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Abstract
We demonstrate the application of a deep-learning -based regressor, on a case study of predicting
movie production year based on its plot summary. We show how the Integrated Gradients (IG) model
explanation method can be used to attribute the predictions to individual input features and compare
these to human-assigned attributions. Our purpose is to provide an insight into the application of modern
NLP methods in the scope of a digital humanities research question, and test the model explanation
techniques on a problem that is easy to understand, yet non-trivial for both humans and machine learning
algorithms alike.

We find that the model clearly outperforms non-expert human annotators, being able to date the
movies well within the correct decade on average. We also demonstrate that the model-assigned
attributions agree with those assigned by humans, especially for correct predictions.
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1. Introduction

Deep learning (DL) methods have become the norm in Natural Language Processing (NLP),
owing to their superior performance and versatility compared to the previous state of the art. A
popular DL model architecture is the Transformer [1], which has been used to construct the
Bidirectional Encoder Representations from Transformers (BERT) model [2], one of the most
well-known variant of deep neural network models used very broadly in NLP.

Applications of DL methods in the digital humanities fields call not only for the better
accuracy offered by these methods, but also for the ability to explain the predictions of these
complex methods to a human researcher, in an interdisciplinary setting. These explanations are
necessary to verify that the model bases its predictions on features meaningful in the context
of the task, but can also be used to support further exploration of the data at hand and to
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generate new hypotheses. Deep neural networks are commonly referred to as “black boxes”
whose decisions are opaque to the user, and simple methods would be preferred as they are
more directly interpretable.

In this paper, we demonstrate on a case study the application of the Integrated Gradients
(IG) [3] model explanation method to a text classifier based on a BERT model. Our purpose
is to provide an insight into the application of modern NLP methods in the scope of a digital
humanities research question, and test the model explanation techniques on a problem that is
easy to understand, yet non-trivial for both humans and machine learning algorithms alike.

Our domain of study is the Finnish National Filmography as preserved at the Finnish National
Audiovisual Institute (KAVI)1 and our data consists of the synopsis and other metadata for 1366
Finnish fiction films. This covers all fiction films of the National Filmography from the first film
Salaviinanpolttajat (The Moonshiners, 1907) to ca. 2019, the current state of the filmography by
June 2021. To gain a quantitative insight into the data, but equally importantly to demonstrate
and benchmark the ability to explain DL model predictions, we use a rather straightforward
proxy task: given the plot summary of the movie with years and peoples’ names masked, predict
the production year of the movie. The task itself is obviously not trivial as the model is forced
to learn the rather weak signals corresponding to the change of movie genres and typical plots
over a full century. This, in turn, allows us to quantify these changes based on the explanations
of the model predictions. Further, we are able to demonstrate the model explanation techniques
applicable to complex DL models.

This study has practical relevance in the context of the Movie Making Finland -project. The
dataset referred to above contains free-form textual data about the movies, but in contrast to
the movies itself, this data is usually produced later. (See Section 2.2 below.) This causes source
critical problems that may cause issues especially with machine learning tools: are the free-form
texts more representative of their own times than of the things they are describing? This study
will examine, if these textual data are actually able to deliver enough information about the
original object of description for a machine learning algorithm to be able to date the movies
even roughly.

In the following, we first describe the data and methods used, then introduce and analyze the
model predictions, and finally carry out a human performance comparison study, comparing
human- and model-assigned explanative features.

2. Data

2.1. Data source

The data is sourced from the Elonet database, including the Finnish National Filmography
database, managed by the National Audiovisual Institute KAVI [4]. The database offers XML
dumps of individual film metadata, and a simple crawler script was used to download these
from the database user interface.

In order to facilitate further use of the metadata, the XML datasets were converted to semantic
RDF data using an XSL template. This process was automated with a script. The data was

1https://elonet.finna.fi/
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Table 1
Freetext fields in Elonet data (as of June 2021)

Data Amount

Films 1366
Content Descriptions 1237
Synopses 1166
Commentaries 1237

converted to RDF and stored in a project triple store to ease analysing movie metadata and to
link analysis results to the movie information. The data is only described in parts relevant to
the current study.

The Elonet data contains three fields with free-form texts describing the movies: content
description, synopsis, and commentary. Since the Elonet database is a dynamic database, it
does not provide a complete set of data for all movies. (See below for further discussion of this.)
Table 1 shows a summary of the free-text data available.

There are as many content descriptions as commentaries, and somewhat fewer synopses,
but in each case, the actual amount of data would be quite enough for the study. The contents
of the fields differ considerably. The commentary places the movie into its wider context, it
relates the movie to the contemporary social and cultural situation, and to the other works of
the filmmakers; the synopsis, on the other hand, is a very short summary of the movie, one or
two paragraphs, and consequently, offers relatively short texts. The content description is the
most complete summary of the contents of the movie, describing the events and characters in
detail, as well as the plot and its development.

Content descriptions, synopses and commentaries have mainly been written by the re-
searchers of the National Audiovisual Institute. All Finnish fiction films before 1920, 27 films
in total, have been lost. In these cases the content description derives from the time of the
production: the text is either from the handout of the movie or from a description given to the
censorship authorities. In all other cases the descriptions have been written by the researchers
of KAVI. This field was chosen as the source for the experiments in this study, and the contents
of this field are referred to as ”plot summary” in this paper. The actual dataset was obtained from
the triple store with a simple SPARQL query. The data contained the movie id, the production
year of the movie, and the contents of the content description field.

2.2. Assessment of the data quality

Usually movies are referred to using the year when they had their premiere, which is not
necessarily the same as the year they were produced in. There are ten movies, where the
production year in the database is different than the year of the premiere, and in all of these
cases, the difference is one year.

For the plot summary data, the main question in relation to the aims of this study is, whether
the analysis will pick stylistic features related to the time of the production of the text, or features
of the actual plot summarized in the text. Is the movie recognized as old as the summary? The
age of the description is not directly related to the movie in question. The writing of these

52



content descriptions started when the Finnish National Filmography project was launched in the
1990s [5, p. 140]. The Filmography appeared in book form between 1996 and 2005 [6]. Therefore,
most plot summaries should stylistically conform to what was considered a proper form of
describing the films in the late 20th century; the data does not allow an accurate dating of
individual descriptions, but in light of this information, it should be apparent, that any stylistic
differences between plot summaries should, in fact, be results of how the proper description
was produced in relation to the content of the movie, if any such stylistic differences can be
found. The exception to this are the early, lost films (see above), for which there is way to create
modern descriptions, and for which the content description relies on a contemporary text that
has been deemed suitable for this purpose. If the analysis is based on stylistic matters, these
films should stand out.

In addition to this, there is also the question of historical films as a genre. A considerable
proportion of the film production concentrated on stories that described an era different from
the time of the production. Finnish cinema has for example portrayed events of the 19th century
or early 20th century. Thus, the content of the description includes features that refer to a
completely different era than the time of the production. This brings forward the question if it
still is possible to identify the year of the production.

What is the effect of the missing plot summaries? In Table 1 we see, that there are 129
movies without descriptions in the database. This missing data is the result of the backlog in
documenting films. The film data is entered to the database as soon as possible, and completed
as time and resources at the National Audiovisual Institute allow. This is evident when the
missing data is analysed further: all missing descriptions are for films produced in 2013 or later;
every film produced before that has a content description, i.e., a plot summary.

3. Methods

Next, we introduce (a) the model we use to date the movies based on their plot summaries,
and (b) the model explanation method we use to calculate the attributions of individual input
features w.r.t. the prediction.

3.1. Text-to-year regression

We implement the regression of movie plot summaries to production year using the FinBERT [7]
model. FinBERT is a monolingual pre-trained Finnish BERT model which has achieved many
state-of-the-art results in Finnish NLP. It represents a class of modern NLP models based on deep
neural networks and pre-trained on billions of tokens of raw language data. This pre-training
step is one of the primary advantages of this class of models: unsupervised pre-training on a
large quantity of text results in a model able to accurately encode input text. In the task-specific
fine-tuning step, i.e. training the model for a particular task, this ability is transferred. In general,
a BERT-based model would represent the default model choice in present-day NLP and can be
reasonably expected to produce highly competitive results.

The model is illustrated in Figure 1. The output contextualized sub-word embedding vectors
provided by the FinBERT model are averaged (mean pooling), and the regression is carried out
by a straightforward linear projection layer from this embedding average. This follows the
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Figure 1: The BERT-based regression model used in this work. [CLS] and [SEP] are special marker
tokens added to the input of the BERT model.

typical approach to applying the BERT model in different tasks: only a thin task-specific layer is
applied on top of the BERT model. We experimented with several other alternatives, but these
lead to worse accuracy on our development data, and we will not discuss these further in this
paper. All weights of the model (including all BERT layers) are optimized during training. Based
on initial experiments, the target of regression was not set directly to be the production year 𝑦,
but rather its linear transformation 𝑦 ′ = 𝑦−1970

10 , which centers the data around its approximate
mean of 1970 and squeezes its range, similar to z-transformation. Interestingly, and perhaps
somewhat surprisingly, without initially centering and squeezing the data with this simple
transformation, training the model was challenging and the performance of the model was poor.
This was likely because the outputs of the randomly initialized linear regression layer were
initially far from the target values and required a large number of training steps to reach the
correct output range, while at the meantime the gradients passed to the BERT model caused its
sub-optimal final performance. We have also tested the natural idea of first only optimizing the
regression layer, and only after it reached the desired range continuing with optimizing the
whole model. That approach mitigated most of the issues, but nevertheless resulted in clearly
worse overall performance, and was not pursued further.

3.2. Feature attributions

There are numerous methods for establishing feature attributions, i.e. the assignment of impor-
tance to input features with respect to the prediction made by the model. In this work, we apply
Integrated Gradients (IG) [3], as a popular, representative example of such methods, specifically
targeting differentiable models such as deep neural networks. In short, the IG method defines
the attribution of a feature as the integral of the gradient of the model output w.r.t. the given
feature along the path from a “blank” reference input to the actual input. In practice, it is
implemented by interpolating the model input between the reference input and the actual input
in 𝑁 steps (here we set 𝑁 = 50) thus evaluating the model 𝑁 times. In image processing, the
reference input would be e.g. an empty image. In this work, we use the sequence [CLS] [PAD]

54



[PAD] ... [PAD] [SEP] to represent a “blank” input of a BERT-based classification model:
[CLS] and [SEP] are the special separation tokens in BERT input, and [PAD] is the padding
token. This reference sequence has same length as the actual input and the interpolation is
carried out on the input token embedding vectors. To get an attribution value for each input
token, we simply sum up the attributions across the 768 dimensions of each input embedding. A
positive attribution value signals contribution towards the prediction made by the model, while
a negative attribution value signals contribution against the prediction made by the model.

Finally, the BERT model uses sub-word tokenization, which splits rare words into sub-words,
so as to maintain a fixed-length vocabulary (see illustration in Figure 1). An input of 𝑁 words
(in the usual sense) is therefore presented to the model as a sequence of 𝑀 sub-words, where
typically𝑀 > 𝑁. In order to obtain word-level attributions, understandable to the human reader,
we set the attribution of a word to be the attribution of that of its sub-words which has the
highest absolute value. Thus, for instance, if an input word is divided into three sub-words with
attributions of [−0.4, 0.1, 0.21], the overall attribution of the word will be −0.4.

3.3. Data pre-processing

Other than sub-word tokenization, the BERT model does not require any particular input
pre-processing. A somewhat unfortunate property of the BERT model is its maximum input
length of 512 sub-words for any given input sequence. In this work, we trim the plot summaries
to fit the maximum sequence length of the model. On average, this preserves 79% of the content
description length and we therefore did not see any need for a more complicated solution.

So as to avoid accidentally revealing features in the inputs in the form of production years
and/or character names for both machine-learning and human experiments, we replace all digits
in the data with the numeral 0 and all people names with the BERT special token [MASK]. The
names are recognized using the TurkuNLP Finnish NER system [8], a state-of-the-art system
for Finnish named entity recognition (NER).

3.4. Baselines

When reporting the results, we consider several baselines. As trivial baselines, we use the
constant prediction baseline that predicts the mean production year in the data for every item
and the random baseline that predicts a random year from the year range in the data.

We also test the linear support vector regressor (SVR) as a representative of linear methods
often applied in text classification tasks for their simplicity, light computational demands, and
straightforward explainability through the linear feature coefficients learned by the model.

3.5. Experimental setup and parameters

Throughout the evaluation, we use a single randomized split to 80% (990 examples) training data,
10% (123 examples) development data, and 10% (124 examples) test data. All parameter selection
is carried out on the development data. The human baseline experiment described below is
carried out on the first 20 movies in the test data. The optimized loss is mean square error of the
regressed value. The final parameter settings were: batch size 30, gradient accumulation over 3
batches, learning rate 5e-5, maximum number of training steps of 1500, warm-up of 150 steps,
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and early-stopping with patience of 3 and evaluation every 30 steps. For the best-parameters
model, early-stopping triggered after 540 training steps, corresponding to nearly 50 epochs of
training. All other parameters were in their default value as set in the torch-backend of the
Hugging Face transformers library version 4.15.0 [9]. The experiments were carried out using
GPU-accelerators in the CSC super-computer centre accessible to all of Finnish academia. A
single training run took approximately 30 minutes and attribution calculation 1.2 seconds per
example, all on a high-end GPU accelerator (AMD MI100). FinBERT is of the base BERT variant,
with 12 Transformer layers and embedding width of 768 dimensions.

The linear SVR baseline parameters are grid-searched on the development data. The best
combination is C value of 10, TF-IDF weighted 2–5-character n-gram tokenization representing
word boundaries, and 300,000 unique features. The baseline is implemented using the scikit-learn
library version 1.0.2 [10].

We use two primary metrics to evaluate the model performance: The mean absolute error
(MAE) indicates how many years the prediction was mistaken on average regardless of the
direction of the misprediction, and is calculated as the mean of the absolute values of the
prediction errors. The mean error (ME) then captures possible biases in predictions, negative
values indicating biases towards assigning older years while positive values indicate biases
towards recent years.

4. Results

4.1. Model performance

The predictions of the BERT model on the blind test set are shown in Figure 2. The mean error
(ME) is 0.012 years, which can be interpreted as there not being an overall bias towards over-
or under-estimating the age of the movie. The mean absolute error (MAE) is 7.43 years, or in
other words the model can place the movie well within the correct decade, based on its plot.

Figure 2 shows that both the data and the errors are evenly distributed without any particular
clear biases, except for the expectable fact that errors in predictions for very old movies are
positive, and errors in predictions for very new movies are negative. That is merely a conse-
quence of the fact that the model has learned the overall range in the data, and naturally does
not predict outside this range. For comparison, the mean absolute error of the trivial baseline
which predicts a constant value equal to the mean of the test set is 25.2 years and the linear
SVR achieves MAE of 10.24. Even though the BERT model reduces the linear model’s error by a
full 27%, the result of the linear baseline is nevertheless very good and very clearly above the
mean baseline.

In our test set of 124 films, there are 35 films with a deviation of 10 years or more. In 21 cases
the model predicted the film to be older than it actually is, while in 14 cases the predicted year
was not old enough. It seems that the model had particular difficulties in judging the production
year for the films from the 1920s. There were seven silents from 1922–1929 which were estimated
to be from 1934–1955. Most of these films were rural melodramas and represented the kind
of production trend that was also typical of the 1930s, 1940s and 1950s in Finland. This might
be a background for the misinterpretation since the content descriptions of these films did not
include such features that could be regarded characteristic of the 1920s only. In six of these
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Figure 2: Prediction errors of the model, plotted against the actual year of each movie in the test set.

films, the gap is between 12.68–21.54. The seventh film Polyteekkarifilmi (1924) is a special case,
with the widest gap in the whole test set, 31.78 years. The film itself was exceptional in its time,
an amateur film, with many advertisements and other commercial inserts. The story was set
both in the 1920s Helsinki and on the Olympus Mountain, from where ancient gods decide to
depart for Finland.

In 21 films the gap is ten year or more backwards in time. This group is more heterogeneous,
comprising films from nine different decades. Ten of these films are however from the 1990s
and 2000s, and in all these cases the model has predicted the film to be considerably older. There
is no one reason behind this, but it seems that in this group there are many historical films,
where the story has been set into the past, for example Lapin kullan kimallus (1999) which takes
place in the late 19th century. Obviously, in the content descriptions of historical films the text
includes elements that differ from the discourse of the production year.

4.2. Comparison to human performance

In order to better interpret the model performance in context of the task, we compare the
regression model to an average human performance. To this end, we randomly sample 20 movies
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Table 2
Mean Error (ME) and Mean Absolute
Error (MAE) evaluated on the 20
movies randomly sampled from the
test set.

ME MAE
Regression -0.2 8.4
Baseline (constant) 0.0 26.8
Baseline (random) -21.5 37.3
Baseline (linear) -0.1 10.2
Annotator 1 1.9 23.6
Annotator 2 11.4 14.8
Annotator 3 3.0 16.0
Annotator 4 11.8 27.0

Figure 3
The correct production year, the year predicted by the
regression model, as well as the human made annotations
visualized for each 20 movies in the random sample.

from the test set, and ask four human annotators independently to estimate the production year
for each movie from the given plot summary. We choose non-expert annotators rather than
movie historians to avoid correct judgments based on deep knowledge of the Finnish movie
history. Similarly to the regression model input, all numbers and person names appearing in
the text are masked in order to avoid basing the estimate on the reported years and recognizable
names in case such happen to appear in the text. In addition to the production year, the
annotators are asked to select five words from each plot description that in their opinion
contributed most to their final decision, and thus serving as keywords for explaining the human
annotations.

The evaluation of the human performance compared to the regression model as well as the
baselines (mean, random, and linear) is shown in Table 2 in terms of mean error (ME) and mean
absolute error (MAE). The results show all annotators having at least a slight bias towards
recent years, while the model is able to predict the correct distribution more precisely. In terms
of mean absolute error, the regression model is clearly better than any of the human annotators,
the model on average having a mistake of approx. 8 years while the human annotators have
average mistakes between 15–27 years.

In Figure 3 we plot the correct production year, the production year predicted by the regression
model, and the four human annotations for all 20 movies in the manual sample. While some
of the movies receive both the prediction and all annotations close to the correct production
year (especially movies numbered 1, 5, 11, and 15), for most of the movies the human estimated
production years vary greatly, not showing a clear consensus towards any decade. Especially
interesting are movies numbered 3 and 18, where the human estimation varied between 1925
and 2007 (correct production year being 2005) and between 1960 and 2011 (correct production
year being 1927) respectively.

When considering these results, it is important to note that both the regression model and
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the human annotation have an advantage over the other. While the regression model was
exposed to the 990 movie plot summaries from the training data and is therefore able to learn the
distribution and common characteristics from these, the human annotators have not studied the
training data. However, the annotators naturally possess world knowledge and they may also
recall the test movies from other context and thus recognize the movie based on its description.
The four annotators were able to recognize 1, 5, 3, and 0 movies respectively based on the
plot summary, however, the production year was estimated correctly only once among these
recognized movies and the largest error marginal among these was as much as +22 years.
However, in most of these cases the recognition likely helped to place the movie near the correct
decade, and without these examples the human performance would have been even worse.

4.3. Keyword analysis

One of the key questions we ask in this paper is to what extent the predictions of the deep
neural network -based model can be explained in terms of attributions to features in the input
text. To this end, we next compare the keywords obtained from the regression model using the
IG method to those manually selected by the annotators. While the annotators were instructed
to select five keywords for each movie, the IG method produces a list of input words weighted
by their estimated relevance, and therefore we are able to select any number of keywords for
the model. Here, we select the top 10 keywords for each movie, skipping tokens composed of
pure punctuation characters.

In Table 3 we visualized the keywords for the four movies from the manually annotated
sample that had the smallest absolute prediction error of the regression model. All keywords
selected from the same movie by at least two different annotators or an annotator and the
regression model are highlighted with green, showing a substantial overlap in the extracted
keywords. In the two first rows in the table (movies numbered 3 and 4) the overlap of model and
human extracted keywords is quite low, likely due to most of the human predicted production
years being quite underestimated predicting productions years much older than the actual year,
therefore decreasing the quality of the selected keywords as well. However, in the two last rows
(movies numbered 15 and 1) human estimates are closer to the actual production years, and
there is a substantial overlap between the model and human extracted keywords.

When numerically comparing over the manually annotated sample of 20 movies, considering
top-10 keywords as estimated by the regression model, 75% of the movies have at least one
keyword in common with those extracted by the annotators, and when increasing to top-20
keywords at least one overlapping keyword is found from 85% of the movies.

Overall, both the regression model as well as the annotators are capturing topical concepts
easily pointable to specific time. Such concepts include terms relating to technical development
(cell phone, microcar), currency (euro, Finnish markka), or old-fashioned titles and professions
not as widely used in the modern society (health-sister (literal translation of an old Finnish
term for a nurse), lensmann).

Finally, as a “sanity check” experiment, we modified the dataset so as to include the sentence
“The movie was filmed in NNNN.” at a randomly selected position in the plot summary (candidate
positions are on sentence boundaries so as to preserve elementary text flow). Here NNNN is
the correct year of production for each movie, revealing the correct output to the regressor. As
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Table 3
The keywords extracted from the regression model as well as selected by the annotators for the four
movies from the manually annotated sample that had the smallest absolute prediction error of the
regression model. All keywords appearing at least twice in the same movie are highlighted with green,
and all keywords are translated into English.

expected, this results in near-perfect predictions and the token with the year is flagged as the
single top-most important feature in 60% of all predictions.

5. Conclusions and future work

In this work, we set out to demonstrate the applicability and explainability of amodern, DL-based
NLP approach to text-to-value regression on a case study in the digital humanities domain.

Firstly, we find that a modern BERT-based regressor is capable of highly accurate predictions
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that are substantially more accurate than (non-expert) humans. More importantly for the digital
humanities domain, though, the model predictions can be successfully traced to individual
input text tokens so as to give insight into the predictions. Further, we show that the individual
tokens attributing to the model’s predictions agree with manually selected keywords, especially
for predictions where both humans and the model are close to correct.

Secondly, we gained interesting insights on the task itself, gaining understanding on the
expected predictability of movie plots in time, finding out that, even with names and numbers
masked, a surprisingly accurate prediction can be made on average, better than we intuitively
expected prior to the study. Further, we could observe that the model based its predictions on
the topical concepts in the descriptions, as would be intuitively expected.

In future work, a broader analysis will be carried out using predictions on all available data
and we will attempt to aggregate the keyword explanations in time and compare it to topic-in-
timeline types of models. Further, we will explore other model explanation methods in addition
to the Integrated Gradients.

Both code and data are available at https://github.com/MoMaF/momaf_regressor.
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