数学における微分法(びぶんほう、英: differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。

Property Value
dbo:abstract
  • 数学における微分法(びぶんほう、英: differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 F = ma が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。 (ja)
  • 数学における微分法(びぶんほう、英: differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 微分は量を扱うほとんど全ての分野に応用を持つ。たとえば物理学において、動く物体の変位の時間に関する導函数はその物体の速度であり、速度の時間に関する導函数は加速度である。物体の運動量の導函数はその物体に及ぼされた力に等しい(この微分に関する言及を整理すればニュートンの第二法則に結び付けられる有名な方程式 F = ma が導かれる)。化学反応の反応速度も導函数である。オペレーションズ・リサーチにおいて導函数は物資転送や工場設計の最適な応報の決定に用いられる。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3305644 (xsd:integer)
dbo:wikiPageLength
  • 12576 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92532602 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学における微分法(びぶんほう、英: differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。 (ja)
  • 数学における微分法(びぶんほう、英: differential calculus; 微分学)は微分積分学の分科で、量の変化に注目して研究を行う。微分法は積分法と並び、微分積分学を二分する歴史的な分野である。 微分法における第一の研究対象は函数の微分(微分商、微分係数)、および無限小などの関連概念やその応用である。函数の選択された入力における微分商は入力値の近傍での函数の変化率を記述するものである。微分商を求める過程もまた、微分 (differentiation) と呼ばれる。幾何学的にはグラフ上の一点における微分係数は、それが存在してその点において定義されるならば、その点における函数のグラフの接線の傾きである。一変数の実数値函数に対しては、一点における函数の微分は一般にその点における函数の最適線型近似を定める。 微分法と積分法を繋ぐのが微分積分学の基本定理であり、これは積分が微分の逆を行う過程であることを述べるものである。 導函数は函数の最大値・最小値を求めるのに頻繁に用いられる。導函数を含む方程式は微分方程式と呼ばれ、自然現象の記述において基本的である。微分およびその一般化は数学の多くの分野に現れ、例えば複素解析、函数解析学、微分幾何学、測度論および抽象代数学などを挙げることができる。 (ja)
rdfs:label
  • 微分法 (ja)
  • 微分法 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of