Computer Science > Machine Learning
[Submitted on 23 Jan 2025 (v1), last revised 18 Feb 2025 (this version, v3)]
Title:Towards Robust Incremental Learning under Ambiguous Supervision
View PDF HTML (experimental)Abstract:Traditional Incremental Learning (IL) targets to handle sequential fully-supervised learning problems where novel classes emerge from time to time. However, due to inherent annotation uncertainty and ambiguity, collecting high-quality annotated data in a dynamic learning system can be extremely expensive. To mitigate this problem, we propose a novel weakly-supervised learning paradigm called Incremental Partial Label Learning (IPLL), where the sequentially arrived data relate to a set of candidate labels rather than the ground truth. Technically, we develop the Prototype-Guided Disambiguation and Replay Algorithm (PGDR) which leverages the class prototypes as a proxy to mitigate two intertwined challenges in IPLL, i.e., label ambiguity and catastrophic forgetting. To handle the former, PGDR encapsulates a momentum-based pseudo-labeling algorithm along with prototype-guided initialization, resulting in a balanced perception of classes. To alleviate forgetting, we develop a memory replay technique that collects well-disambiguated samples while maintaining representativeness and diversity. By jointly distilling knowledge from curated memory data, our framework exhibits a great disambiguation ability for samples of new tasks and achieves less forgetting of knowledge. Extensive experiments demonstrate that PGDR achieves superior
Submission history
From: Rui Wang [view email][v1] Thu, 23 Jan 2025 11:52:53 UTC (847 KB)
[v2] Fri, 24 Jan 2025 12:00:49 UTC (848 KB)
[v3] Tue, 18 Feb 2025 02:37:12 UTC (883 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.