Property |
Value |
dbo:abstract
|
- 質点(しつてん、英語: point mass)とは力学的概念で、位置が一意的に定まり質量を持つ運動の要素だが、それ以外の、体積・変形・角速度などの内部自由度を一切持たないものと定義される。 点粒子の一種である。モデルであるが、初等的な積分計算で証明できるように、球対称な質量分布を持つ固い物体は、その重心運動を扱う限りにおいては、全質量をその中心に集中させた質点として扱ったとしても、近似ではなく完全に一致する。従って、例えば、惑星の公転軌道(太陽周回軌道)を計算する場合などにおいては、惑星を質点と見なしても、体積を持った球として計算した場合と全く同様の正確さで計算できる。ただしこの例の場合は、そもそも多体問題に厳密解が無い。結局のところ、近似か否かは、真の質点が存在するか否かの問題ではなく、扱っている問題において、対象を質点として扱っても厳密に一致するかそうでないかの問題である。 多数の質点が存在する系を質点系という。この場合の質点の数は、2から、一般の n個まで、様々である。質点系を扱う際には、個々の質点に自然数の番号をつけて「〜番目の質点」のように区別するとともに、総和記号を用いて式の見通しをよくすることがよく行われる。 (ja)
- 質点(しつてん、英語: point mass)とは力学的概念で、位置が一意的に定まり質量を持つ運動の要素だが、それ以外の、体積・変形・角速度などの内部自由度を一切持たないものと定義される。 点粒子の一種である。モデルであるが、初等的な積分計算で証明できるように、球対称な質量分布を持つ固い物体は、その重心運動を扱う限りにおいては、全質量をその中心に集中させた質点として扱ったとしても、近似ではなく完全に一致する。従って、例えば、惑星の公転軌道(太陽周回軌道)を計算する場合などにおいては、惑星を質点と見なしても、体積を持った球として計算した場合と全く同様の正確さで計算できる。ただしこの例の場合は、そもそも多体問題に厳密解が無い。結局のところ、近似か否かは、真の質点が存在するか否かの問題ではなく、扱っている問題において、対象を質点として扱っても厳密に一致するかそうでないかの問題である。 多数の質点が存在する系を質点系という。この場合の質点の数は、2から、一般の n個まで、様々である。質点系を扱う際には、個々の質点に自然数の番号をつけて「〜番目の質点」のように区別するとともに、総和記号を用いて式の見通しをよくすることがよく行われる。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5531 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 質点(しつてん、英語: point mass)とは力学的概念で、位置が一意的に定まり質量を持つ運動の要素だが、それ以外の、体積・変形・角速度などの内部自由度を一切持たないものと定義される。 点粒子の一種である。モデルであるが、初等的な積分計算で証明できるように、球対称な質量分布を持つ固い物体は、その重心運動を扱う限りにおいては、全質量をその中心に集中させた質点として扱ったとしても、近似ではなく完全に一致する。従って、例えば、惑星の公転軌道(太陽周回軌道)を計算する場合などにおいては、惑星を質点と見なしても、体積を持った球として計算した場合と全く同様の正確さで計算できる。ただしこの例の場合は、そもそも多体問題に厳密解が無い。結局のところ、近似か否かは、真の質点が存在するか否かの問題ではなく、扱っている問題において、対象を質点として扱っても厳密に一致するかそうでないかの問題である。 多数の質点が存在する系を質点系という。この場合の質点の数は、2から、一般の n個まで、様々である。質点系を扱う際には、個々の質点に自然数の番号をつけて「〜番目の質点」のように区別するとともに、総和記号を用いて式の見通しをよくすることがよく行われる。 (ja)
- 質点(しつてん、英語: point mass)とは力学的概念で、位置が一意的に定まり質量を持つ運動の要素だが、それ以外の、体積・変形・角速度などの内部自由度を一切持たないものと定義される。 点粒子の一種である。モデルであるが、初等的な積分計算で証明できるように、球対称な質量分布を持つ固い物体は、その重心運動を扱う限りにおいては、全質量をその中心に集中させた質点として扱ったとしても、近似ではなく完全に一致する。従って、例えば、惑星の公転軌道(太陽周回軌道)を計算する場合などにおいては、惑星を質点と見なしても、体積を持った球として計算した場合と全く同様の正確さで計算できる。ただしこの例の場合は、そもそも多体問題に厳密解が無い。結局のところ、近似か否かは、真の質点が存在するか否かの問題ではなく、扱っている問題において、対象を質点として扱っても厳密に一致するかそうでないかの問題である。 多数の質点が存在する系を質点系という。この場合の質点の数は、2から、一般の n個まで、様々である。質点系を扱う際には、個々の質点に自然数の番号をつけて「〜番目の質点」のように区別するとともに、総和記号を用いて式の見通しをよくすることがよく行われる。 (ja)
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |