する理論的見地、実用的見地および応用領域からの調査に基づく書籍が出版されている。DEの多面的研究は論文に投稿されている。

Property Value
dbo:abstract
  • 進化的計算における差分進化(さぶんしんか、英: Differential evolution、略称: DE)とは、与えられた評価尺度に関するを反復的に改良していき、問題を最適化する手法である。このような手法は、最適化の対象となる問題に関する仮定を一切置かないか、あるいはわずかしか置かないメタヒューリスティクスであり、広範な解の候補の空間を探索できる。ただし、DEのようなメタヒューリスティクスは真の最適解を見つけられる保証はない。DEは多次元空間での実数値関数に対して用いることができるが、最適化対象である関数(目的関数)の勾配は使用しない。つまり、最急降下法や準ニュートン法のような古典的な最適化手法が要求する次の条件 「最適化問題が微分可能」 をDEは必要としない。それゆえ、DEは関数が連続でない場合やノイズの多い場合、時間変化する場合の最適化問題に対しても用いることができる。DEは単純な式に従って候補解集団を更新し、最適化問題に対して最良のスコアまたは最良の当てはまりを示した候補解を保持しておく。これにより、最適化すべき目的関数は解の候補に評価尺度を与える単なるブラックボックスと見なせて、その勾配の値を必要としない。DEは元々はStomおよびPriceの着想である。並列計算、、の分野に於いて、DEの使用に関する理論的見地、実用的見地および応用領域からの調査に基づく書籍が出版されている。DEの多面的研究は論文に投稿されている。 (ja)
  • 進化的計算における差分進化(さぶんしんか、英: Differential evolution、略称: DE)とは、与えられた評価尺度に関するを反復的に改良していき、問題を最適化する手法である。このような手法は、最適化の対象となる問題に関する仮定を一切置かないか、あるいはわずかしか置かないメタヒューリスティクスであり、広範な解の候補の空間を探索できる。ただし、DEのようなメタヒューリスティクスは真の最適解を見つけられる保証はない。DEは多次元空間での実数値関数に対して用いることができるが、最適化対象である関数(目的関数)の勾配は使用しない。つまり、最急降下法や準ニュートン法のような古典的な最適化手法が要求する次の条件 「最適化問題が微分可能」 をDEは必要としない。それゆえ、DEは関数が連続でない場合やノイズの多い場合、時間変化する場合の最適化問題に対しても用いることができる。DEは単純な式に従って候補解集団を更新し、最適化問題に対して最良のスコアまたは最良の当てはまりを示した候補解を保持しておく。これにより、最適化すべき目的関数は解の候補に評価尺度を与える単なるブラックボックスと見なせて、その勾配の値を必要としない。DEは元々はStomおよびPriceの着想である。並列計算、、の分野に於いて、DEの使用に関する理論的見地、実用的見地および応用領域からの調査に基づく書籍が出版されている。DEの多面的研究は論文に投稿されている。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3593474 (xsd:integer)
dbo:wikiPageLength
  • 12737 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 84068138 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 進化的計算における差分進化(さぶんしんか、英: Differential evolution、略称: DE)とは、与えられた評価尺度に関するを反復的に改良していき、問題を最適化する手法である。このような手法は、最適化の対象となる問題に関する仮定を一切置かないか、あるいはわずかしか置かないメタヒューリスティクスであり、広範な解の候補の空間を探索できる。ただし、DEのようなメタヒューリスティクスは真の最適解を見つけられる保証はない。DEは多次元空間での実数値関数に対して用いることができるが、最適化対象である関数(目的関数)の勾配は使用しない。つまり、最急降下法や準ニュートン法のような古典的な最適化手法が要求する次の条件 「最適化問題が微分可能」 をDEは必要としない。それゆえ、DEは関数が連続でない場合やノイズの多い場合、時間変化する場合の最適化問題に対しても用いることができる。DEは単純な式に従って候補解集団を更新し、最適化問題に対して最良のスコアまたは最良の当てはまりを示した候補解を保持しておく。これにより、最適化すべき目的関数は解の候補に評価尺度を与える単なるブラックボックスと見なせて、その勾配の値を必要としない。DEは元々はStomおよびPriceの着想である。並列計算、、の分野に於いて、DEの使用に関する理論的見地、実用的見地および応用領域からの調査に基づく書籍が出版されている。DEの多面的研究は論文に投稿されている。 (ja)
  • 進化的計算における差分進化(さぶんしんか、英: Differential evolution、略称: DE)とは、与えられた評価尺度に関するを反復的に改良していき、問題を最適化する手法である。このような手法は、最適化の対象となる問題に関する仮定を一切置かないか、あるいはわずかしか置かないメタヒューリスティクスであり、広範な解の候補の空間を探索できる。ただし、DEのようなメタヒューリスティクスは真の最適解を見つけられる保証はない。DEは多次元空間での実数値関数に対して用いることができるが、最適化対象である関数(目的関数)の勾配は使用しない。つまり、最急降下法や準ニュートン法のような古典的な最適化手法が要求する次の条件 「最適化問題が微分可能」 をDEは必要としない。それゆえ、DEは関数が連続でない場合やノイズの多い場合、時間変化する場合の最適化問題に対しても用いることができる。DEは単純な式に従って候補解集団を更新し、最適化問題に対して最良のスコアまたは最良の当てはまりを示した候補解を保持しておく。これにより、最適化すべき目的関数は解の候補に評価尺度を与える単なるブラックボックスと見なせて、その勾配の値を必要としない。DEは元々はStomおよびPriceの着想である。並列計算、、の分野に於いて、DEの使用に関する理論的見地、実用的見地および応用領域からの調査に基づく書籍が出版されている。DEの多面的研究は論文に投稿されている。 (ja)
rdfs:label
  • 差分進化 (ja)
  • 差分進化 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of