
No

GOING OFFLINE
Jeremy Keith

26

Foreword by Aaron Gustafson

MORE FROM A BOOK APART

Conversational Design
Erika Hall

The New CSS Layout
Rachel Andrew

Accessibility for Everyone
Laura Kalbag

Practical Design Discovery
Dan Brown

Demystifying Public Speaking
Lara Hogan

JavaScript for Web Designers
Mat Marquis

Practical SVG
Chris Coyier

Design for Real Life
Eric Meyer & Sara Wachter-Boettcher

Git for Humans
David Demaree

Going Responsive
Karen McGrane

Visit abookapart.com for our full list of titles.

http://abookapart.com

Copyright © 2018 Jeremy Keith
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Executive Director: Katel LeDû
Managing Editor: Lisa Maria Martin
Technical Editors: Amber Wilson and Jake Archibald
Copyeditor: Kate Towsey
Proofreader: Katel LeDû
Book Producer: Ron Bilodeau
Illustration Producer: Jon Long

ISBN: 978-1-937557-66-9

A Book Apart
New York, New York
http://abookapart.com

http://abookapart.com

TABLE OF CONTENTS

Chapter 1

 1 | Introducing Service Workers

Chapter 2

 1 0 | Preparing for Offline

Chapter 3

 2 5 | Making Fetch Happen

Chapter 4

 41 | Cache Me if you Can

Chapter 5

 6 2 | Service Worker Strategies

Chapter 6

 7 9 | Refining Your Service Worker

Chapter 7

 9 4 | Tidying Up

Chapter 8

 1 0 8 | The Offline User Experience

Chapter 9

 1 2 0 | Progressive Web Apps

 1 3 6 | Acknowledgements

 1 3 7 | Resources

 1 3 9 | References

 1 41 | Index

FOREWORD
we oFten talk gleeFully about the open and ubiquitous
nature of the web, but it has an Achilles’ heel: network con-
nectivity. If your career is spent working on the web, chances
are you might rarely encounter networking issues in your
day-to-day life. When it comes to networks, many of us are
spoiled with sweet, sweet speed and incredible reliability. We
take it for granted that everyone in the world experiences the
web like we do.

With an uncertain network connection, the web can be elu-
sive. Broken page layouts. Missing functionality. Lost images.
Dinosaurs. Broken hearts. Frustration.

With no network at all, the web ceases to exist.
Over the years, scores of people far smarter than I have

looked for ways to help the web overcome its complete depen-
dence on the network. Browser caching, Application Cache,
Local (and Session) Storage, and client-side databases have all
helped to some degree (well, maybe not AppCache) but these
technologies have been somewhat limited in both scope and
capability.

Then along came the service workers. Service workers are
one of the most powerful tools we’ve had at our disposal,
enabling us to control how we handle network requests. They
even enable us to decide whether to make a network request at
all. Of course, that power also gives us the ability to completely
break our sites—if we’re not careful.

Which brings me to the book you hold in your hands. In
Going Offline, Jeremy Keith breaks down heady concepts into
approachable prose and easy-to-follow code examples. He also
points out service worker gotchas and shows you how to deftly
avoid them. Invest a scant few hours with this book, and you’ll
gain a solid understanding of how to put this new technology
to work for you right away. No, really—within fifteen to twenty
minutes of putting it down.

Armed with the knowledge you gain from Jeremy’s words,
I have no doubt you’ll do wonders to improve the resilience
of the web.

—Aaron Gustafson

1IntroducIng ServIce WorkerS

businesses are built on the web. Without the web, Twit-
ter couldn’t exist. Facebook couldn’t exist. And not just busi-
nesses—Wikipedia couldn’t exist. Your favorite blog couldn’t
exist without the web. The web doesn’t favor any one kind of
use. It’s been deliberately designed to accommodate many and
varied activities.

Just as many wonderful things are built upon the web, the
web itself is built upon the internet. Though we often use the
terms web and internet interchangeably, the World Wide Web
is just one application that uses the internet as its plumbing.
Email, for instance, is another.

Like the web, the internet was designed to allow all kinds
of services to be built on top of it. The internet is a network
of networks, all of them agreeing to use the same protocols
to shuttle packets of data around. Those packets are transmit-
ted down fiber-optic cables across the ocean floor, bounced
around with Wi-Fi or radio signals, or beamed from satellites
in freakin’ space.

As long as these networks are working, the web is working.
But sometimes networks go bad. Mobile networks have a ten-

INTRODUCING
SERVICE WORKERS1

2 goIng oFFLIne

dency to get flaky once you’re on a train or in other situations
where you’re, y’know, mobile. Wi-Fi networks work fine until
you try to use one in a hotel room (their natural enemy).

When the network fails, the web fails. That’s just the way it
is, and there’s nothing we can do about it. Until now.

WEAVING THE WEB
For as long as I can remember, the World Wide Web has had
an inferiority complex. Back in the ’90s, it was outshone by
CD-ROMs (ask your parents). They had video, audio, and a rich-
ness that the web couldn’t match. But they lacked links—you
couldn’t link from something in one CD-ROM to something in
another CD-ROM. They faded away. The web grew.

Later, the web technologies of HTML, CSS, and JavaScript
were found wanting when compared to the whiz-bang beauty
of Flash. Again, Flash movies were much richer than regular
web pages. But they were also black boxes. The Flash format
seemed superior to the open standards of the web, and yet the
very openness of those standards made the web an unstoppable
force. Flash—under the control of just one company—faded
away. The web grew.

These days it’s native apps that make the web look like an
underachiever. Like Flash, they’re under the control of indi-
vidual companies instead of being a shared resource like the
web. Like Flash, they demonstrate all sorts of capabilities that
the web lacks, such as access to device APIs and, crucially, the
ability to work even when there’s no network connection.

The history of the web starts to sound like an endless retell-
ing of the fable of the tortoise and the hare. CD-ROMs, Flash,
and native apps outshine the web in the short term, but the web
always seems to win the day somehow.

Each of those technologies proved very useful for the expan-
sion of web standards. In a way, Flash was like the R&D depart-
ment for HTML, CSS, and JavaScript. Smooth animations,
embedded video, and other great features first saw the light
of day in Flash. Having shown their usefulness, they later
appeared in web standards. The same thing is happening with

3IntroducIng ServIce WorkerS

native apps. Access to device features like the camera and the
accelerometer is beginning to show up in web browsers. Most
exciting of all, we’re finally getting the ability for a website to
continue working even when the network isn’t available.

SERVICE WORKERS
The technology that makes this bewitching offline sorcery pos-
sible is a browser feature called service workers. You might have
heard of them. You might have heard that they’re something to
do with JavaScript, and technically they are…but conceptually
they’re very different from other kinds of scripts.

Usually when you’re writing some JavaScript that’s going to
run in a web browser, it’s all related to the document currently
being displayed in the browser window. You might want to
listen out for events triggered by the user interacting with the
document (clicks, swipes, hovers, etc.). You might want to
update the contents of the document: add some markup here,
remove some text there, manipulate some values somewhere
else. The sky’s the limit. And it’s all made possible thanks to the
Document Object Model (DOM), a representation of what the
browser is rendering. Through the combination of the DOM
and JavaScript—DOM scripting, if you will—you can conjure
up all sorts of wonderful magic.

Well, a service worker can’t do any of that. It’s still a script,
and it’s still written in the same language—JavaScript—but it has
no access to the DOM. Without any DOM scripting capabilities,
this kind of script might seem useless at first glance. But there’s
an advantage to having a script that never needs to interact with
the current document. Adding, editing, and deleting parts of the
DOM can be hard work for the browser. If you’re not careful,
things can get very sluggish very quickly. But if there’s a whole
class of script that isn’t allowed access to the DOM, then the
browser can happily run that script in parallel to its regular
rendering activities, safe in the knowledge that it’s an entirely
separate process.

The first kind of script to come with this constraint was called
a web worker. In a web worker, you could write some JavaScript

4 goIng oFFLIne

to do number-crunching calculations without slowing down
whatever else was being displayed in the browser window. Spin
up a web worker to generate larger and larger prime numbers,
for instance, and it will merrily do so in the background.

A service worker is like a web worker with extra powers. It
still can’t access the DOM, but it does have access to the fun-
damental inner workings of the browser.

Browsers and servers

Let’s take a step back and think about how the World Wide
Web works. It’s a beautiful ballet of client and server. The cli-
ent is usually a web browser—or, to use the parlance of web
standards, a user agent: a piece of software that acts on behalf
of the user.

The user wants to accomplish a task or find some informa-
tion. The URL is the key technology that will empower the user
in their quest. They will either type a URL into their web
browser or follow a link to get there. This is the point at which
the web browser—or client—makes a request to a web server.
Before the request can reach the server, it must traverse the
internet of undersea cables, radio towers, and even the occa-
sional satellite (Fig 1.1).

Imagine if you could leave instructions for the web browser
that would be executed before the request is even sent. That’s
exactly what service workers allow you to do (Fig 1.2).

Usually when we write JavaScript, the code is executed after
it’s been downloaded from a server. With service workers,
we can write a script that’s executed by the browser before
anything else happens. We can tell the browser, “If the user
asks you to retrieve a URL for this particular website, run this
corresponding bit of JavaScript first.” That explains why service
workers don’t have access to the Document Object Model;
when the service worker is run, there’s no document yet.

RequestResponse

Response Request

Fig 1.1: Browsers send urL requests to servers, and servers respond by sending files.

Request

Service
Worker

Response

Response Request

Fig 1.2: Service workers tell the web browser to do something before they send the
request to queue up a urL.

5IntroducIng ServIce WorkerS

Getting your head around service workers

A service worker is like a cookie. Cookies are downloaded from
a web server and installed in a browser. You can go to your
browser’s preferences and see all the cookies that have been
installed by sites you’ve visited. Cookies are very small and very
simple little text files. A website can set a cookie, read a cookie,
and update a cookie. A service worker script is much more
powerful. It contains a set of instructions that the browser will
consult before making any requests to the site that originally
installed the service worker.

to do number-crunching calculations without slowing down
whatever else was being displayed in the browser window. Spin
up a web worker to generate larger and larger prime numbers,
for instance, and it will merrily do so in the background.

A service worker is like a web worker with extra powers. It
still can’t access the DOM, but it does have access to the fun-
damental inner workings of the browser.

Browsers and servers

Let’s take a step back and think about how the World Wide
Web works. It’s a beautiful ballet of client and server. The cli-
ent is usually a web browser—or, to use the parlance of web
standards, a user agent: a piece of software that acts on behalf
of the user.

The user wants to accomplish a task or find some informa-
tion. The URL is the key technology that will empower the user
in their quest. They will either type a URL into their web
browser or follow a link to get there. This is the point at which
the web browser—or client—makes a request to a web server.
Before the request can reach the server, it must traverse the
internet of undersea cables, radio towers, and even the occa-
sional satellite (Fig 1.1).

Imagine if you could leave instructions for the web browser
that would be executed before the request is even sent. That’s
exactly what service workers allow you to do (Fig 1.2).

Usually when we write JavaScript, the code is executed after
it’s been downloaded from a server. With service workers,
we can write a script that’s executed by the browser before
anything else happens. We can tell the browser, “If the user
asks you to retrieve a URL for this particular website, run this
corresponding bit of JavaScript first.” That explains why service
workers don’t have access to the Document Object Model;
when the service worker is run, there’s no document yet.

RequestResponse

Response Request

Fig 1.1: Browsers send urL requests to servers, and servers respond by sending files.

Request

Service
Worker

Response

Response Request

Fig 1.2: Service workers tell the web browser to do something before they send the
request to queue up a urL.

6 goIng oFFLIne

A service worker is like a virus. When you visit a website, a
service worker is surreptitiously installed in the background.
Afterwards, whenever you make a request to that website, your
request will be intercepted by the service worker first. Your
computer or phone becomes the home for service workers
lurking in wait, ready to perform man-in-the-middle attacks.
Don’t panic. A service worker can only handle requests for
the site that originally installed that service worker. When you
write a service worker, you can only use it to perform man-in-
the-middle attacks on your own website.

A service worker is like a toolbox. By itself, a service worker
can’t do much. But it allows you to access some very powerful
browser features, like the Fetch API, the Cache API, and even
notifications. API stands for Application Programming Inter-
face, which sounds very fancy but really just means a tool that
you can program however you want. You can write a set of
instructions in your service worker to take advantage of these
tools. Most of your instructions will be written as “when this
happens, reach for this tool.” If, for instance, the network con-
nection fails, you can instruct the service worker to retrieve a
backup file using the Cache API.

A service worker is like a duck-billed platypus. The platy-
pus not only lactates, but also lays eggs. It’s the only mammal
capable of making its own custard. A service worker can also…
Actually, hang on, a service worker is nothing like a duck-billed
platypus! Sorry about that. But a service worker is somewhat
like a cookie, and somewhat like a virus, and somewhat like
a toolbox.

SAFETY FIRST
service workers are powerFul. Once a service worker has
been installed on your machine, it lies in wait, like a patient
spider waiting to feel the vibrations of a particular thread.

Imagine if a malicious ne’er-do-well wanted to wreak havoc
by impersonating a website in order to install a service worker.
They could write instructions in the service worker to prevent
the website ever appearing in that browser again. Or they could

7IntroducIng ServIce WorkerS

write instructions to swap out the content displayed under that
site’s domain. That’s why it’s so important to make sure that a
service worker really belongs to the site it claims to come from.
As the specification for service workers puts it, they “create the
opportunity for a bad actor to turn a bad day into a bad eternity
(http://bkaprt.com/go/01-01/).”

To prevent this calamity, service workers require you to
adhere to two policies:

1) Same origin.
2) HTTPS only.

The same-origin policy means that a website at example.com
can only install a service worker script that lives at example.
com. That means you can’t put your service worker script on a
different domain. You can use a domain like s3.amazonaws.com
for hosting your images and other assets, but not your service
worker script. That domain wouldn’t match the domain of the
site installing the service worker.

The HTTPS-only policy means that https://example.com
can install a service worker, but http://example.com can’t. A
site running under HTTPS (the S stands for Secure) instead of
HTTP is much harder to spoof. Without HTTPS, the commu-
nication between a browser and a server could be intercepted
and altered. If you’re sitting in a coffee shop with an open Wi-Fi
network, there’s no guarantee that anything you’re reading in
browser from http://newswebsite.com hasn't been tampered
with. But if you’re reading something from https://newswebsite.
com, you can be pretty sure you’re getting what you asked for.

Securing your site

Enabling HTTPS on your site opens up a whole series of secure-
only browser features—like the JavaScript APIs for geolocation,
payments, notifications, and service workers. Even if you never
plan to add a service worker to your site, it’s still a good idea
to switch to HTTPS. A secure connection makes it trickier for
snoopers to see who’s visiting which websites. Your website
might not contain particularly sensitive information, but when

http://bkaprt.com/go/01-01/
http://s3.amazonaws.com/

8 goIng oFFLIne

someone visits your site, that’s between you and your visitor.
Enabling HTTPS won’t stop unethical surveillance by the NSA,
but it makes the surveillance slightly more difficult.

There’s one exception. You can use a service worker on a
site being served from localhost, a web server on your own
computer, not part of the web. That means you can play around
with service workers without having to deploy your code to a
live site every time you want to test something.

If you’re using a Mac, you can spin up a local server from
the command line. Let’s say your website is in a folder called
mysite. Drag that folder to the Terminal app, or open up the
Terminal app and navigate to that folder using the cd command
to change directory. Then type:

python -m SimpleHTTPServer 8000

This starts a web server from the mysite folder, served over
port 8000. Now you can visit localhost:8000 in a web browser
on the same computer, which means you can add a service
worker to the website you’ve got inside the mysite folder:
http://localhost:8000.

But if you then put the site live at, say, http://mysite.com,
the service worker won’t run. You’ll need to serve the site
from https://mysite.com instead. To do that, you need a secure
certificate for your server.

There was a time when certificates cost money and were
difficult to install. Now, thanks to a service called Certbot, cer-
tificates are free. But I’m not going to lie: it still feels a bit intim-
idating to install the certificate. There’s something about logging
on to a server and typing commands that makes me simultane-
ously feel like a l33t hacker, and also like I’m going to break
everything. Fortunately, the process of using Certbot is rela-
tively jargon-free (Fig 1.3).

On the Certbot website (http://bkaprt.com/go/01-02/), you
choose which kind of web server and operating system your
site is running on. From there you’ll be guided step-by-step
through the commands you need to type in the command line
of your web server’s computer, which means you’ll need to
have SSH access to that machine. If you’re on shared hosting,

Fig 1.3: the website of eFF's certbot.

http://bkaprt.com/go/01-02/

9IntroducIng ServIce WorkerS

that might not be possible. In that case, check to see if your
hosting provider offers secure certificates. If not, please pester
them to do so, or switch to a hosting provider that can serve
your site over HTTPS.

Another option is to stay with your current hosting provider,
but use a service like Cloudflare to act as a “front” for your
website. These services can serve your website’s files from
data centers around the world, making sure that the physical
distance between your site’s visitors and your site’s files is nice
and short. And while they’re at it, these services can make sure
all of those files are served over HTTPS.

Once you’re set up with HTTPS, you’re ready to write a
service worker script. It's time to open up your favorite text
editor. You’re about to turbocharge your website!

someone visits your site, that’s between you and your visitor.
Enabling HTTPS won’t stop unethical surveillance by the NSA,
but it makes the surveillance slightly more difficult.

There’s one exception. You can use a service worker on a
site being served from localhost, a web server on your own
computer, not part of the web. That means you can play around
with service workers without having to deploy your code to a
live site every time you want to test something.

If you’re using a Mac, you can spin up a local server from
the command line. Let’s say your website is in a folder called
mysite. Drag that folder to the Terminal app, or open up the
Terminal app and navigate to that folder using the cd command
to change directory. Then type:

python -m SimpleHTTPServer 8000

This starts a web server from the mysite folder, served over
port 8000. Now you can visit localhost:8000 in a web browser
on the same computer, which means you can add a service
worker to the website you’ve got inside the mysite folder:
http://localhost:8000.

But if you then put the site live at, say, http://mysite.com,
the service worker won’t run. You’ll need to serve the site
from https://mysite.com instead. To do that, you need a secure
certificate for your server.

There was a time when certificates cost money and were
difficult to install. Now, thanks to a service called Certbot, cer-
tificates are free. But I’m not going to lie: it still feels a bit intim-
idating to install the certificate. There’s something about logging
on to a server and typing commands that makes me simultane-
ously feel like a l33t hacker, and also like I’m going to break
everything. Fortunately, the process of using Certbot is rela-
tively jargon-free (Fig 1.3).

On the Certbot website (http://bkaprt.com/go/01-02/), you
choose which kind of web server and operating system your
site is running on. From there you’ll be guided step-by-step
through the commands you need to type in the command line
of your web server’s computer, which means you’ll need to
have SSH access to that machine. If you’re on shared hosting,

Fig 1.3: the website of eFF's certbot.

http://bkaprt.com/go/01-02/

10 goIng oFFLIne

beFore you expend energy creating a service worker script,
you might be wondering if it’s worth the investment. You prob-
ably want to know which browsers support service workers,
and by extension, how many of your site’s visitors will benefit
from this technology.

You can go to caniuse.com and find the current support
levels for service workers (Fig 2.1). At the time of writing, it’s
not exactly a field of green. Quite a few of the major browsers
support service workers, but there are some glaring omissions.
Some of the visitors to your website are almost certainly using
browsers that don’t support service workers.

You could wait until just about every browser ships support
for service workers before adding this technology to your site.
Though, fortunately, because of the way service workers have
been designed, you don’t have to wait. You can deploy a service
worker to your site today. The supporting browsers will get the
benefit, and the non-supporting browsers will carry on just as
they do right now. Think of your service worker as a reward
for users of more modern browsers. Crucially, you won’t be
punishing users of less modern browsers.

PREPARING
FOR OFFLINE2

Fig 2.1: You can find current browser support for service workers at https://caniuse.com.

https://caniuse.com/
https://caniuse.com/

11PreParIng For oFFLIne

beFore you expend energy creating a service worker script,
you might be wondering if it’s worth the investment. You prob-
ably want to know which browsers support service workers,
and by extension, how many of your site’s visitors will benefit
from this technology.

You can go to caniuse.com and find the current support
levels for service workers (Fig 2.1). At the time of writing, it’s
not exactly a field of green. Quite a few of the major browsers
support service workers, but there are some glaring omissions.
Some of the visitors to your website are almost certainly using
browsers that don’t support service workers.

You could wait until just about every browser ships support
for service workers before adding this technology to your site.
Though, fortunately, because of the way service workers have
been designed, you don’t have to wait. You can deploy a service
worker to your site today. The supporting browsers will get the
benefit, and the non-supporting browsers will carry on just as
they do right now. Think of your service worker as a reward
for users of more modern browsers. Crucially, you won’t be
punishing users of less modern browsers.

PREPARING
FOR OFFLINE2

Fig 2.1: You can find current browser support for service workers at https://caniuse.com.

Before a service worker can be installed on a user’s machine,
they must first visit your website. For that first visit, there’s no
service worker, regardless of whether the user’s browser has
support for service workers or not. When it comes to first-time
visits, no browser can benefit from a service worker. That
means a service worker can only be deployed as an enhance-
ment. Even if you wanted to make a website that relied com-
pletely on a service worker, that first visit would foil your
fiendish plan.

I think that’s a brilliant piece of design. Because service
workers must be applied as an extra layer on top of your exist-
ing functionality, the levels of support on caniuse.com really
don’t matter. Even if only one browser supported service work-
ers, it would still be worth adding one to your site. Best of all,
as more and more browsers add support for service workers,
more and more people will benefit from the work you do today.

https://caniuse.com/
https://caniuse.com/
https://caniuse.com/

12 goIng oFFLIne

REGISTRATION
Start by creating a blank JavaScript file called serviceworker.
js and save it in the same folder as your website. You might be
used to putting all your JavaScript files into their own folder,
like /js/, but I recommend keeping your service worker file
at the root level. If you put it somewhere else, things get com-
plicated when it comes to which URLs the service worker can
intercept. Putting your service worker file at /serviceworker.
js keeps things simple.

Before the service worker can be installed on a visitor’s
machine, the visitor’s browser needs to know of the file’s exis-
tence. You need to point to the service worker file and say, “See
that service worker script over there? Install it, please.” This is
called registration.

The simplest way to do this is with a link element in the
head of your site’s HTML:

<link rel="serviceworker" href="/serviceworker.js">

Alas, we can’t rely on this just yet. At the time of writing,
not many browsers support this nice declarative way of point-
ing to service worker scripts. But that’s okay. We can still use
JavaScript. You can put this JavaScript in an external file or put
it at the bottom of your HTML:

<script>

navigator.serviceWorker.register('/serviceworker.

js');

</script>

This highlights an interesting difference between HTML and
JavaScript. If a browser doesn’t support service workers, and
you present it with the link rel="serviceworker" element,
the browser will ignore it. That’s down to the error-handling
model of HTML—it ignores what it doesn’t understand. That
can be frustrating if you’re trying to debug HTML. If you make
a typo, the browser won’t complain—it will simply ignore it.
But it’s a powerful feature when it comes to extending the lan-

13PreParIng For oFFLIne

guage. New elements, attributes, and rel values can be added to
HTML, safe in the knowledge that older browsers will quietly
ignore them and move on.

That’s not how browsers behave with JavaScript. If you give
a browser some JavaScript it doesn’t understand, it will throw
an error. Worse, the browser will stop parsing that block of
JavaScript. Any subsequent code, even if it’s error-free, will
never get executed.

If you point a browser at a service worker script using JavaS-
cript, but that browser doesn’t understand what you mean by
navigator.serviceWorker, it won’t just ignore what you’ve
written—it will throw an error.

Feature detection

There’s a way around this. Before using a browser feature in
JavaScript, you can ask the browser whether or not the feature
exists. This is imaginatively called feature detection.

You can apply feature detection to just about anything that’s
available through JavaScript. If you wanted to use the Geoloca-
tion API, your feature detection might look like this:

if (navigator.geolocation) {

 // Your code goes here

}

That line beginning with // is a comment. It won’t be exe-
cuted by the browser. It’s not meant for machines; it’s meant
for humans. Comments are a great way of leaving reminders
for your future self, like Guy Pearce in Memento or Arnold
Schwarzenegger in Total Recall.

The comment is there for you. The if statement is there for
the browser. The if statement checks to see if there’s such a
thing as a geolocation property in the navigator object.

Wait a minute. Objects? Properties? What is this moon lan-
guage I’m suddenly spouting?

14 goIng oFFLIne

An object lesson

For the longest time, I was intimidated by concepts like
Object-Oriented Programming. Not only was it written in cap-
ital letters to demonstrate its seriousness, it also had its own
vocabulary of terms. I knew some JavaScript, so I knew what a
variable was (a label for storing a value—the value can change,
but the label stays the same), and I knew what a function was (a
block of code that can be executed by invoking its label), but I
had no idea what a property or a method was.

Imagine my surprise when I found out that a property is
just another name for a variable, and a method is just another
name for a function. The only difference is that properties and
methods have a parent, called an object—not exactly a very
revealing name (we’re lucky we didn’t up with Thing-Oriented
Programming).

Properties and methods are preceded by the parent’s label
and a dot:

object.property

object.method()

Web browsers expose their features to JavaScript through
objects. There’s one parent object called window. That object
contains other objects, chained together with dots. The docu-
ment object belongs to the window object:

window.document

So does the navigator object:

window.navigator

So document and navigator are properties of the window
object, as well as being objects themselves.

The window object is so ubiquitous that you don’t even have
to specify it if you don’t want to. That’s handy because doc-
ument and navigator can have their own objects, which in

15PreParIng For oFFLIne

turn have their own properties and methods. It can get quite
long-winded to write:

window.navigator.serviceWorker.register();

You can save a bit of space by writing:

navigator.serviceWorker.register();

That’s the register method of the serviceWorker object:
the serviceWorker object is a property of the navigator object
(which is in turn a property of the window object). You can
read it backwards from right to left, substituting each dot for
the words “belongs to”: register belongs to serviceWorker,
which belongs to navigator (which belongs to window).

The property test

With feature detection, you’re checking for the existence of
properties. If you want to use service workers, you can first
ask the browser if there’s a property called serviceWorker that
belongs to the navigator object:

if (navigator.serviceWorker) {

 // Your code goes here

}

In an older browser that doesn’t support service workers,
navigator.serviceWorker returns a value of undefined—
there’s no such property. In a newer browser, navigator.
serviceWorker exists and is an object.

There are many ways to do feature detection. You could use
the in operator to rifle through the navigator object looking
for the serviceWorker property:

if ('serviceWorker' in navigator) {

 // Your code goes here

}

16 goIng oFFLIne

Or you could explicitly check that the serviceWorker object
doesn’t have a value of undefined:

if (navigator.serviceWorker !== undefined) {

 // Your code goes here

}

Whichever way you decide to apply feature detection, it’s
always a good idea to do it before using a browser feature. With
this in mind, here’s how you can point to your service worker
file from your HTML:

<script>

if (navigator.serviceWorker) {

 navigator.serviceWorker.register('/serviceworker.

js');

}

</script>

Now you’re safely running the register method of the ser-
viceWorker object, secure in the knowledge that nonsupporting
browsers will never try to execute that code.

Whenever I see that something is a method, I do a little men-
tal substitution—replacing the word method with the word func-
tion—to remind myself how methods work. The parentheses
after the name of the method are a dead giveaway that methods
work just like functions (they just happen to be functions that
belong to a parent object).

The parentheses are where we can pass in values to a func-
tion—or to a method. For some reason, these values are known
as arguments. I have no idea why this is. It makes talking about
code sound quite confrontational: “Pass these arguments into
this method” sounds like an instruction to pick a fight.

In the case of the register method, you’re currently passing
in one argument—the URL of your service worker script:

register(url)

17PreParIng For oFFLIne

The value of that URL will define the scope of the service
worker—how much of your site the service worker will control.

Scope

By default, the scope is derived from where you put your ser-
vice worker script. If your service worker script resides at /js/
serviceworker.js, the script will only be able to control URLs
that start with /js.

There might be situations when you want the same domain
to have multiple service workers, such as /myapp/service-
worker1.js and /myotherapp/serviceworker2.js. Because
the scope of a service worker is defined by its URL, you can
point to both of them from anywhere in your site:

navigator.serviceWorker.register('/myapp/

serviceworker1.js');

navigator.serviceWorker.register('/myotherapp/

serviceworker2.js');

The first service worker will have control over /myapp/. The
second service worker will have control over /myotherapp/.

What if you have one service worker for the whole site, but
another one for a specific folder?

navigator.serviceWorker.register('/serviceworker1.

js');

navigator.serviceWorker.register('/myapp/

serviceworker2.js');

First you’re declaring that one service worker should have
control over every URL, then you’re declaring that another
service worker should have control over certain URLs. Which
declaration wins?

There’s a fairly simple formula for figuring that out: the
service worker script with the longest path in its URL will
win. The service worker inside myapp will handle any requests
that start with /myapp/. Every other URL will be handled by /
serviceworker1.js.

18 goIng oFFLIne

Another option is to put all your service worker scripts at the
root level, and then declare the scope from JavaScript. Let’s say
your scripts are /serviceworker1.js and /serviceworker2.
js. The first service worker script is for the whole site, so you
can point to it like this:

navigator.serviceWorker.register('/serviceworker1.

js');

The other service worker script is only intended for /myapp/.
You can declare this by passing in another argument to the
register method:

navigator.serviceWorker.register('/serviceworker2.

js', {

 scope: '/myapp/'

});

The declarative equivalent of this—once browsers support
it—will be:

<link rel="serviceworker" href="/serviceworker1.js">

<link rel="serviceworker" href="/serviceworker2.js"

scope="/myapp/">

While it’s good to know how to set the scope of different
service workers, most websites will only ever have one service
worker responsible for the whole site.

The register method lives up to its name. You’re asking
the browser to register the existence of a service worker script.
Your code should look something like this:

if (navigator.serviceWorker) {

 navigator.serviceWorker.register('/serviceworker.

js');

}

19PreParIng For oFFLIne

PROMISES
When you ask the browser to register the existence of your
service worker script, you’re going to have to give it a few
moments. First, the browser needs to verify that the current
site is either running on HTTPS or localhost. Then, it needs
to check that the service worker script is on the same domain
as the current site. Finally, the browser will attempt to fetch the
service worker script and parse it.

None of these steps will take very long, but you wouldn’t
want the browser to freeze while it’s busy with these tasks.
That’s why the register method is executed asynchronously.
The browser doesn’t finish executing the register method
before moving on to the next line of code. Instead, it moves
straight on to the next line of code while it carries out its tasks
in the background.

That’s great for browser performance, but what if we want to
give the browser some further instructions once the register
method has finished its chores?

The old way of executing the extra instructions would
involve listening out for events—maybe something like load
or ready. That works, but it can result in code that’s hard to
read. There’s another way of handling asynchronous events
that results in more elegant code: promises.

A promise is a kind of object that comes with a built-in method
called then. Whatever function you put inside the then method
will only be executed when the promise has successfully fin-
ished all its tasks. At this point, we say that the promise has been
fulfilled, much like the closing chapter of a revenge thriller or
the denouement to a fairy tale.

promise

.then(function () {

 // Yay! It worked.

});

20 goIng oFFLIne

If something goes wrong along the way and the promise isn’t
fulfilled, there’s a corresponding catch method. You can put a
function in there to make amends for the unsuccessful fulfill-
ment of the promise. The end result looks something like this:

promise

.then(function () {

 // Yay! It worked.

})

.catch(function () {

 // Boo! It failed.

});

You don’t have to put the then and catch methods on new lines
like that. That’s just my preference. You might prefer to write:

promise.then(

 function () {

 // Yay! It worked.

 }

).catch(

 function () {

 // Boo! It failed.

 }

);

You could even write the whole thing on one line if you want
to be the James Joyce of JavaScript.

In those examples, the functions inside then and catch are
anonymous functions. That doesn't mean that they’re ashamed
of anything they're doing; it means that they don't have names.
They’re created on the fly and then never referred to again.
You don’t have to use anonymous functions. You could invoke
functions that you’ve written elsewhere—functions that are
proud of their names, not hiding behind the veil of anonymity:

promise

.then(doSomething)

.catch(doSomethingElse);

21PreParIng For oFFLIne

If I were the judgmental sort, I would have to say that
doSomething and doSomethingElse aren’t names to be proud
of, but the point is they can be reused. And if you use them
within then or catch you know that they won’t run until the
promise is fulfilled or rejected. That’s right—we call it a rejection
when a promise isn’t fulfilled.

Promises, fulfillments, and rejections—this is beginning to
feel like a soap opera.

The order of events

Promises are perfect for asynchronous tasks. Registering a
service worker is an asynchronous task. Let’s prove it. Try out
this piece of code:

<script>

if (navigator.serviceWorker) {

 navigator.serviceWorker.register('/serviceworker.

js')

 .then(function () {

 console.log('Success!');

 })

 .catch(function () {

 console.error('Failure!');

 });

 console.log('All done.');

}

</script>

Add that JavaScript to the bottom of your HTML page, reload
the page in a web browser, then open up the browser’s JavaS-
cript console (alt+cmd+j). Here’s what you should see:

All done.

Success!

22 goIng oFFLIne

Unless something went horribly wrong, in which case
you’ll see:

All done.

Failure!

Notice that the command to log “All done.” was at the end of
your code, and yet it’s the first log command to get executed.
Usually JavaScript code is executed in a procedural way—the
order in which commands are given is also the order in which
those commands are executed. Asynchronous commands—like
serviceWorker.register—will finish executing in their own
good time. That’s asynchronousness… asynchronicity… asyn-
chronaciousness… that’s how this kind of thing works.

Winning arguments

When a promise is fulfilled (or rejected), it can send data to
the function that’s waiting patiently inside then (or catch). To
access that data, you’ll need to include it as an argument inside
the waiting function. Here’s an example:

navigator.serviceWorker.register('/serviceworker.

js')

.then(function (registration) {

 console.log('success!', registration.scope);

});

In this case, I’m passing the data from successful registration
in a variable called registration. That data is an object. I’m
then accessing the scope property of that object. That gives me
something like:

Success! http://localhost:8000/

23PreParIng For oFFLIne

That word registration is just what I’m calling the object
being returned from a successful service worker registration.
I could call it anything—for instance, this code works exactly
the same way:

navigator.serviceWorker.register('/serviceworker.

js')

.then(function (x) {

 console.log('success!', x.scope);

});

Whenever you receive data from a promise, you can call
it anything you want. Personally, I think that registration
makes more sense than x because it describes the data better.

A promise can also pass data to the function within catch.
That’s really useful for debugging. Here’s an example where
I’m deliberately going to cause an error by trying to point to a
non-existent service worker file:

navigator.serviceWorker.register('/nothing.js')

.catch(function (error) {

 console.error('Failure!', error);

});

Now I’ll see something like this in the console:

Failure! TypeError: Failed to register a

ServiceWorker: A bad HTTP response code (404) was

received when fetching the script.

Again, that name error is just my name for the data. I
could’ve called it x or y or anything:

navigator.serviceWorker.register('/nothing.js')

.catch(function (y) {

 console.error('Failure!', y);

});

24 goIng oFFLIne

Feel free to update the JavaScript code in your HTML to
take advantage of the data being passed in from the regis-
ter promise:

<script>

if (navigator.serviceWorker) {

 navigator.serviceWorker.register('/serviceworker.

js')

 .then(function (registration) {

 console.log('Success!', registration.scope);

 })

 .catch(function (error) {

 console.error('Failure!', error);

 });

}

</script>

Looking good. You’re practicing feature detection, you’re
handling promises, and most important, you’re registering a
service worker for your site. But that service worker isn’t doing
anything yet. It’s just a blank file.

Let’s fix that.

25MakIng Fetch haPPen

right now, your service worker File is empty. An empty
service worker file won’t do anything by default. That might
sound obvious, but it’s a very deliberate design decision. There
are plenty of technologies that try to anticipate your needs
and provide you with default behaviors without you having
to specify anything. That sounds great—unless those default
behaviors are not what you wanted.

I realize I’m being quite vague, so I’ll be more specific. But I
warn you, I am about to drag some skeletons from the darkest
depths of the browser and out into the light. Huddle a little
closer to the campfire, and I’ll position this flashlight under my
chin while I tell you a tale…

THE EXTENSIBLE WEB
What if I told you that service workers aren’t the first technol-
ogy to enable websites to work offline? There was a previous
attempt to solve the offline problem using a technology called
Application Cache, or AppCache for short. If you haven’t heard

MAKING FETCH
HAPPEN3

26 goIng oFFLIne

of AppCache, that’s good. We try not to speak its name. Those
poor unfortunate souls who dabbled too deep in the dark arts
of AppCache have banished it from their minds, lest they be
driven out of their wits by such painful memories.

AppCache was forged in the fires of the standards process,
hidden from the gaze of mortal web developers. The spec was
then triumphantly unveiled. “Behold!” cried the standard bear-
ers, “We’ve given you a way to make your sites work offline!”
Web developers eagerly took hold of this new knowledge,
implemented AppCache, and promptly broke their websites.

It all looked so good on paper (and on mailing list). You cre-
ated a new file called an application manifest. In that manifest,
you listed which files should be cached. From then on, the
listed files would always be retrieved from the cache instead
of from the network.

It seemed straightforward enough, but the devil was in the
details. In order to tell the browser where the manifest file lived,
you needed to point to it using a manifest attribute in your
document’s html element. As soon as you did that, the HTML
file was automatically added to the list of files to be cached.
It didn’t matter if you updated the HTML—your users would
still see the stale version from the cache. Trying to break this
stranglehold on your site meant entering a painful world of
cache invalidation. It was a mess.

AppCache sounded great in theory, but fell apart in practice.
In retrospect, the root of the problem seems obvious. Instead of
consulting with developers on the functionality they wanted,
the spec was created by imagining what developers wanted.
It makes more sense to give developers the tools they need to
create their own offline solutions, than giving them an inflexible
technology that only works in limited situations.

Giving developers access to the building blocks they need
to craft their own solutions is the driving force behind an idea
called the extensible web. There’s even a manifesto:

Our primary goal is to tighten the feedback loop between the
editors of web standards and web developers. We prefer an
evolutionary model of standardization, driven by the vast army

27MakIng Fetch haPPen

of web developers, to a top-down model of progress driven by
standardization. (http://bkaprt.com/go/03-01/)

Stirring stuff. It makes me want to storm the barricades (and
replace them with well-designed, standardized barricades).

Whereas AppCache added a layer of “magic” on top of the
work the browser was doing under the hood, service workers
expose the true inner workings of the browser.

Browser vendors should provide new low-level capabilities that
expose the possibilities of the underlying platform as closely as
possible. (http://bkaprt.com/go/03-01/)

Developers then have to provide step-by-step instructions
to browsers detailing exactly what we want to happen. That’s
more work than the straightforward, declarative approach of
AppCache, but it’s also more empowering. Writing JavaScript
is the price we pay for these newfound powers.

That’s why your service worker file isn’t doing anything yet.
You need to fill it with instructions first. That means you need
to decide what you want your service worker to do.

EVENTS
An empty service worker file won’t do anything, but it still gets
installed on the user’s machine. You can see this for yourself
by looking in your browser’s development tools. I recom-
mend using Chrome for this. Visit the local version of your
site—the one with the service worker registration code in the
HTML—and open up Developer Tools (alt+cmd+i). Click on the
Application panel. Then, from the menu in the sidebar, select
Service Workers (Fig 3.1).

This shows that a service worker has been activated, like a
sleeper agent in a Cold War thriller. Now it’s time to add some
JavaScript to that empty service worker file, serviceworker.js.

When you write JavaScript that’s going to be executed by a
web browser, it often follows this pattern:

http://bkaprt.com/go/03-01/
http://bkaprt.com/go/03-01/

28 goIng oFFLIne

1) When this event happens,
a) do something.

The event you’re listening out for could be triggered by the
user—clicking, scrolling, or hovering, for instance. You can then
use that event as your cue to do something—show some informa-
tion, trigger an animation, or make an Ajax request to the server.

It’s a similar situation with service workers. You can still
write code that listens for events, but this time the events are
triggered by the browser itself as it goes about its business. The
way that a browser works its magic is through the fetch event.

When you click on a link or type a URL into the brows-
er’s address bar, that triggers the fetch event—the browser
will “fetch” that document from the web. If that HTML doc-
ument has images in it, each img element will trigger another
fetch event—the browser will “fetch” the files referenced in
the src attributes. If the page links to a stylesheet with rel="-
stylesheet", that will also trigger a fetch event. The same
goes for a JavaScript file referenced from the src attribute of a
script element.

In your service worker script, you can listen for every sin-
gle one of those fetch events. You can use addEventListener
to do this:

Fig 3.1: the Service Workers section in chrome’s developer tools (under the application
panel).

29MakIng Fetch haPPen

addEventListener('fetch', function (event) {

 console.log('The service worker is listening.');

});

This is following the familiar pattern of listening for an event,
and then executing some code when the event is triggered:

1) Whenever a fetch event happens,
a) log this message to the browser console.

In the settings for the Console panel in Chrome’s DevTools,
tick the “Preserve log” option—that way you’ll get a record
of every fetch event. Save the changes you’ve made in the
serviceworker.js file and reload the page in your browser. If
you look in the Console panel of DevTools, you’ll see…nothing
new. What’s going on? Why doesn’t it say, “The service worker
is listening.”?

The key to unravelling this mystery is to look in the Appli-
cation panel again. The status message now shows two service
workers. When you edited the service worker script, the
browser saw that as being a whole new service worker. It can’t
swap out the existing service worker for the new one just yet,
because the page currently loaded in the browser is still under
the control of the original service worker (Fig 3.2).

Fig 3.2: the Service Workers section of the application panel in chrome's developer
tools shows that the old service worker is still in control.

30 goIng oFFLIne

THE SERVICE WORKER LIFE CYCLE
Let’s back up for a moment and think about all the steps
involved in getting a service worker up and running.

The whole process starts with registration, which you initi-
ated from a script element in your HTML:

navigator.serviceWorker.register('/serviceworker.

js');

The service worker file is downloaded. After download
comes installation. This is followed by activation, when the
service worker takes control of this particular browser. After
activation, every request to your site will be routed through
the service worker.

The first time a browser visits your site, the life cycle of the
service worker seems straightforward enough:

1. Download
2. Install
3. Activate

When you update your service worker script, you aren’t
updating the service worker that’s been installed on the user’s
machine. Instead, you’re creating a whole new service worker.
This new service worker is downloaded and installed, but it
isn’t automatically activated. The new service worker is waiting
in the wings, ready to be activated, but as long as the user is nav-
igating around your site, the old service worker is still in charge.

The way that service workers get updated is similar to the
way that browsers themselves get updated. If there’s a new
version of Chrome, it gets downloaded in the background. But
Chrome doesn’t restart without asking. Instead, it waits until
you shut down the browser. Only then does it install the new
version of the browser and delete the old one.

31MakIng Fetch haPPen

It’s the same with service workers—the update is down-
loaded in the background, but it doesn’t take effect until the
browser is closed and reopened. Until then, it’s waiting.

So the life cycle for an updated service worker is more
like this:

1. Download
2. Install
3. Wait
4. Activate

The new service worker will patiently wait until the user has
the left your website. As long as the user has a single browser tab
open with your website in it, the old service worker is active.

You can see the service worker life cycle in action using the
Developer Tools in Chrome. Under the Service Workers section
in the Application panel, you’ll see which service worker is
currently active (Fig 3.3). It will have a unique number. The
Status will say something like “#12345 is activated and is running.”

When you update your service worker script, a new service
worker with a new number will appear, saying something like
“#12346 is waiting to activate” (Fig 3.4).

Fig 3.3: a service worker with a numeric Id is running.

32 goIng oFFLIne

Updating your service worker

As long as you have a browser window or tab open with a
domain that’s under the control of a service worker, the new
version of that service worker has to wait in the wings. This
can make debugging quite tricky. If you have multiple browser
windows or tabs open, you need to make sure that you haven’t
accidentally left one running with the old service worker in
control, or none of them will get the updated service worker.

There are two things you can do to make sure the updated
service worker kicks in. You can either shut down any browser
windows or tabs that have localhost loaded in them, or you
can use the handy skipWaiting command in the Application
panel in DevTools. Then, the next time you load the page, the
new service worker will be activated and the old one will fade
away into oblivion.

Now when you reload the page, you’ll finally be greeted with
this message in your browser console:

The service worker is listening.

When you’re working with service workers, you may find
yourself refreshing your browser window many times. It’s
important to note that if you do a hard refresh—pressing Shift
while you refresh—you’ll bypass the service worker completely.

Fig 3.4: another service worker with a different numeric Id is waiting to take over.

33MakIng Fetch haPPen

If you like, you can see the service worker installation and
activation in action by listening to the install and acti-
vate events:

addEventListener('install', function (event) {

 console.log('The service worker is

installing...');

});

addEventListener('activate', function (event) {

 console.log('The service worker is activated.');

});

addEventListener('fetch', function (event) {

 console.log('The service worker is listening.');

});

Save those changes in your serviceworker.js file. Once
again, if you refresh your browser window, you won’t see any
changes; your new service worker script is waiting to take
effect while your page is still in the clutches of the old version.
Close your browser window, or use the skipWaiting link in
DevTools. Now when you reopen a browser window and nav-
igate to your local site, you’ll see these messages:

The service worker is installing...

The service worker is activated.

As long as your browser window is open, you won’t see
either message again. But every time you refresh the page, you’ll
trigger a new fetch event:

The service worker is listening.

THE fetch EVENT
When you intercept a fetch event, you can do whatever you
want with the data being passed into the anonymous function

34 goIng oFFLIne

you’ve created. The data is available through the event argu-
ment you’re passing into that function:

addEventListener('fetch', function (event) {

 // Do something with 'event' data

});

You don’t have to call it event. You could call it x, y, or z if
you wanted:

addEventListener('fetch', function (z) {

 // Do something with 'z' data

});

I find it’s useful to use a descriptive word like fetchEvent or
event (or even just evt, as long as your future self can remem-
ber what it’s short for). It’s your code, so you can use whatever
makes sense to you.

addEventListener('fetch', function (fetchEvent) {

 // Do something with 'fetchEvent' data

});

Something else you can do is use some of the fancy new
JavaScript syntax that was added in ES6. I know it would make
more sense if it were called JS6, but why keep things logical
when they can be deliberately obscure and confusing?

One of the new syntax features is designed to remove those
ugly anonymous function declarations and replace them with
ASCII art in the shape of an arrow:

addEventListener('fetch', fetchEvent => {

 // Do something with 'fetchEvent' data

});

I quite like the way those new arrow functions look. Again,
it’s your code so use whichever syntax makes most sense to you.

Usually I’m cautious about using new JavaScript syntax
in web browsers. If a browser doesn’t understand the new

35MakIng Fetch haPPen

syntax, it will throw an error and stop parsing the script. But
that’s not going to happen inside a service worker script. Every
browser that supports service workers also supports the new
ES6 features. Your service worker script is a safe space for you
to dabble with new syntax.

Other new additions to the JavaScript language are let and
const. Previously we had to use var to create all our variables:

addEventListener('fetch', fetchEvent => {

 var request = fetchEvent.request;

});

Now we can use let for variables that will change value, and
const for variables that should remain constant:

addEventListener('fetch', event => {

 const request = fetchEvent.request;

});

In this case, you’re creating a variable called request, just so
you don’t have to keep typing fetchEvent.request every time
you want to examine that property.

If you output the contents of request, you’ll see quite a bit
of data (Fig 3.5):

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 console.log(request);

});

Remember, you’ll need to close down your browser tab or
use the skipWaiting link in the Application panel of Chrome’s
Developer Tools to apply your changes. If you don’t see the
skipWaiting link, you can also use the Unregister link to
delete the current service worker. Refreshing the page should
install the new service worker. Refreshing the page again
will allow that service worker to listen to fetch events and
log its data.

36 goIng oFFLIne

In the JavaScript console, you’ll see a Request object with
all sorts of properties: method, mode, referrer, credentials,
and url—that’s the URL of the file that’s being fetched. All of
that scrumptious information will come in handy later.

Intercepting fetch events

Until now you’ve been observing the fetch events that the
browser is carrying out. The real power comes with altering
those events.

Using respondWith, you can send back your own custom
response. You can create a new Response object and put any-
thing you like in it:

addEventListener('fetch', fetchEvent => {

 fetchEvent.respondWith(

 new Response('Hello, world!')

); // end respondWith

}); // end addEventListener

Fig 3.5: the console panel in chrome’s developer tools showing the details of a request.

37MakIng Fetch haPPen

You’ll need to do the dance of deletion in the DevTools
Application panel to see the fruits of your labor. Once your
new service worker is installed, every request it intercepts will
result in a page saying, “Hello, world!” and nothing else. That’s
a terrible user experience, but it illustrates the power you can
wield within service workers.

THE FETCH API
The Fetch API allows you as a developer to instruct the browser
to fetch any resources you want, effectively recreating what the
browser is doing. Granted, there’s not much point in doing this
other than to demonstrate how much control you now have at
your command. Later you’ll be able to use this superpower to
optimize your site.

Fetching resources is an asynchronous activity, so the Fetch
API uses promises like this:

fetch(request)

.then(responseFromFetch => {

 // Success!

})

.catch(error => {

 // Failure!

});

You can create a fetch event inside your service worker by
using respondWith:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 fetchEvent.respondWith(

 fetch(request)

 .then(responseFromFetch => {

 return responseFromFetch;

 }) // end fetch then

); // end respondWith

}); // end addEventListener

38 goIng oFFLIne

That code is telling the browser to do what it would do
anyway: fetch a resource, and return with the contents of that
resource.

Now you can go one step further: you can tell the browser
what to do if the request for that resource doesn’t succeed.
That’s what the catch clause is for. You can create a custom
response in there:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 fetchEvent.respondWith(

 fetch(request)

 .then(responseFromFetch => {

 return responseFromFetch;

 }) // end fetch then

 .catch(error => {

 return new Response('Oops! Something went

wrong.');

 }) // end fetch catch

); // end respondWith

}); // end addEventListener

To test whether or not this is working, you’ll first have to
update your service worker—do the Unregister, Reload, Reload
samba in the Application panel—then take your browser offline.
There’s a quick way to do this that doesn’t involve switching off
your Wi-Fi or unplugging your ethernet cable: in the Service
Workers panel of the Application panel in Chrome Developer
Tools, there’s a checkbox labeled Offline. If you check this, it
does exactly what it says on the tin—your browser is effectively
offline. Reload the page while this checkbox is ticked, and you’ll
see the response you crafted:

Oops! Something went wrong.

It’s not the most informative of messages, but it demonstrates
that you’re no longer at the mercy of the browser’s default
offline message.

39MakIng Fetch haPPen

Try refining your offline message by adding some HTML:

return new Response('<h1>Oops!</h1> <p>Something

went wrong.</p>');

Update the service worker in the Application panel using
skipWaiting, but don’t forget to untick the Offline option
before doing that. Then, when the new service worker is
installed, try going offline again. This time you’ll see a differ-
ent message:

<h1>Oops!</h1> <p>Something went wrong.</p>

That’s not quite right. We don’t want to see those
HTML undergarments.

The message is being sent as plain text instead of HTML. You
can fix that by passing in a second argument to the Response
object where you can specify the headers:

return new Response(

 '<h1>Oops!</h1> <p>Something went wrong.</p>',

 {

 headers: {'Content-type': 'text/html;

charset=utf-8'}

 }

);

Untick the Offline checkbox and update the service worker.
Once the new service worker is up and running, tick that Offline
option again and reload. This time you will see glorious HTML
(Fig 3.6).

This is working nicely, but it isn’t going to scale if you want
to provide a nicer offline experience. Writing an entire HTML
page inside your service worker script doesn’t seem right. You’ll
also probably want your offline page to have images and other
assets. It would be better if you could make a standalone offline
page, get the service worker to store it, and later display it when-
ever the user is offline. What you need is the power of caching.

40 goIng oFFLIne

Fig 3.6: a custom offline message.

41cache Me IF You can

when the web was created, it had no memory. I don’t mean
memory in the sense of kilobytes, megabytes, and gigabytes; I
mean memory in the literal sense.

As you’ll recall from Chapter 1, a web browser requests a
page from a web server. The server sends a response. This
might be the first time that this particular browser has inter-
acted with this particular server, or it might be the hundredth
time. Without any memory of one another, they can never
form a lasting relationship. Every time is just like the first time.

Because the word memory is already taken, we use the word
state to describe these situations. A system that can retain
knowledge of previous interactions is stateful. At its outset, the
web was stateless.

Managing state can be tricky. The fact that the web was state-
less kept it nice and simple. Anybody creating a new browser
or new server software didn't have to worry about the arrow
of time. But the stateless nature of the web was also frustrating.
If you were trying to build a business on the web, you had no
way of forming a relationship with your customers.

CACHE ME
IF YOU CAN4

42 goIng oFFLIne

Imagine a user adding a product to their shopping cart, click-
ing on a link to another product, and finding their shopping
cart empty again as though the past had never happened. An
engineer at Netscape named Lou Montulli created cookies to
remedy this problem. Such a cute-sounding name! And indeed,
cookies are dainty little things—small pieces of text that can
be stored by a browser and read by a server. Now that you can
be identified by your cookie, a website can remember who
you are, and what you’ve already put in your shopping basket.
Unfortunately, cookies can also be used to track you from site
to site, allowing advertising networks to build up a profile of
your browsing habits.

Thanks to cookies, web servers can now identify and
recall who you are. But how does a web browser remember
that it has previously asked for a particular item from a web
server? Caching!

The word cache always makes me think of pirates in Treasure
Island talking about their secret caches of treasure. On the web,
caches are also used to hoard precious items. Instead of storing
doubloons and emeralds, we can use a cache to store files that
we can dig up later.

Thinking about it like that, a “cache” is actually a pretty
accurate term for the technology. It’s certainly sounds better
than “booty.”

THE HTTP CACHE
Suppose you’ve written a web page. In that page, you’ve
included an image. As the browser parses your page, it sees that
it needs to fetch an image, and off it goes to the server. Now
suppose you include that same image again later in the same
page. Instead of starting another request to the server, the
browser realizes that it already has a copy of that image and
reuses it (Fig 4.1).

That’s an example of the memory cache in action. It’s use-
ful for avoiding duplicate server requests, but it only works
for short-term interactions. Like a goldfish, the browser for-

Response
Empty
Cache

Retrieve Image

Request

Cache

Fig 4.1: the browser can reuse images stored in the httP cache without sending the
request out to the server.

43cache Me IF You can

Suppose you’ve written a web page. In that page, you’ve
included an image. As the browser parses your page, it sees that
it needs to fetch an image, and off it goes to the server. Now
suppose you include that same image again later in the same
page. Instead of starting another request to the server, the
browser realizes that it already has a copy of that image and
reuses it (Fig 4.1).

That’s an example of the memory cache in action. It’s use-
ful for avoiding duplicate server requests, but it only works
for short-term interactions. Like a goldfish, the browser for-

Response
Empty
Cache

Retrieve Image

Request

Cache

Fig 4.1: the browser can reuse images stored in the httP cache without sending the
request out to the server.

gets about everything in its memory cache once the user
leaves the page.

The browser has a longer-lasting store called the HTTP cache
(or disk cache). If a file is stored in the HTTP cache, it can be
retrieved and reused days, weeks, months, or even years later.

That sounds great, but you don’t actually want all your files
to be stored in the HTTP cache. If a file is updated frequently—
say, the homepage of your website—it would be disastrous if
it were stored in the HTTP cache. Your site’s visitors would be
served a stale version of the homepage.

The HTTP cache is really handy for files that are rarely, if
ever, updated: images, fonts, stylesheets, and scripts. But you
don’t want the HTTP cache to store web pages.

To avoid storing the wrong files, the HTTP cache only does
what it’s told. It’s up to the web server to declare which kinds of
files should be cached, and for how long. This is done through
the exchange of HTTP headers—the secret, behind-the-scenes
instructions that accompany every response. For instance,
your web server can send max-age headers to tell the HTTP
cache how long it should store certain files. The server tells
the browser that it can store images, stylesheets, and scripts for
months, but that HTML pages should never be stored.

Ah, but what if you update a stylesheet or script on the
server? The browser is going to do what it has been told and
reuse the old version from the HTTP cache. A visitor to your
site will get stale CSS or JavaScript. The visitor can overcome

44 goIng oFFLIne

this by performing a hard refresh (holding down Shift while
reloading the page). But putting this burden on the visitor isn’t
a great long-term strategy.

You could use max-age headers to instruct the browser to
never store CSS or JavaScript files, but then you would miss out
on the benefits of the HTTP cache. It would be a shame to force
your site’s visitors to download the same CSS and JavaScript
every single time they request a page.

The most common way of breaking this impasse is to change
the names of the files themselves. Suppose someone visits
one of your pages, and that page links to a stylesheet called
styles-v1.css. Using headers, you can instruct the browser to
cache that file for months. When you need to change the CSS,
change the name of the file to something like styles-v2.css.
As far as the browser is concerned, this is a brand-new file that
bears no relation to the CSS file stored in the HTTP cache. The
browser fetches the new file and then stores it in the HTTP
cache for months.

The only downside to this approach is that you also have to
update every HTML page that points to the CSS or JavaScript
file that you’re changing the name of. On dynamic sites, there’s
usually a build process in place to automate this.

The HTTP cache can really boost your site’s performance
on repeat visits. It’s a fairly crude tool though, and you can’t
entirely rely on it. Web browsers perform periodic clean-up
operations, discarding files from the HTTP cache. There’s just
one HTTP cache being shared by every single website that the
browser visits. There’s only so much space to spare.

Now there’s a successor to the HTTP cache. Using the new
Cache API, you have much more fine-grained control over the
caching of your site’s content.

THE CACHE API
The Cache API is conceptually similar to the Fetch API. They
are both APIs that give us access to the low-level features used
by the browsers themselves. Browsers having been fetching and

45cache Me IF You can

caching for decades, but now we can use those same mecha-
nisms for our own purposes.

Like the Fetch API, the Cache API is asynchronous and uses
promises to fulfill or reject each operation. That means you
can use this API in your service worker script. You’ll be able to
create caches, delete caches, put files into caches, and retrieve
files from caches.

Don’t think of the Cache API as a replacement for the HTTP
cache. Think of it as an enhancement. Don’t change whatever
strategy you’re currently using for caching and versioning
files. You can use the Cache API to create a powerful frontline
caching strategy, but you will still want to keep the home fires
burning with the HTTP cache.

Whereas the HTTP cache gives you one big cache for every-
thing, the Cache API allows you to create separate caches. You
could have one cache just for images, for example, and another
cache for storing pages. Keeping your files in different caches
gives you more control over how you treat those files.

Your first cache

Let’s start with a single cache for static assets—CSS, JavaScript,
fonts, icons. These are all resources that are updated infrequently.

Open up your serviceworker.js file. At the top of the file,
choose a name for your cache and store the name in a variable
like this:

const staticCacheName = 'staticfiles';

I’m using const for this because the value of the variable
shouldn’t be changed. Feel free to use a good old-fashioned var
statement if you prefer. I’ve chosen to call this cache static-
files and assigned that name to the variable staticCacheName.
You can give your cache any name you like. You could call it
JohnnyCache. Please don’t.

Now that you’ve got a name for your cache, you’ll want to
create the cache and put files into it. But you’ll only want to do
this once, when the service worker is first installed. You can
listen out for an event called install.

46 goIng oFFLIne

addEventListener('install', installEvent => {

 // Install-handling code goes here

});

This looks similar to how you’re listening for fetch events:

addEventListener('fetch', fetchEvent => {

 // Fetch-handling code goes here

});

The difference is that the fetch event is triggered every sin-
gle time the browser requests a resource, whereas the install
event is only triggered when the service worker is first down-
loaded. You can tell the browser to delay the installation of
the service worker until you’ve populated your cache. You’re
saying, “When you’re about to install, wait until you’ve added
these files to the static cache.” Translating that into JavaScript,
you literally say waitUntil:

addEventListener('install', installEvent => {

 installEvent.waitUntil(

 // Cache your files here

); // end waitUntil

}); // end addEventListener

This is the moment to use the Cache API. You’ll start by
using the open method of the caches object. This is a promise,
so the structure looks like this:

caches.open(staticCacheName)

.then(cache => {

 // Success!

})

.catch(error => {

 // Failure!

});

There’s not much we can do about errors in this case, so we
won’t even need to use the catch clause.

47cache Me IF You can

Put the caches.open method inside your install-handling
code like this:

addEventListener('install', installEvent => {

 installEvent.waitUntil(

 caches.open(staticCacheName)

 .then(staticCache => {

 // Cache your files here

 }) // end open then

); // end waitUntil

}); // end addEventListener

Now you have a reference—called staticCache—to the
open cache. This has a method called addAll. You can pass an
array of URLs into this method:

staticCache.addAll(array);

An array is a collection of items, separated with commas,
and bookended with square brackets, like this:

[1,2,3,4]

That’s an array of four numbers, but you could also have an
array of strings:

['John','Paul','George','Ringo']

For the addAll method, you’re going to pass in an array of
strings. Each string is the URL of a file you want to cache.

staticCache.addAll([

 '/path/to/stylesheet.css',

 '/path/to/javascript.js',

 '/path/to/font.woff',

 '/path/to/icon.svg'

]);

48 goIng oFFLIne

Those URLs are fictitious. Any resemblance to actual URLs,
living or dead, is purely coincidental. Make sure that you use
real URLs. If just one item in the array is misspelt, none of the
URLs will be cached.

Putting it all together, you will return the result of stat-
icCache.addAll to the install event that’s patiently waiting
with installEvent.waitUntil:

addEventListener('install', installEvent => {

 installEvent.waitUntil(

 caches.open(staticCacheName)

 .then(staticCache => {

 return staticCache.addAll([

 '/path/to/stylesheet.css',

 '/path/to/javascript.js',

 '/path/to/font.woff',

 '/path/to/icon.svg'

]); // end return addAll

 }) // end open then

); // end waitUntil

}); // end addEventListener

By using that return statement, you’re making sure that the
installation won’t be completed until all the items in the array
have been cached. If there are lots of files, there’s a chance
they won’t all get cached, and then the service worker won’t
be installed.

To avoid that problem, you can split your list of files into
the ones you must have and the ones you’d like to have. Put the
must-haves behind the return statement. Put the nice-to-haves
in a regular addAll:

addEventListener('install', installEvent => {

 installEvent.waitUntil(

 caches.open(staticCacheName)

 .then(staticCache => {

 // Nice to have

 staticCache.addAll([

 '/path/to/font.woff',

49cache Me IF You can

 '/path/to/icon.svg'

]); // end addAll

 // Must have

 return staticCache.addAll([

 '/path/to/stylesheet.css',

 '/path/to/javascript.js'

]); // end return addAll

 }) // end open then

); // end waitUntil

}); // end addEventListener

Cache, then network

Now that you’ve successfully made a cache filled with your
static assets, you can update your service worker script to take
advantage of your cache. Here’s the logic of the code you’ll
be writing:

1) When the browser requests a file,
a) look for a matching file that has been cached;
b) if there’s no match, fetch the file from the network.

It’s time to revisit your code for handling fetch events. This
is the code that will run every single time the browser requests
a file from your site.

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 fetchEvent.respondWith(

 // fetch-handling code goes here

); // end respondWith

}); // end addEventListener

That takes care of the first part: “When the browser
requests a file.”

Now for the next part: “look for a matching file that has been
cached.” The long way of doing this is to use the open method
of the caches object to specify which cache you want to search,
and then use the match method to do the searching:

50 goIng oFFLIne

caches.open(staticCacheName)

.then(staticCache => {

 return staticCache.match(request);

});

The short way is to use the match method directly on the
caches object. You don’t need to specify which cache you want
to look in:

caches.match(request);

As with all things cache-related, this is an asynchronous
operation, so caches.match has the familiar structure of
a promise:

caches.match(request)

.then(responseFromCache => {

 // Success!

})

.catch(error => {

 // Failure!

});

This seems straightforward enough. If we get a response
from the cache, the promise is fulfilled and we can return that
response. If we don’t get a response, then we can instead make
a fetch request for the file within the catch clause, right?

Alas, no. If match doesn’t find a match for the file, the prom-
ise doesn’t reject. Instead, it returns a value of null in the then
clause. This makes the catch clause as useful as a window
washer on a submarine.

I have no idea why match has been designed to work this
way. It’s like working with an annoyingly pedantic stickler.

“Hey!” you say to the Cache API. “Were you successful when
you looked for this file?”

“Why, yes!” says the Cache API.
“Great!” you say. “Give it to me.” Whereupon the Cache API

mimes handing something to you, because it has successfully
found nothing.

51cache Me IF You can

When you’ve finished rolling your eyes, you’ll need to add
an extra step to make sure the response isn’t empty:

caches.match(request)

.then(responseFromCache => {

 if (responseFromCache) {

 // Success!

 }

})

When you write if (responseFromCache), that’s shorthand
for if (responseFromCache !== null). Translated to English:
“Is it not empty?”

Here’s how it looks inside your code:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 fetchEvent.respondWith(

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 }) // end match then

); // end respondWith

}); // end addEventListener

Notice how the return statement is used to pass the response
up the chain from within caches.match to respondWith. The
end result is that, if there’s a matching file in the cache, the
fetch event responds with the contents of that file.

That takes care of the first two parts of the f low
you’ve outlined:

1) When the browser requests a file,
a) look for a matching file that has been cached.

Now it’s time to add the third and final part:

52 goIng oFFLIne

b) if there’s no match, fetch the file from the network.

Here’s the code for that:

return fetch(request)

.then(responseFromFetch => {

 return responseFromFetch;

});

In fact, you could shorten this code. Everything inside the
then clause is telling the service worker to do what it would do
anyway: return the response from fetching. So you can leave
that part out, and the end result is the same:

return fetch(request);

If you want, you can put this in an else clause after the
if statement:

if (responseFromCache) {

 return responseFromCache;

} else {

 return fetch(request);

}

In this case, the else wrapper isn’t necessary. Because the
if block has a return statement within it, your fetch code can
go right after the if block.

if (responseFromCache) {

 return responseFromCache;

}

return fetch(request);

If you wanted to make your code even shorter, you could
ditch the if statement entirely and use a single return statement:

return responseFromCache || fetch(request);

53cache Me IF You can

The two vertical lines mean “or,” so you’re saying, “Return
the response from the cache, or return the result of fetching
the file.” The code after || will only be executed if the value
before || is empty.

While that’s nice and short, I’m not sure it’s more under-
standable. Personally, I err on the side of trying to keep my code
readable, even if that means the script is longer.

Putting it all together, you get something like this:

// When the browser requests a file...

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 fetchEvent.respondWith(

 // First, look in the cache

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch from the network

 return fetch(request);

 }) // end match then

); // end respondWith

}); // end addEventListener

UPDATING CACHES
You’ve just made big performance improvements to your site.
Anyone who visits your site more than once will have a speedy
experience. Static assets are coming straight out of a cache,
which means the browser doesn’t spend nearly as much time
making network requests.

This all works wonderfully until you make a change to your
CSS, or JavaScript, or some other static asset that you’ve put in
your cache. The browser will never see the updated version.
The updated file is sitting on your server, but in your service
worker script, you’re instructing the browser to never look on
the server for that file.

54 goIng oFFLIne

The solution is similar to what we do to update the HTTP
cache: throw some versioning into the mix.

You might be tempted to change the file name of your ser-
vice worker script and update your HTML to point to the new
script. Don’t do that. Yes, a new service worker will be installed,
but your old service worker will also still be installed. That’s a
messy state of affairs.

Instead, you want to replace the outdated service worker
with a new version. To do that, you’ll take care of versioning
within the service worker script itself.

Your service worker script currently starts with the name
of your static cache:

const staticCacheName = 'staticfiles';

Right before that, create a variable with a version number,
something like this:

const version = 'V0.01';

It doesn’t really matter what you name this variable, or even
what value you give it, as long as you can update the value
whenever you want to update the cache. You could use the
current date and time as your versioning variable, if you prefer.
Whatever you choose, you can then add this versioning variable
to your cache name:

const version = 'V0.01';

const staticCacheName = version + 'staticfiles';

If you change your CSS or JavaScript or anything else in your
cache, edit the first line of your service worker script:

const version = 'V0.02';

Because you’ve made a change to your service worker
script—even a small change like that—the install event will
be triggered again when the browser checks to see if the service
worker script has been updated.

55cache Me IF You can

Fresh files

Wait a minute…the service worker script is written in JavaS-
cript. Your server is probably serving JavaScript files with a
long cache lifetime. After all, you want most JavaScript files to
be cached. The service worker file is an exception—you want
the browser to check for a new version every time.

If you have access to your server’s configuration, it’s a good
idea to add an exception for your service worker file. If you’re
running an Apache server, you could add this to your .htac-
cess file:

<IfModule mod_expires.c>

 <FilesMatch "serviceworker.js">

 ExpiresDefault "access plus 0 seconds"

 </FilesMatch>

</IfModule>

If you don’t have access to your server’s configuration, not to
worry. Browsers make an exception for service worker scripts.
Even if your server is telling the browser to cache all JavaScript
files for weeks, months, or years, a service worker script will
only be cached for a maximum of twenty-four hours. So even
if you can’t explicitly change your server settings, the longest
anyone will wait to get the updated version is one day.

If your server is set up to serve CSS and JavaScript with long
cache lifetimes—as it should be—it’s not enough to only update
the name of your static cache in your service worker script.
While that will trigger the install event, it doesn’t mean that
the files will be fetched directly from the server. The browser
will fetch the files just as it normally does, which means it will
check the HTTP cache first before going out to the network.
Whatever strategy you’re currently using to break out of the
HTTP cache, it still applies.

If you’re adding version numbers to your CSS and JavaScript
file names, you’ll need to update the names of those files in your
service worker script too:

return staticCache.addAll([

56 goIng oFFLIne

 '/path/to/stylesheet-v2.css',

 '/path/to/javascript-v3.js'

]);

skipWaiting

Remember the service worker life cycle that we looked at in
Chapter 3?

1. Download
2. Install
3. Wait
4. Activate

We can bypass that third step using the skipWaiting com-
mand in Chrome’s Developer Tools. Every time you make a
change to your service worker script, you can click on that
skipWaiting link to make sure your new service worker
takes control immediately, without having to close your
browser window.

You can bypass this waiting phase in your code, too, by tell-
ing the service worker to take control as soon as it is installed.
Use the aptly named skipWaiting to do this:

addEventListener('install', installEvent => {

 skipWaiting();

 installEvent.waitUntil(

 // Cache your files here

); // end waitUntil

}); // end addEventListener

The new service worker will take control as soon as it has
been installed. The old service worker fades away into noth-
ingness. You have removed the “waiting” step from the service
worker life cycle.

When you’re testing on localhost and making lots of
changes to your service worker script, there’s another very
useful checkbox in Chrome’s Developer Tools: Update on

57cache Me IF You can

Reload activates your updated service worker whenever you
refresh the page.

But remember, not all refreshes are created equal. If you
do a hard refresh (holding down the Shift key while you’re
refreshing the page), then the browser will bypass the service
worker completely.

DELETING CACHES
Now you’ve got a way to trigger updates to your service
worker—you change the version number at the top of your file:

const version = 'V0.03';

That will create a whole new cache called V0.03staticfiles:

const staticCacheName = version + 'staticfiles';

But the old caches don’t go away (Fig 4.2).
The browser doesn’t know that it’s never going to use those

caches, so it’s up to you to take the garbage out. The moment
that a service worker goes from installation to activation is the
perfect time to take care of this—think of it as tidying up when
you move into a new place. Best of all, there’s an event that fires
at the moment of activation. You can use that event to trigger
your clean-up:

addEventListener('activate', activateEvent => {

 activateEvent.waitUntil(

 // Clean all the things!

); // end waitUntil

}); // end addEventListener

I’m not going to lie—the code you need to write is going to get
quite complex. Don’t worry if it doesn’t all make sense at first.

You can access the names of all your caches using the keys
method of the caches object. It is—you guessed it—a promise:

58 goIng oFFLIne

caches.keys()

.then(cacheNames => {

 // Loop through the cacheNames array

})

At this point, you need to loop through the values in the
cacheNames array. But you can’t use a loop like you would in
regular JavaScript code—that would be a synchronous opera-
tion. In service worker land, everything needs to be asynchro-
nous, which means everything needs to be a promise. That’s
okay—you can create your own promise and return its result
(either a fulfillment or a rejection):

caches.keys()

.then(cacheNames => {

 return Promise.all(

 // Asynchronous code goes here

);

})

Using Promise.all allows you to wrap up a number of
asynchronous operations in one return statement. All of the
promises within must be fulfilled.

Fig 4.2: You can see all the caches in chrome’s developer tools under “cache” in the
sidebar of the application panel.

59cache Me IF You can

You’ve got an array called cacheNames that contains the
names of all the caches. In the past, if I were going to loop
through an array like this, I’d use something like a for loop.
But in ES6, we’ve got a method called map, which is perfect
for this situation. The map method is attached to the array. You
can filter out the unwanted caches from the cacheNames array:

cacheNames.map(cacheName => {

 if (cacheName != staticCacheName) {

 // This cacheName needs to go!

 }

});

The if statement will find any caches with names that don’t
match the current static cache—notice the exclamation point
that turns the question into a negative.

You can then delete each of those caches using the delete
method of the caches object:

if (cacheName != staticCacheName) {

 return caches.delete(cacheName);

}

You’re using a return statement because all of this is happen-
ing inside a promise. The return statement allows the promise
to be fulfilled.

There’s one extra step you can take once all the old caches
have been deleted. Normally when a service worker becomes
active, it doesn’t take immediate control over any opened tabs.
Instead, it waits for the user to either go to a new page or refresh
the current page. That’s very well-mannered of the service
worker; but if you don’t want it to be so deferential, you can
instruct it to take control immediately.

The command for this is clients.claim. You can put this
instruction in another then clause after you’ve dealt with old
caches. With asynchronous events, chaining then clauses
together is how you ensure that your code executes in the
order you want.

60 goIng oFFLIne

In this case, there’s nothing to pass into the then clause, so
there’s a pair of parentheses before the arrow instead. It looks
like the worst emoticon ever:

.then(() => {

 return clients.claim();

})

Putting it all together, your activation code looks like this:

addEventListener('activate', activateEvent => {

 activateEvent.waitUntil(

 caches.keys()

 .then(cacheNames => {

 return Promise.all(

 cacheNames.map(cacheName => {

 if (cacheName != staticCacheName) {

 return caches.delete(cacheName);

 } // end if

 }) // end map

); // end return Promise.all

 }) // end keys then

 .then(() => {

 return clients.claim();

 }) // end then

); // end waitUntil

}); // end addEventListener

That looks quite complex. Don’t worry if you don’t under-
stand all of it. To be honest, I don’t understand it myself. Please
don’t tell anyone.

The truth is that your activation code and your installation
code will remain largely unchanged from project to project. You
can copy and paste code with only minor changes. If you don’t
understand the code completely, that’s okay.

In short, use the install event to cache some files; use the
activate event to delete old caches.

addEventListener('install', installEvent => {

61cache Me IF You can

 // Cache some files

});

addEventListener('activate', activateEvent => {

 // Delete old caches

});

But the code you write for the fetch event…well, that’s a
different story. That code can be as unique as your website.
That’s where the magic happens.

62 goIng oFFLIne

you’ve made some great performance enhancements to
your website. Using the combined power of the Cache API and
the Fetch API, you’re making your site nice and zippy.

If you recall, here’s the logic of your fetch events:

1) When the browser requests a file,
a) look for a matching file that has been cached;
b) if there’s no match, fetch the file from the network.

You can go further. You can add another step:

c) If the file can’t be fetched, show a fallback instead.

There are a few reasons why a file couldn’t be fetched. Per-
haps your server has been taken down for maintenance, or per-
haps the user has lost their internet connection. The end result
is the same—the file that the user is requesting is unavailable.

At the close of Chapter 3, you saw how you could create a
fallback response to deal with this situation:

SERVICE WORKER
STRATEGIES5

63ServIce Worker StrategIeS

return new Response(

 '<h1>Oops!</h1> <p>Something went wrong.</p>',

 {

 headers: {'Content-type': 'text/html;

charset=utf-8'}

 }

);

Now that you’ve mastered the power of caching, you can cre-
ate a much richer fallback. You can make a fallback page ahead
of time—then, when the user requests a page that’s unavailable,
you can channel your inner TV chef and declare, “Here’s one
I made earlier!”

YOUR OFFLINE PAGE
Start by creating your fallback page. I usually put this at the root
of the site, so it has a URL like /offline.html. In this page, you
can make use of any of the assets—styles, scripts, fonts, and
images—that you are putting in your static cache.

Once you’ve got your offline page up and running, add its
URL to the list of files in your static cache. Update the list of
files in the code you’ve written for the install event:

const version = 'V0.04';

const staticCacheName = version + 'staticfiles';

addEventListener('install', installEvent => {

 installEvent.waitUntil(

 caches.open(staticCacheName)

 .then(staticCache => {

 // These files don't block installation

 staticCache.addAll([

 '/path/to/font.woff',

 '/path/to/icon.svg'

]); // end addAll

 // These files must be cached for installation

 return staticCache.addAll([

 '/path/to/stylesheet.css',

64 goIng oFFLIne

 '/path/to/javascript.js',

 '/offline.html'

]); // end return addAll

 }) // end open then

); // end waitUntil

}); // end addEventListener

Your code for the activate event remains the same as
before—you still want to clean up old caches before activating
the updated service worker.

But the code you’ve written for every fetch event needs
to be updated. The part where you attempt to fetch from the
network currently doesn’t have a then clause or a catch clause:

return fetch(request);

A catch clause would be the perfect place to, well, “catch”
any problems:

return fetch(request)

.catch(error => {

 // Serve up a fallback

});

In this case, your fallback is the offline page that you’ve put
in your cache:

return fetch(request)

.catch(error => {

 return caches.match('/offline.html');

});

There’s that familiar pattern of passing results up the chain
using return statements. At one end of the chain is fetch-
Event.respondWith. At the other end of the chain is the catch
clause. If that catch code is executed, the offline page is the
response that’s sent back.

Putting it all together, your fetch-handling code looks
like this:

65ServIce Worker StrategIeS

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 fetchEvent.respondWith(

 // First look in the cache

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch from the network

 return fetch(request)

 .catch(error => {

 // Show a fallback page instead

 return caches.match('/offline.html');

 }); // end fetch catch and return

 }) // end match then

); // end respondWith

}); // end addEventListener

You can test how well this is working by going offline. Just
as we learned in Chapter 3, the simplest solution is to tick
the checkbox marked Offline in Chrome’s Developer Tools.
(Remember to make sure that the latest version of your service
worker is installed and activated first). Now if you refresh the
page, you’ll be rewarded with your glorious custom offline page.

Notice that the URL doesn’t change—you aren’t redirected to
/offline.html. Rather, the content of that fallback page is served
up as a temporary replacement for the usual content of the page
you’re trying to access.

Much like an oh-so-clever 404 page, your offline page is
another opportunity to show off your brand. Instead of show-
ing your site’s visitors a generic offline dinosaur, you can regale
them with a witty message of sympathy (assuming that’s in your
brand’s wheelhouse) (Fig 5.1).

Hotel comparison website Trivago has a particularly nice
fallback: if a page is unavailable, you can try completing a maze
instead (Fig 5.2).

66 goIng oFFLIne

Fig 5.1: a selection of custom offline pages.

Fig 5.2: trivago’s offline maze game.

67ServIce Worker StrategIeS

CHOOSING YOUR STRATEGY
Your fetch-handling code can be tweaked to accommodate all
kinds of circumstances. A service worker script written for one
site might not be a good fit for a different site—the install and
activate code may require only minor tweaking, but the fetch
code should be designed on a case-by-case basis.

Sniffing headers

There are plenty of sites where the text content is updated
frequently, but images are unlikely to change. In that situation,
you might want to write different logic for HTML requests and
image requests. You can do that by looking in the headers of
the request. The Accept header will tell you what kind of file
is being requested:

request.headers.get('Accept')

You have access to request.headers, which is an array.
The get method allows you to find the exact header you want,
which in this case is the Accept header.

The includes method is perfect for searching one string for
a shorter string. You can ask if the Accept header includes the
string text/html:

request.headers.get('Accept').includes('text/html')

This will give a true or false answer. That makes it perfect for
an if statement. An if statement expects a true/false question
for it to evaluate:

if (request.headers.get('Accept').includes('text/

html')) {

 // True!

} else {

 // False!

}

68 goIng oFFLIne

Repeating this pattern allows you to build up a logical struc-
ture to your fetch-handling code:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 if (request.headers.get('Accept').includes('text/

html')) {

 // HTML-handling logic goes here

 } else if (request.headers.get('Accept').

includes('image')) {

 // Image-handling logic goes here

 } else {

 // Logic for everything else goes here

 }

});

If you don’t like all of the if/else pairing going on, you
could flatten the structure a bit by using return statements
inside each if block. That way, if the code inside the if block
is executed, none of the code after that will be executed:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 if (request.headers.get('Accept').includes('text/

html')) {

 // HTML-handling logic goes here

 return; // Go no further

 }

 if (request.headers.get('Accept').

includes('image')) {

 // Image-handling logic goes here

 return; // Go no further

 }

 // Logic for everything else goes here

});

69ServIce Worker StrategIeS

A strategy for pages

For HTML files, you probably want to serve up the freshest
possible version. Your logic might look something like this:

1) When the user requests an HTML file,
a) fetch that page from the network;
b) otherwise show the fallback page.

Here’s how that translates into code:

// When the user requests an HTML file

if (request.headers.get('Accept').includes('text/

html')) {

 fetchEvent.respondWith(

 // Fetch that page from the network

 fetch(request)

 .catch(error => {

 // Otherwise show the fallback page

 return caches.match('/offline.html');

 }) // end fetch catch

); // end respondWith

 return; // Go no further

} // end if

A strategy for images

You could also have a whole other cache—separate from your
existing cache for static files—that’s just for storing images. This
will make repeat visits speedier and speedier, loading images
straight from the cache for repeat visitors. The logic would
look like this:

1) Every time a visitor makes a request for an image,
a) look for a cached version of the image;
b) otherwise fetch the image from the network

i) and put the image in the cache.

70 goIng oFFLIne

First of all, you’ll need to name your new cache—let’s call it
images—alongside your existing cache for static files. There’s
no need to add versioning to this one.

const version = 'V0.04';

const staticCacheName = version + 'staticfiles';

const imageCacheName = 'images';

Near the start of your service worker script, create an array
that contains the names of your caches. You could call it cache-
List:

const cacheList = [

 staticCacheName,

 imageCacheName

];

You’ll need to update the filtering part of your activation
code. Currently it’s looking to see whether the name of the
cache being checked isn’t equal to the name of the static cache:

if (cacheName != staticCacheName) {

 return caches.delete(cacheName);

}

Change that line of code so that it’s now looking to see
whether there’s a matching name in your cacheList array. The
includes method is perfect for this:

if (!cacheList.includes(cacheName)) {

 return caches.delete(cacheName);

}

See that exclamation mark? The if statement is asking if the
cacheList array does not include cacheName.

Your updated activation code looks like this:

addEventListener('activate', activateEvent => {

 activateEvent.waitUntil(

71ServIce Worker StrategIeS

 caches.keys()

 .then(cacheNames => {

 return Promise.all(

 cacheNames.map(cacheName => {

 if (!cacheList.includes(cacheName)) {

 return caches.delete(cacheName);

 } // end if

 }) // end map

); // end return Promise.all

 }) // end keys then

 .then(() => {

 return clients.claim();

 }) // end then

); // end waitUntil

}); // end addEventListener

Now for the fetch-handling code. Here’s the logic again:

1) When the user requests an image,
a) look for a cached version of the image;
b) otherwise fetch the image from the network

i) and put the image in the cache.

Here’s the first part in code:

// When the user requests an image

if (request.headers.get('Accept').includes('image'))

{

 fetchEvent.respondWith(

For the second step, it doesn’t matter which cache the image
is in. It might be in the static cache, or it might be in the cache
dedicated to images. In that situation, you can use the catch-all
caches.match instead of opening a specific cache by name:

// Look for a cached version of the image

caches.match(request)

.then(responseFromCache => {

 if (responseFromCache) {

72 goIng oFFLIne

 return responseFromCache;

 }

If there’s no match found in any cache, you’ll need to move
on to the next step—fetching the image:

// Otherwise fetch the image from the network

return fetch(request);

Here it is in its expanded form:

// Otherwise fetch the image from the network

return fetch(request)

.then(responseFromFetch => {

 return responseFromFetch;

});

It’s worth remembering that “fetch” doesn’t strictly mean
“Fetch this from the network.” It means, “Do what you would
do anyway.” The browser will first look in the HTTP cache
before making a network request.

Either way, once you have the image, you don’t want to just
serve it up. There’s one other step before that: put the image
in the cache.

You can use the put method to add a file to a cache. You give
it the name of the file, and the contents. But if you try putting
the contents of responseFromFetch directly into a cache, you’ll
run into problems:

// Otherwise fetch the image from the network

return fetch(request)

.then(responseFromFetch => {

 // Put the image in the cache

 caches.open(imageCacheName)

 .then(imageCache => {

 // This will cause an error!

 imageCache.put(request, responseFromFetch);

 });

 return responseFromFetch;

});

73ServIce Worker StrategIeS

It turns out that you can only use responseFromFetch once.
That’s because responseFromFetch isn’t a standalone chunk of
data like a string or an object. It’s a stream of data. Once that
data has been streamed, it can’t be used again.

That’s okay. You can make a copy of the data using the clone
method, then you can put the copy into the cache while you’re
returning the original response:

// Otherwise fetch the image from the network

return fetch(request)

.then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 caches.open(imageCacheName)

 .then(imageCache => {

 imageCache.put(request, copy);

 });

return responseFromFetch;

});

There’s a little bit of a problem here. You’re hoping that
the copy will be put into the cache at the same time as you’re
sending the response back to the browser. There’s a chance
that the service worker might “power down” once the user has
received the response. If that happens, the copy might never
end up in the cache.

It’s not the end of the world if that happens—the important
thing is that the browser sends the user a response. Still, you
can make sure that the copy gets cached by invoking waitUn-
til on the fetchEvent. You’re telling the fetchEvent to stay
active until the caching code completes, even if a response has
already been received:

// Otherwise fetch the image from the network

return fetch(request)

.then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

74 goIng oFFLIne

 caches.open(imageCacheName)

 .then(imageCache => {

 return imageCache.put(request, copy);

 })

);

 return responseFromFetch;

});

Here’s all the code for your image-handling logic:

// When the user requests an image

if (request.headers.get('Accept').includes('image'))

{

 fetchEvent.respondWith(

 // Look for a cached version of the image

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch the image from the network

 return fetch(request)

 .then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

 caches.open(imageCacheName)

 .then(imageCache => {

 return imageCache.put(request, copy);

 }) // end open then

); // end waitUntil

 return responseFromFetch;

 }); // end fetch then and return

 }) // end match then

); // end respondWith

 return; // Go no further

} // end if

75ServIce Worker StrategIeS

A strategy for everything else

That still leaves other types of files, like CSS and JavaScript. The
logic for handling those files could be:

1) For everything else,
a) look for a cached copy of the file;
b) otherwise fetch the file from the network.

Here’s that logic translated into code:

// For everything else...

fetchEvent.respondWith(

 // Look for a cached copy of the file

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch the file from the network

 return fetch(request);

 }) // end match then

); // end respondWith

Putting it all together

Now you’ve got different code for different kinds of files:

1. The code for handling HTML pages (try the network first,
otherwise show a fallback)

2. The code for handing images (try the cache first, otherwise
go to the network and keep a copy)

3. The code for handling everything else (try the cache first,
otherwise go to the network)

Here’s your logic in English:

1) When the user requests an HTML file,
a) fetch that page from the network;

76 goIng oFFLIne

b) otherwise show the fallback page.
2) When the user requests an image,

a) look for a cached version of the image;
b) otherwise fetch the image from the network

i) and put a copy in the cache.
3) For everything else,

a) look for a cached version of the file;
b) otherwise fetch from the network.

Translating all of that into code, you get this:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

 // When the user requests an HTML file

 if (request.headers.get('Accept').includes('text/

html')) {

 fetchEvent.respondWith(

 // Fetch that page from the network

 fetch(request)

 .catch(error => {

 // Otherwise show the fallback page

 return caches.match('/offline.html');

 }) // end fetch catch

); // end respondWith

 return; // Go no further

 } // end if

 // When the user requests an image

 if (request.headers.get('Accept').

includes('image')) {

 fetchEvent.respondWith(

 // Look for a cached version of the image

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch the image from the

network

 return fetch(request)

77ServIce Worker StrategIeS

 .then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

 caches.open(imageCacheName)

 .then(imageCache => {

 return imageCache.put(request, copy);

 }) // end open then

); // end waitUntil

 return responseFromFetch;

 }); // end fetch then and return

 }) // end match then

); // end respondWith

 return; // Go no further

 } // end if

 // For everything else...

 fetchEvent.respondWith(

 // Look for a cached version of the file

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch the file from the network

 return fetch(request);

 }) // end match then

); // end respondWith

}); // end addEventListener

Phew! It’s quite overwhelming to see pages of JavaScript like
that, isn’t it? Bear in mind that what looks like one big block
of code is made up of smaller self-contained pieces. As long as
you understand what’s happening within the individual parts,
don’t worry about how intimidating it looks when they're all
joined together.

If the code doesn’t work for you, don’t despair. Often the
problem turns out to be a single mistyped character. JavaScript
is less forgiving than CSS or HTML—you need to make sure
your curly braces and parentheses all match up. The JavaScript

78 goIng oFFLIne

console in your browser’s developer tools can help you track
down where the problem might be. Most of the time it turns
out to be a stray comma, a missing period, or some other punc-
tuation problem.

I find it helps to imagine I’m in a film like Sneakers, Hackers,
or War Games. It doesn’t make debugging any easier, but I feel
better about myself.

i’m sure you can come up with some additions to your
service worker script. Take a second look at the image logic,
for example:

1) When the user requests an image,
a) look for a cached version of the image;
b) otherwise fetch the image from the network

i) and put a copy in the cache.

That doesn’t take into account the worst-case scenario: What
if the image can’t be retrieved from the cache or the network?
Take a leaf out of the strategy you’re using for HTML—you could
add one final conditional step to your image-handling logic:

c) Otherwise show a fallback image.

For this to work, you’d need to update your install event
code. The fallback image would need to be included in your
static assets, just like your offline page:

REFINING YOUR
SERVICE WORKER6

79reFInIng Your ServIce Worker

i’m sure you can come up with some additions to your
service worker script. Take a second look at the image logic,
for example:

1) When the user requests an image,
a) look for a cached version of the image;
b) otherwise fetch the image from the network

i) and put a copy in the cache.

That doesn’t take into account the worst-case scenario: What
if the image can’t be retrieved from the cache or the network?
Take a leaf out of the strategy you’re using for HTML—you could
add one final conditional step to your image-handling logic:

c) Otherwise show a fallback image.

For this to work, you’d need to update your install event
code. The fallback image would need to be included in your
static assets, just like your offline page:

REFINING YOUR
SERVICE WORKER6

80 goIng oFFLIne

staticCache.addAll([

 '/path/to/stylesheet.css',

 '/path/to/javascript.js',

 '/offline.html',

 '/fallback.svg'

]);

Don’t forget to update your version variable too:

const version = 'V0.05';

Now you can add a catch clause to the part of your
image-handling code where you try fetching from the network:

.catch(error => {

 return caches.match('/fallback.svg');

})

Here’s how your updated image-handling code looks:

// When the user requests an image

if (request.headers.get('Accept').includes('image'))

{

 fetchEvent.respondWith(

 // Look for a cached version of the image

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise fetch the image from the network

 return fetch(request)

 .then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

 caches.open(imageCacheName)

 .then(imageCache => {

 return imageCache.put(request, copy);

81reFInIng Your ServIce Worker

 }) // end open then

); // end waitUntil

 return responseFromFetch;

 }) // end fetch then

 .catch(error => {

 // Otherwise show a fallback image

 return caches.match('/fallback.svg');

 }); // end fetch catch and return

 }) // end match then

); // end respondWith

 return; // Go no further

} // end if

To recap, here’s your updated logic for images:

1) When the user requests an image,
a) look for a cached version of the image;
b) otherwise fetch the image from the network

i) and put a copy in the cache;
c) otherwise show a fallback image.

FETCHING FRESH IMAGES
I spot another opportunity to update the logic for your images.
The current logic is working great, but the image cache never
gets fresh copies of images—they’re only added to the cache the
first time they’re fetched. You could expand the logic to keep
the cache updated regardless:

1) When the user requests an image,
a) look for a cached version of the image,

i) fetch a fresh version from the network
(1) and update the cache;

b) otherwise fetch the image from the network
i) and put a copy in the cache;

c) otherwise show a fallback image.

Here’s the code where you carry out the first two steps:

82 goIng oFFLIne

// When the user requests an image

if (request.headers.get('Accept').includes('image'))

{

 fetchEvent.respondWith(

 // Look for a cached version of the image

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 }

You can update that if block to include the new extra steps:

if (responseFromCache) {

 // Fetch a fresh version from the network

 fetchEvent.waitUntil(

 fetch(request)

 .then (responseFromFetch => {

 // Update the cache

 caches.open(imageCacheName)

 .then(imageCache => {

 return imageCache.put(request,

responseFromFetch);

 }); // end open then

 }) // end fetch then

); // end waitUntil

 return responseFromCache;

} // end if

Now your cache of images won’t ever get too stale.
I think we’ve covered some good ways of optimizing our

fetch-handling code for images. Now let’s look at handling
web pages.

83reFInIng Your ServIce Worker

CACHING WEB PAGES
The current logic for your HTML pages is fairly straightfor-
ward. There are only two possibilities: either the user gets
the page they want directly from the network, or they get a
fallback page:

1) When the user requests an HTML file,
a) fetch that page from the network;
b) otherwise show the fallback page.

But suppose you had a separate cache just for pages. Then
you could introduce an intermediate step to your logic:

1) When the user requests an HTML file,
a) fetch that page from the network;
b) otherwise look for a cached version of the page;
c) otherwise show the fallback page.

You’ll need to make a new cache for pages. Like the images
cache, this one doesn’t need to be versioned:

const version = 'V0.05';

const staticCacheName = version + 'staticfiles';

const imageCacheName = 'images';

const pagesCacheName = 'pages';

Then update your list of valid cache names:

const cacheList = [

 staticCacheName,

 imageCacheName,

 pagesCacheName

];

You could prepopulate that new cache during the install
event. But remember, that event only fires once. Any files you
put in a cache at that point will remain unchanged. That’s great

84 goIng oFFLIne

for static files like CSS, JavaScript, and fonts, but it’s not ideal
for web pages that are updated frequently.

Instead, you could repeat what you’re doing with images,
and populate the cache as you go. Every time the user visits a
page, put a copy of that page in the cache:

1) When the user requests an HTML file,
a) fetch that page from the network

i) and put a copy in the cache;
b) otherwise look in the cache;
c) otherwise show the fallback page.

You’re still treating images and pages differently—for images,
you look in the cache first; for pages, you try the network first.
In both cases you’re building up a bigger and bigger cache as
the user explores your site.

The code for dealing with pages remains the same to begin with:

// When the user requests an HTML file

if (request.headers.get('Accept').includes('text/

html')) {

 fetchEvent.respondWith(

 // Fetch that page from the network

 fetch(request)

Now you can introduce a then clause to put a copy of the
response into the cache:

.then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

 caches.open(pagesCacheName)

 .then(pagesCache => {

 return pagesCache.put(request, copy);

 })

);

 return responseFromFetch;

})

85reFInIng Your ServIce Worker

With that code in place, your site’s visitors will build up a
cache of pages as they travel around your site. If they lose their
network connection, you can try showing them a cached ver-
sion of the page they’re requesting. As long as they’ve visited it
at least once before, the page should be in the cache.

You can use the catch clause to search your caches:

.catch(error => {

 return caches.match(request);

})

Finally, if all else fails, serve up the fallback page. You’ll need
to expand your catch clause to find out whether the match
returned a meaningful response. If the response was empty,
grab the fallback page from your static cache:

.catch(error => {

 return caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 }

 return caches.match('/offline.html');

 });

})

Putting all that together, here’s your updated code for han-
dling pages:

// When the user requests an HTML file

if (request.headers.get('Accept').includes('text/

html')) {

 fetchEvent.respondWith(

 // Fetch that page from the network

 fetch(request)

 .then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

86 goIng oFFLIne

 caches.open(pagesCacheName)

 .then(pagesCache => {

 return pagesCache.put(request, copy);

 }) // end open then

); // end waitUntil

 return responseFromFetch;

 }) // end fetch then

 .catch(error => {

 // Otherwise look for a cached version of the

page

 return caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise show the fallback page

 return caches.match('/offline.html');

 }); // end match then and return

 }) // end fetch catch

); // end respondWith

 return; // Go no further

} // end if

And with that, you’ve created a really nice offline experience.
If someone is browsing your site, they might lose their internet
connection and never even notice—they’ll still be able to view
any pages they previously visited.

HANDLING URLS
So far, your fetch-handling logic has been based on file types:
HTML, images, and everything else. If you wanted, you could
apply different logic depending on other factors, like which part
of your site is being requested.

Here’s a fairly typical example: Let’s say you’ve got a site
that publishes articles. Those articles might appear under a
particular URL like /posts/ or /articles/. If the content of those
articles rarely changes after publication, you might as well try

87reFInIng Your ServIce Worker

serving them from the cache instead of the network. That way,
the user will get a really speedy response.

You can still choose to update the cache with a fresh copy of
the page. Then the next time the user visits that page, they’ll get a
fresher version. The version they get from the cache will be slightly
out of date—it will be one version behind—but if the changes are
likely to be minor corrections, the slightly stale nature of the
response is a small tradeoff for the super-speedy response time.

You probably wouldn’t want to serve up a cached version of
your homepage, where content freshness is a priority. That’s
fine—you can write different code for different scenarios.
Instead of only looking at the file type, you can also look at the
URL being requested.

Here’s how you’re starting your fetch-handling code:

addEventListener('fetch', fetchEvent => {

 const request = fetchEvent.request;

That request object has a property called url. You can use
this to look for specific strings of text, like /products/ or /
articles/:

if (request.url.includes('/articles/')) {

 // Logic for article pages goes here

 return;

}

If you need more fine-grained control in that if statement,
you can use a regular expression with the test method:

if (/\/articles\/.+/.test(request.url)) {

 // Now you've got two problems

 return;

}

That’s looking for the string /articles/ followed by at
least one other character…I think. Regular expressions are
my kryptonite.

88 goIng oFFLIne

However you decide to do it, being able to apply differ-
ent logic to different URL patterns opens up a whole world
of possibilities.

Here’s the logic you might apply for article pages if you want
to prioritize speed over freshness:

1) When the requested page is an article,
a) look in the cache,

i) fetch a fresh version from the network
(1) and update the cache;

b) otherwise fetch the page from the network
i) and put a copy in the cache;

c) otherwise show the fallback page.

Here we go:

// When the requested page is an article

if (/\/articles\/.+/.test(request.url)) {

 fetchEvent.respondWith(

Start by looking for a match from the cache:

// Look in the cache

caches.match(request)

.then(responseFromCache => {

 if (responseFromCache) {

Before sending back the response from the cache, use
waitUntil to fetch a fresh version in the background:

// Fetch a fresh version from the network

fetchEvent.waitUntil(

 fetch(request)

When we get a fresh copy, put it in the cache:

.then(responseFromFetch => {

 // Update the cache

 caches.open(pagesCacheName)

89reFInIng Your ServIce Worker

 .then(pagesCache => {

 return pagesCache.put(request,

responseFromFetch);

 });

})

Finally, don’t forget to send back the response from the cache:

return responseFromCache;

Putting those steps together, you get this:

// Look in the cache

caches.match(request)

.then(responseFromCache => {

 if (responseFromCache) {

 // Fetch a fresh version from the network

 fetchEvent.waitUntil(

 fetch(request)

 .then(responseFromFetch => {

 // Update the cache

 caches.open(pagesCacheName)

 .then(pagesCache => {

 return pagesCache.put(request,

responseFromFetch);

 }); // end open then

 }) // end fetch then

 }; // end waitUntil

 return responseFromCache;

 } // end if

The next part—“otherwise fetch the page from the net-
work”—follows the familiar pattern:

// Otherwise fetch the page from the network

return fetch(request);

But it needs to be expanded for the additional step—“and
put a copy in the cache”:

90 goIng oFFLIne

// Otherwise fetch the page from the network

return fetch(request)

.then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

 caches.open(pagesCacheName)

 .then(pagesCache => {

 return pagesCache.put(request, copy);

 })

);

 return responseFromFetch;

})

Finally there’s the last resort—“otherwise show the fall-
back page”:

// Otherwise show the fallback page

.catch(error => {

 return caches.match('/offline.html');

});

Putting it all together, you get this:

// When the requested page is an article

if (/\/articles\/.+/.test(request.url)) {

 fetchEvent.respondWith(

 // Look in the cache

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 // Fetch a fresh version from the network

 fetchEvent.waitUntil(

 fetch(request)

 .then(responseFromFetch => {

 // Update the cache

 caches.open(pagesCacheName)

 .then(pagesCache => {

91reFInIng Your ServIce Worker

 return pagesCache.put(request,

responseFromFetch);

 }); // end open then

 }) // end fetch then

); // end waitUntil

 return responseFromCache;

 } // end if

 // Otherwise fetch the page from the network

 return fetch(request)

 .then(responseFromFetch => {

 // Put a copy in the cache

 const copy = responseFromFetch.clone();

 fetchEvent.waitUntil(

 caches.open(pagesCacheName)

 .then(pagesCache => {

 return pagesCache.put(request, copy);

 }) // end open then

); // end waitUntil

 return responseFromFetch;

 }) // end fetch then

 .catch(error => {

 // Otherwise show the fallback page

 return caches.match('/offline.html');

 }); // end fetch catch and return

 }) // end match then

); // end respondWith

 return; // Go no further

} // end if

That’s a hefty chunk of code! You can put all of it right inside
the if statement that checks for HTML requests:

// When the user requests an HTML file

if (request.headers.get('Accept').includes('text/

html')) {

 // When the requested page is an article

 if (/\/articles\/.+/.test(request.url)) {

 // Look in the cache

 // Fetch a fresh version from the network

92 goIng oFFLIne

 // Update the cache

 // Otherwise fetch the page from the network

 // Put a copy in the cache

 // Otherwise show the fallback page

 return;

 }

 // Otherwise fetch the page from the network

 // Put a copy in the cache

 // Otherwise look in the cache

 // Otherwise show the fallback page

 return;

}

That gives you different priorities for different kinds of
pages. For articles, try the cache first. For other pages, try the
network first.

PATTERNS
Your code is getting quite long. It’s daunting to have so much
JavaScript. That’s why I find comments in the code so helpful—
they help me keep track of what’s going on where.

Even though you have many lines of code, the overall struc-
ture of that code is made up of repeating patterns:

• Using if statements to test for certain conditions.
• Looking for files in caches.
• Fetching files from the network.
• Putting copies of files into a cache.

Those are the building blocks, and, just like pieces of
LEGO, they can be arranged into an almost infinite variety
of configurations.

The logic for article pages and images is a particularly pow-
erful pattern. Because you’re looking in the cache first before
trying the network, a returning visitor to your site will get the
content they want almost instantly. It doesn’t matter whether
they’re online, offline, or on an intermittent connection—in

93reFInIng Your ServIce Worker

some ways, having a flaky connection is worse than having
no connection at all. That’s why this pattern can make such a
difference to the user experience.

Offline First

This “cache first, then network” pattern has been labelled Offline
First (you can hear the capital letters when people say it). It’s a
somewhat misleading moniker. You can’t offer a truly offline-
first experience—the user must visit your site at least once to
get the benefit. But it’s useful shorthand for a way of thinking
about how people might interact with your site.

This approach makes no assumptions about the kind of net-
work connection someone might have. In much the same way
that a service worker can be thought of as an enhancement to
your existing site, the Offline First approach treats the network
itself as an enhancement.

There are some situations where you can apply Offline First
thinking to the entire site. An in-browser game that doesn’t
include team play could be cached in its entirety. I published a
book online at resilientwebdesign.com that doesn’t require an
internet connection to be read. The contents of the book hardly
ever change (apart from the occasional fixed typo), so caching
the entire thing feels like a safe bet.

Still, it’s somewhat presumptuous. After all, people don’t
have an infinite amount of room on their devices. So let’s
look at other ways to make our service workers as respectful
as possible.

https://resilientwebdesign.com/

94 goIng oFFLIne

you might be wondering how much space your service
worker gets to play with. Just how many pages and images can
you keep caching?

There isn’t a fixed amount of space set aside for service
worker caches. There are a number of browser technologies—
like localStorage, IndexedDB, and the Cache API—that share
the space available on a device. There’s often a remarkably large
amount of space to share, sometimes gigabytes of it.

Still, storage isn’t limitless. When a device starts to get full,
it will attempt to do some cleaning up. But even at this point,
your service worker caches won’t be the first to go. The HTTP
cache is the first place where the browser will do some spring
cleaning. That’s one reason why a bespoke service worker
cache is more reliable than the shared HTTP cache.

Even though the files in your caches are fairly safe, you still
don’t want to hoard any more than you need to. If every website
started storing megabytes and megabytes of files, it would turn
into a tragedy of the commons.

TIDYING UP7

95tIdYIng uP

MANAGING SPACE
You can be a good citizen of the web by only caching files that
you’re pretty sure will get used. You’re already doing the right
thing by deleting old caches during the activate event. It
would be nice if you could also periodically clean up individual
caches by putting a cap on the number of files they can store.

Perhaps you don’t need to store every single article someone
has ever read on your site; the most recent twenty or thirty
articles viewed might be enough. Likewise, you don’t need to
hold on to every image forever; limiting your image cache to
fifty or sixty images might be enough.

You need some code to trim down the number of items in a
specified cache. This is the perfect job for a function—a reusable
chunk of code that you can run more than once. Let’s call the
function trimCache and have it accept two arguments—the
name of the cache to trim, and the maximum number of items
we want the cache to store:

function trimCache(cacheName, maxItems) {

 // Trim the number of items in cacheName to

maxItems

Open up the specified cache and get a list of all the items in
it using the keys method:

cacheName.open(cache => {

 cache.keys()

 .then(items => {

In this situation, you don’t care what the items are—you just
want to know how many there are. You can find out by querying
the length property of items. You can compare that number
to the maxItems argument:

if (items.length > maxItems)

If there are too many items in the cache (i.e. more than max-
Items), you can delete an item.

96 goIng oFFLIne

You don’t want to delete the freshest item in the cache. It
makes more sense to delete the oldest item—the first one in the
array. Whereas we humans like counting from one, computers
like to start with zero. That’s why the first item in an array has
an index of zero, rather than one:

cache.delete(items[0])

Then you can repeat the whole operation:

.then(

 trimCache(cacheName, maxItems)

);

That will repeat the function with the same parameters. It
will continue to loop until the number of items in the cache
has been reduced to the value of maxItems.

Putting that all together, your function looks like this:

function trimCache(cacheName, maxItems) {

 cacheName.open(cache => {

 cache.keys()

 .then(items => {

 if (items.length > maxItems) {

 cache.delete(items[0])

 .then(

 trimCache(cacheName, maxItems)

); // end delete then

 } // end if

 }); // end keys then

 }); // end open

} // end function

Your function is ready and waiting to be called. But when
should you call it?

You could call the function from the activate event han-
dler—that’s where you’re cleaning up out-of-date caches. But
that event is triggered when someone returns to your site. If
someone spends a long time browsing your site—and doesn’t

97tIdYIng uP

return—their caches could get quite full. It would be better if
you could trigger the trimCache function every time someone
visits a page of your site. The fetch event seems like the right
time to do this, but things could get messy if you’re already
using that event to add items to caches.

The ideal time to trigger the trimCache function is after a
page has loaded. You can’t access that event directly in your
service worker script, but you can send instructions from a web
page to a service worker using a method called postMessage.

postMessage

Most of the logic in your service worker script is attached to
events: install, activate, and fetch. But there’s one other
useful event. It’s called message:

addEventListener('message', messageEvent => {

 // Do something with messageEvent

});

This event can be triggered from any page that’s currently
being controlled by the service worker. You can find out if a
page is being controlled by a service worker by checking for
the existence of navigator.serviceWorker.controller. Cur-
rently, your HTML page has a bit of feature detection like this:

<script>

if (navigator.serviceWorker) {

 navigator.serviceWorker.register('/serviceworker.

js');

}

</script>

You can add a further bit of feature detection before assum-
ing that a service worker is up and running:

<script>

if (navigator.serviceWorker) {

98 goIng oFFLIne

 navigator.serviceWorker.register('/serviceworker.

js');

 if (navigator.serviceWorker.controller) {

 // A service worker is up and running!

 }

}

</script>

Now you can safely trigger a message event from inside that
if statement. Use the postMessage method of navigator.
serviceWorker.controller:

navigator.serviceWorker.controller.postMessage(...);

You can put anything you like inside the argument for post-
Message. You could, for example, send a string of text like “clean
up caches”:

<script>

if (navigator.serviceWorker) {

 navigator.serviceWorker.register('/serviceworker.

js');

 if (navigator.serviceWorker.controller) {

 window.addEventListener('load', function () {

 navigator.serviceWorker.controller.

postMessage('clean up caches');

 });

 }

}

</script>

The message “clean up caches” is sent once the page has
finished loading. That message is now accessible from your
service worker script through the message event. It shows up
as a property of the event called data:

addEventListener('message', messageEvent => {

 console.log(messageEvent.data);

});

99tIdYIng uP

If you add that code to your service worker script, when
your page loads you’ll see this message in the console of your
browser’s developer tools:

clean up caches

Now, instead of logging the message to the console, use it to
trigger the trimCache function you wrote:

addEventListener('message', messageEvent => {

 if (messageEvent.data == 'clean up caches') {

 trimCache(pagesCacheName, 20);

 trimCache(imageCacheName, 50);

 }

});

That will trim the cache of pages down to twenty items, and
the cache of images down to fifty. I chose those numbers at ran-
dom; use whatever amounts are right for your site. Whatever
you choose, the important thing is that you’re practicing good
cache hygiene. The Cache API gives you a lot of power. Now
you’re wielding that power in a responsible way.

FUNCTIONS
Your trimCache function is a perfect example of abstracting
code into a reusable chunk. Whenever you find yourself writing
the same kind of code more than once, it might be a good idea to
turn that chunk of code into a function so that you can reuse it.

The fetch-handling code in your service worker script prob-
ably has some duplicated functionality scattered throughout.
An example would be wherever your logic includes this flow:

1) Fetch a file from the network,
a) open a cache

i) and put the file into the cache.

100 goIng oFFLIne

You could wrap that logic up into a reusable function called
stashInCache. The details will change each time you need to
use this code—Which file to fetch? Which cache to put it in?
Turn those details into arguments. Call them, say, request
and cacheName:

function stashInCache(request, cacheName) {

 // Fetch the file

 fetch(request)

 .then(responseFromFetch => {

 // Open the cache

 caches.open(cacheName)

 .then(theCache => {

 // Put the file into the cache

 return theCache.put(request,

responseFromFetch);

 }); // end open then

 }); // end fetch then

}

Here’s an example of where you might use this stashIn-
Cache function. In your logic for images, you have a step where
you fetch and then cache a fresh version of the image:

1) When the user requests an image,
a) look for a cached version of the image;

i) fetch a fresh version from the network
(1) and update the cache.

Now you can replace those last two steps with a call to the
stashInCache function:

// When the user requests an image

 if (request.headers.get('Accept').

includes('image')) {

 fetchEvent.respondWith(

 // Look for a cached version of the image

 caches.match(request)

 .then(responseFromCache => {

101tIdYIng uP

 if (responseFromCache) {

 // Fetch and cache a fresh version

 fetchEvent.waitUntil(

 return stashInCache(request,

imageCacheName);

); // end waitUntil

 return responseFromCache;

 } // end if

There’s also this logic for handling article pages:

1) When the requested page is an article,
a) look in the cache;

i) fetch a fresh version from the network
(1) and update the cache.

Here’s the code for that, but this time it’s using the stash-
InCache function:

// When the requested page is an article

 if (/\/articles\/(.+)/.test(request.url)) {

 fetchEvent.respondWith(

 // Look in the cache

 caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 // Fetch and cache a fresh version

 fetchEvent.waitUntil(

 return stashInCache(request,

pagesCacheName);

); // end waitUntil

 return responseFromCache;

 } // end if

Now you’ve managed to avoid some code duplication. As
an added bonus, you’ve also managed to reduce the amount of
nesting in your fetch-handling code. I find that the more deeply
nested my code gets, the harder it is to read.

102 goIng oFFLIne

Coding style

Because promises are asynchronous, whenever you want to
do something with the result of a promise, you have to do so
inside a then clause. If the logic you’re trying to code is “Do
this, and then do that, and then do something else”, you’ll find
your code is nested three levels deep.

The stashInCache function is a typical example of this.
There are three steps—“fetch the file, open the cache, and put
the file into the cache”—but each step depends on the result
of the step before. That’s why the structure of the code looks
like an arrowhead—each step in the process depends on the
step before.

function stashInCache(request, cacheName) {

 // Fetch the file

 fetch(request)

 .then(responseFromFetch => {

 // Open the cache

 caches.open(cacheName)

 .then(theCache => {

 // Put the file into the cache

 return theCache.put(request,

responseFromFetch);

 }); // end open then

 }); // end fetch then

} // end function

If you tried to rewrite the function without the nested then
clauses, your code wouldn’t work:

function stashInCache(request, cacheName) {

 // Fetch the file

 const responseFromFetch = fetch(request);

 // Open the cache

 const theCache = caches.open(cacheName);

 // Put the file into the cache

 return theCache.put(request, responseFromFetch);

}

103tIdYIng uP

The browser will execute that return statement before there’s
a final value for responseFromFetch or theCache (because both
fetch and caches.open are asynchronous). That’s a shame.
The sequential code looks so much nicer than the nested code.

Async functions

Now there’s a way to write code that looks sequential, but actu-
ally waits for each promise to resolve!

If you use the magic word async when you declare your
function, then you can use the word await within that function.

async function stashInCache(request, cacheName) {

 // Fetch the file

 const responseFromFetch = await fetch(request);

 // Open the cache

 const theCache = await caches.open(cacheName);

 // Put the file into the cache

 return await theCache.put(request,

responseFromFetch);

}

That function looks like a series of three sequential state-
ments, so it’s nice and easy to read. But because of the await
keyword, you can go ahead and reference responseFromFetch
and theCache in your closing statement. The async function is
sending back a promise. That promise won’t be resolved until
responseFromFetch and theCache have values (when both
fetch and caches.open have been resolved).

The upshot of all this is that async functions allow you to
rewrite your code to look neater. Async functions don’t provide
any new functionality; they’re just another way to write code
that deals with promises. Your service worker script is filled
with code that handles promises, so if you wanted to, you could
rewrite your code completely.

104 goIng oFFLIne

Rewriting promises

Here’s an example of a straightforward promise, written the
old-fashioned way. It’s responding to a fetch event by retrieving
the request from the network:

fetchEvent.respondWith(

 fetch(request)

); // end respondWith

Here’s the same functionality rewritten as an anonymous
async function:

fetchEvent.respondWith(

 async function() {

 return await fetch(request);

 }() // end async function

); // end respondWith

The extra pair of parentheses at the close of the async func-
tion are there so that the function is executed straightaway.
Those parentheses are necessary for the code to work, but
I wish they weren’t—the end of the code looks like some-
body tried to encode some very complex emotions into a
text message.

So far, the async function isn’t making the code any clearer.
Here’s a slightly more complex logic example:

1) Try fetching the file from the network;
2) otherwise look for a cached version of the file.

Here’s the code for that, using fetch and catch:

fetchEvent.respondWith(

 // Try fetching the file from the network

 fetch(request)

 .catch(error => {

 // Otherwise look for a cached version of the

file

105tIdYIng uP

 return caches.match(request)

 }) // end fetch catch

); // end respondWith

To rewrite that functionality using async and await, you’ll
need to rephrase your logic using try and catch:

fetchEvent.respondWith(

 async function() {

 try {

 // Try fetching the file from the network

 return await fetch(request);

 } // end try

 catch (error) {

 // Otherwise look for a cached version of the

file

 return await caches.match(request);

 } // end catch

 }() // end async function

); // end respondWith

Everything inside the curly braces after try is your first
choice. Everything inside the curly braces after catch will only
be executed if your first choice doesn’t work out (notice that
there isn’t a dot before the word catch this time).

Apart from the extra parentheses at the end, that code reads
quite nicely. I also like the politeness of using a try statement, as
though you’re gently saying to the service worker: “Hey there,
buddy, give it your best shot. And if it doesn’t work out, well,
I’ll be there to catch you. Literally…with a catch statement.”

Finally, here’s a three-step process:

1) Try fetching the file from the network;
2) otherwise look for a cached version of the file;
3) otherwise show the fallback page.

That’s a typical service worker strategy for HTML pages.
Here’s the code:

106 goIng oFFLIne

fetchEvent.respondWith(

 // Try fetching the file from the network

 fetch(request)

 .catch(error => {

 // Otherwise look for a cached version of the

file

 return caches.match(request)

 .then(responseFromCache => {

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise show the fallback page

 return caches.match('/offline.html');

 }); // end match then and return

 }) // end fetch catch

); // end respondWith

Here’s the same functionality, rewritten as an async function:

fetchEvent.respondWith(

 async function() {

 try {

 // Try fetching the file from the network

 return await fetch(request);

 } // end try

 catch (error) {

 // Otherwise look for a cached version of the

file

 const responseFromCache = await caches.

match(request);

 if (responseFromCache) {

 return responseFromCache;

 } // end if

 // Otherwise show the fallback page

 return caches.match('/offline.html');

 } // end catch

 }() // end async function

); // end respondWith

107tIdYIng uP

If you find the async functions easier to read, then consider
updating your code. But if you’re happy with the old-school
style of promises, you can leave your code be. It’s your deci-
sion—use whatever coding style makes the most sense to you.

Remember that the style of your code doesn’t change its
functionality. When it comes to the functionality of your ser-
vice worker, you’ve got all the building blocks you need to
program just about anything you can imagine.

It’s time to leave the service worker script and look at a differ-
ent file that you can make improvements to—your offline page.

108 goIng oFFLIne

we haven’t really talked about the contents of /offline.
html, the fallback page you made for the situation when all else
fails. It’s entirely up to you what you put on that page—some-
thing silly or something useful. If you decide to make it useful,
the Cache API can help.

So far, you’ve used the power of the Cache API from within
your service worker script. But the Cache API can be accessed
from other places too. You can call forth the power of the Cache
API from your web pages, including your offline page.

You’ve got a cache of pages that your site’s visitor has accu-
mulated on their journey through your site. If that visitor loses
their internet connection, they may end up looking at your fall-
back page. Wouldn’t it be nice if you could show them a list of
pages that they can visit even without an internet connection?

You can put this list together by looping through the items
in your cache of pages:

THE OFFLINE
USER EXPERIENCE8

109the oFFLIne uSer exPerIence

1) Open the cache of pages;
2) loop through each item in the cache

a) and make a link to the URL of each page;
3) finally, display the list of links.

This code can go inside /offline.html:

<p>You can still read these pages:</p>

<ul id="history">

<script>

// Open the cache of pages

caches.open('pages')

.then(pagesCache => {

 pagesCache.keys()

 .then(keys => {

 let markup = '';

 // Loop through each item in the cache

 keys.forEach(request => {

 // Make a link to the URL of each page

 markup += `<a href="${request.

url}">${request.url}`

;

 });

 // Display the list of links

 document.getElementById('history').innerHTML =

markup;

 }); // end keys then

}); // end open

</script>

That’s not bad. Now visitors to your site have something to
do while they’re offline (Fig 8.1).

 This could be better though. For a start, we’re only dis-
playing pages that the user has previously visited. It might be
nice if the user could explicitly mark which pages they want to
save for offline reading. You could provide the functionality of
Instapaper or Pocket, right from your own site.

110 goIng oFFLIne

SAVE FOR OFFLINE
A visitor to your site needs some mechanism to save a page
for offline reading. I think a button is the right element to use
for this—an accessible, all-purpose trigger for handling user
interaction—but a checkbox could work too:

<button class="btn--offline">save for offline</

button>

You can use CSS to make the button look however you want.
You could put the button directly in the HTML of your page,

but seeing as it’s only going to work for browsers that support
service workers, I think it’s better to inject the button into
the page using JavaScript. You can put the JavaScript inside a
script element at the end of each page, or you could put it in

Fig 8.1: Mike riethmuller’s offline page shows which articles are available to read offline
(http://bkaprt.com/go/08-01/).

http://bkaprt.com/go/08-01/

111the oFFLIne uSer exPerIence

an external file that you link to from a script element at the
end of each page.

Use some feature detection so that only browsers that sup-
port service workers will get the button. Here’s the logic:

1) If this browser supports service workers,
a) create a button element,
b) and add the button to the page.

And here’s the code for that logic:

// If this browser supports service workers

if (navigator.serviceWorker) {

 // Create a button element

 const offlinebutton = document.

createElement('button');

 offlinebutton.innerText = 'save for offline';

 offlinebutton.className = 'btn--offline';

 // Add the button to the page

 document.body.appendChild(offlinebutton);

}

That will add the button to the end of the page, but you
might want to put it somewhere more convenient, or use CSS
to position it.

Clicking that button will do absolutely nothing. Let’s change
that. Inside your feature-detecting if statement, you can add
an event listener to the button:

offlinebutton.addEventListener('click', function

(event) {

 // Save for later

});

(I’m regressing to old-fashioned JavaScript without arrow
functions. I’m a lot warier of using newer syntax outside the
safe confines of a service worker script.)

112 goIng oFFLIne

The first thing to do is avoid the button-press triggering a
page submission:

offlinebutton.addEventListener('click', function

(event) {

 event.preventDefault();

You can also store a handy reference to the button that has
just been clicked:

const offlinebutton = this;

At this point it might be a good idea to give some feedback
to the user. Let them know that something is happening. You
could update the text inside the button:

offlinebutton.innerText = 'saving...';

It’s time to crack open the Cache API. You can use an entirely
new cache for this. Let’s call it "savedpages":

caches.open('savedpages')

Use the add method to fetch and cache the contents of the
current page. You’ll need to pass in the URL of the current page,
which you can get from window.location.href:

caches.open('savedpages')

.then(function (cache) {

 cache.add(window.location.href)

})

When the page has been cached, you might want to give
some feedback to the user. You could update the text inside
the button again:

113the oFFLIne uSer exPerIence

caches.open('savedpages')

.then(function (cache) {

 cache.add(window.location.href)

 .then(function () {

 offlinebutton.innerText = 'saved for offline!';

 }); // end add then

}); // end open then

Here’s how the event-handling code looks now:

// When the button is pressed...

offlinebutton.addEventListener('click', function

(event) {

 event.preventDefault();

 const offlinebutton = this;

 // Provide some feedback to the user

 offlinebutton.innerText = 'saving...';

 // Open a cache

 caches.open('savedpages')

 .then(function (cache) {

 // Add the URL of the current page to the cache

 cache.add(window.location.href)

 .then(function () {

 // Provide some feedback to the user

 offlinebutton.innerText = 'saved for

offline!';

 }); // end add then

 }); // end open then

}); // end addEventListener

You have successfully cached the page at the user’s request.
The functionality of your offline page—which currently

shows a list of URLs—is fine, but it could be better. Wouldn’t it
be nice if it could also show the title of the page? And maybe a
description too? That’s why this is a good opportunity to store
metadata about the page you’re caching.

The Cache API can’t help you here. You need to reach for
another API instead.

114 goIng oFFLIne

localStorage

Browsers have many APIs for storing data. The IndexedDB API
is quite powerful, and it’s asynchronous, which is always good.
Alas, it’s also quite complex and tricky to get to grips with.

There’s a much simpler API called localStorage. It isn’t asyn-
chronous, so you shouldn’t use it for anything too intensive,
but it is pleasantly straightforward.

It has two methods: setItem and getItem. They do exactly
what you’d expect them to do.

You can pass two arguments into the setItem method—a
key and a value:

localStorage.setItem('name', 'Jeremy Keith');

The getItem method takes one argument—pass in a key, and
it will return the corresponding value:

const myname = localStorage.getItem('name');

You can use the setItem method to store metadata when the
user is saving a page to read later. Then, on your offline page,
you can use the getItem method to retrieve that information.

There’s a nifty trick that allows you to store lots of data in a
single localStorage value: JSON.

JSON stands for JavaScript Object Notation. Technically,
JSON is JavaScript. There are no functions or loops. There are
only variables, written in key/value pairs like this:

const data = {

 "key": "value",

 "other_key": "another value"

}

Those curly braces create a new JavaScript object. Each key is
a property of the object (remember, a property is nothing more
than a variable which happens to be scoped within an object).
You can then access those values using dot notation like data.
key or data.other_key.

115the oFFLIne uSer exPerIence

First, create a JSON object with all the data you want to store.
Then use JSON.stringify to put it all into localStorage. If you
use the URL of the current page as the key, you can associate
as much information as you want with it.

const data = {};

localStorage.setItem(

 window.location.href,

 JSON.stringify(data)

);

So, if you want to store the title of the current page, you
could grab that from the title element like this:

const data = {

 "title": document.querySelector('title').innerText

};

Or you might want to grab the text from the first h1 element
on the page. It’s up to you.

If you have a meta element with a description of the page,
you could store the contents of that too:

const data = {

 "title": document.querySelector('title').

innerText,

 "description": document.

querySelector('meta[name="description"]').

getAttribute('content')

};

You can store as much or as little information as you want.
Think about what you might want to display on your offline
page. For instance, if there’s a publication date somewhere on
the page, you might want to store that information.

Whatever you decide, you can update your caching code to
store this metadata:

116 goIng oFFLIne

caches.open('savedpages')

.then(function (cache) {

 cache.add(window.location.href)

 .then(function () {

 const data = {

 "title": document.querySelector('title').

innerText,

 "description": document.

querySelector('meta[name="description"]').

getAttribute('content')

 };

 localStorage.setItem(

 window.location.href,

 JSON.stringify(data)

);

 offlinebutton.innerText = 'saved for offline!';

 }); // end add then

}); // end open then

Now you’ve got a one-to-one mapping between the saved-
pages cache and localStorage, both of which are using URLs
as keys. If there’s a URL in the savedpages cache, then there’s a
corresponding chunk of metadata accessible through that URL
with localStorage.getItem.

You can rewrite the JavaScript in /offline.html to take advan-
tage of the data in localStorage. Here’s the updated logic for that:

1) Open the cache of saved pages;
2) loop through each item in the cache;

a) look up the corresponding metadata in local storage
b) and make a descriptive link to the URL of each page;

3) finally, display the list of links.

That translates into something like this:

117the oFFLIne uSer exPerIence

<p>You can still read these pages:</p>

<div id="history"></div>

<script>

let markup = '';

// Open the cache of saved pages

caches.open('savedpages')

.then(pagesCache => {

 pagesCache.keys()

 .then(keys => {

 // Loop through each item in the cache

 keys.forEach(request => {

 // Look up the corresponding metadata in local

storage

 const data = JSON.parse(localStorage.

getItem(request.url));

 // Make a descriptive link to the URL of each

page

 if (data) {

 markup += `<h3><a href="${request.

url}">${data.title}</h3>`

;

 markup += `<p>${data.description}</p>`

;

 }

 });

 // Finally, display the list of links

 document.getElementById('history').innerHTML =

markup;

 }); // end keys then

}); // end open then

</script>

It’s similar to what you had before, but the metadata saved in
localStorage allows you to present the user with a more readable
list of pages to read (Fig 8.2). Best of all, these are all pages that
the user has chosen to save offline, so you’re no longer guessing
what they might want.

118 goIng oFFLIne

INCREMENTAL IMPROVEMENTS
Now you’re providing a good offline experience—but, as with
any web experience, there’s always room for improvement.

For instance, when someone saves a page for offline reading,
you could cache any images used in that page. You could create
a separate cache for those images like, say, savedimages. At the

Fig 8.2: the offline page on ethan
Marcotte’s site shows metadata for
every article you can read offline
(http://bkaprt.com/go/08-02/).

119the oFFLIne uSer exPerIence

moment the user clicks the button to save a page, you’ll need
to execute this logic:

1) Find all the img elements in the current page (hint: the DOM
method querySelectorAll is your friend);

2) loop through all of those images
a) and get the URL for each one (hint: it’s the value of the

src attribute);
3) put all of those images in the savedimages cache (hint: the

addAll method of the Cache API accepts an array of URLs).

If your site uses lots of videos or audio files, you might want
to cache those too. The logic would be very similar.

There’s also room for improvement in how you present the
Save for Offline button to your site’s visitors. What if someone
is looking at a page that they’ve previously saved? The button
still reads “Save for Offline.” It would be nice if you could
present a different option in that situation—perhaps you don’t
want to show the button at all. Or perhaps the button could
say “Saved for Offline,” and clicking it would remove the page
from the cache. You would need to add some extra steps at the
point where you inject the button into the page. You could, for
example, check to see if there’s an entry for the current page
in localStorage.

Once you start looking at ways to improve the user experi-
ence, there’s almost no limit to what you can accomplish. There
are all kinds of powerful browser APIs to investigate. APIs like
Background Sync and Notifications allow service workers to
execute actions even when the browser isn’t open. Data can
be synced and your site’s visitors can receive notifications even
when their phones are in their pockets!

That sounds a lot like what native apps can do, doesn’t it?
That’s no accident. Slowly but surely, web browsers are allow-
ing the kind of functionality that previously only native apps
could provide. There’s even a name for websites that take full
advantage of modern browser features. They’re called progres-
sive web apps.

120 goIng oFFLIne

when web designer Frances berriman coined the term
progressive web app in 2015, she said: “The name is for your
boss, for your investor, for your marketeer.” In other words,
we say it because it sounds cool (http://bkaprt.com/go/09-01).

And those three little words pack a powerful punch:

• Progressive. This word echoes the philosophy of progressive
enhancement, the idea that websites should be built in a lay-
ered way: make sure that the core functionality is available
to the most amount of people, with extra functionality added
on for more capable browsers and devices. In my experi-
ence, it’s the most sensible way to build anything for the
web, including progressive web apps—which makes sense
when you consider how a service worker can only take effect
once someone has already started interacting with your site.

• Web. As in, not native. For a long time, if you wanted to
build something that worked offline, a native app was your
only option. Now, you can build an offline-capable product
on the web and publish it instantly, without going through
the approval process of any app store. There’s so much that

PROGRESSIVE
WEB APPS9

http://bkaprt.com/go/09-01

121ProgreSSIve WeB aPPS

can be done in web browsers these days (thanks, service
workers!) that it’s hard to justify the expense of creating
separate native apps for every platform.

• App. This is probably the least accurate word in the whole
phrase. After all, what is an “app” anyway? We all know
examples of apps, but I have yet to hear a good definition.
And as we’ve seen, service workers can be applied to just
about any website, whether it’s an app or not. Progressive
web apps don’t really have anything to do with apps, but,
as Berriman said: “It’s marketing, just like HTML5 had very
little to do with actual HTML.”

Marketing is not to be sniffed at when it comes to web tech-
nologies. For instance, back in 2004, web developers started
using techniques to update parts of a page instead of refreshing
the whole page—but it became much easier to talk about it once
Jesse James Garrett coined the term Ajax to describe it.

Similarly, in 2010, when developers were struggling to make
desktop websites work on mobile devices, Ethan Marcotte
introduced the phrase responsive web design—and sparked a
whole movement.

Of course, responsive web design wasn’t just a cool-sound-
ing phrase. The technique had a clear definition that was made
up of three parts: fluid grids, fluid images, and media queries.
Likewise, the term progressive web app doesn’t just sound good
in a meeting—it also has a clear definition, made up of three
parts. For a website to qualify as a progressive web app, it must:

1. be served over HTTPS,
2. work offline with a service worker, and
3. have a Web App Manifest file.

The good news is that you’ve already checked off two of the
three actions in that to-do list. The even better news is that the
third item is by far the easiest to achieve.

122 goIng oFFLIne

WEB APP MANIFEST
To start, create a blank file called manifest.json. I recommend
storing it at the root level of your site (/manifest.json), just as
you’ve done with your service worker script (/serviceworker.js).

This file will contain metadata: data about data. Historically,
we’ve filled the head of HTML documents with metadata. But
at some point, it started to get out of hand. There were lines of
metadata specifically for Apple devices, more lines of metadata
specifically for Android devices, and even more lines of meta-
data specifically for Windows devices.

To bring things back under control, we got the Web App
Manifest. Its purpose is twofold. First, it standardizes the meta-
data, regardless of device manufacturer. Second, instead of
repeating all that metadata in every HTML file, the metadata
resides in one place.

Instead of filling the head of your HTML documents with
lines and lines of metadata, you now only need one line: a link
element with a rel value of "manifest" and an href value
pointing to your file:

<link rel="manifest" href="/manifest.json">

Now web browsers know where to look for your mani-
fest file.

A Web App Manifest has absolutely nothing to do with an
AppCache manifest. I just wanted to make that clear, in case
you’ve previously attempted to use AppCache (and if so, you
have my sympathies). A Web App Manifest is a JSON file.

You’ve already written some JSON for your localStorage
script. The JSON has curly braces on the outside and key/value
pairs inside them:

{

 "key": "value",

 "other_key": "another value"

}

123ProgreSSIve WeB aPPS

So a JSON file is actually a file containing a single JavaScript
object. All of the key/value pairs are properties of the object.
The property names (keys) of a Web App Manifest are being
standardized by the World Wide Web Consortium (W3C):

This specification defines a JSON-based manifest file that pro-
vides developers with a centralized place to put metadata
associated with a web application. This metadata includes, but
is not limited to, the web application’s name, links to icons, as
well as the preferred URL to open when a user launches the
web application. (http://bkaprt.com/go/09-02/)

Time to fill up this JSON file with metadata.

lang

Start by declaring the language of your website. If your site is
in English, here’s how you declare that in your manifest file:

"lang": "en"

name

The name property is pretty straightforward—it’s the name of
your website:

"name": "My Website"

short_name

The full name of your website might be a bit too long to fit in
some spaces. Think about the space taken up by an application’s
icon on a phone screen. Anything more than twelve characters
runs the risk of being truncated. The short_name property
allows you to specify the shortened alias of your site:

"short_name": "Website"

http://bkaprt.com/go/09-02/

124 goIng oFFLIne

description

The description property can be used to provide a sentence
or two describing what your website does:

"description": "This is my website. There are many

like it but this one is mine."

theme_color

The theme_color property is nifty. You provide a color value
that browsers can use to “fill in” their interface. Visitors to your
site get a browser window customized to your site’s color
scheme (Fig 9.1).

If your site has a solid color across the top, or uses a back-
ground color, that color value is a good candidate for this prop-
erty. Give the value in the same way that you would declare a
color in CSS. Here’s an example of a hexadecimal value for a
nice shade of blue:

"theme_color": "#336699"

You can also provide this in a meta element in the head of
your HTML documents if you like:

<meta name="theme-color" content="#336699">

background_color

The background_color property is similar to the theme_color
property. A lot of the time, you can supply the same value for
both properties. But think of the background_color property
as the loading screen for your site (Fig 9.2). Choose a color to
fill the screen that matches the branding of your site:

"background_color": "#336699"

Fig 9.1: the interface of the chrome browser
on android takes on the theme_color
specified in the Web app Manifest for the
web book Resilient Web Design (http://bkaprt.
com/go/09-03/).

Fig 9.2: the Session is a progressive
web app with a mustard-flavored
background_color value (http://bkaprt.
com/go/09-04/).

http://bkaprt.com/go/09-03/
http://bkaprt.com/go/09-03/
http://bkaprt.com/go/09-04/
http://bkaprt.com/go/09-04/

125ProgreSSIve WeB aPPS

description

The description property can be used to provide a sentence
or two describing what your website does:

"description": "This is my website. There are many

like it but this one is mine."

theme_color

The theme_color property is nifty. You provide a color value
that browsers can use to “fill in” their interface. Visitors to your
site get a browser window customized to your site’s color
scheme (Fig 9.1).

If your site has a solid color across the top, or uses a back-
ground color, that color value is a good candidate for this prop-
erty. Give the value in the same way that you would declare a
color in CSS. Here’s an example of a hexadecimal value for a
nice shade of blue:

"theme_color": "#336699"

You can also provide this in a meta element in the head of
your HTML documents if you like:

<meta name="theme-color" content="#336699">

background_color

The background_color property is similar to the theme_color
property. A lot of the time, you can supply the same value for
both properties. But think of the background_color property
as the loading screen for your site (Fig 9.2). Choose a color to
fill the screen that matches the branding of your site:

"background_color": "#336699"

Fig 9.1: the interface of the chrome browser
on android takes on the theme_color
specified in the Web app Manifest for the
web book Resilient Web Design (http://bkaprt.
com/go/09-03/).

Fig 9.2: the Session is a progressive
web app with a mustard-flavored
background_color value (http://bkaprt.
com/go/09-04/).

start_url

If someone were to bookmark your site, which URL would you
like them to start from? For most sites, this will be the home-
page, but you have the option of specifying any page using the
start_url property:

"start_url": "/"

http://bkaprt.com/go/09-03/
http://bkaprt.com/go/09-03/
http://bkaprt.com/go/09-04/
http://bkaprt.com/go/09-04/

126 goIng oFFLIne

display

If someone has bookmarked your website, then (on some
mobile devices) this property determines how your site will
launch when the bookmark is activated:

"display": "standalone"

The display property accepts one of four values: browser,
minimal-ui, standalone, or fullscreen:

• A display value of browser will launch your site as normal.
It will appear in a browser tab, complete with address bar.

• A display value of minimal-ui will launch your site with
much less browser interface on display.

• If you specify a display value of standalone or fullscreen,
then your site will start up as though it were a native app
(Fig 9.3). There won’t be any address bar, or indeed any
indication that it’s a website.

With the fullscreen option, even the operating system’s
task bar will be covered up. That could be useful if you’re build-
ing a game that needs to take over the whole screen.

Having your website behave exactly like a native app sounds
appealing, but please take the time to stop and think about what
your users might end up missing out on. If your site launches
in standalone or fullscreen mode, how will visitors be able
to share individual URLs? Normally they could copy the URL
in the address bar, but if you banish the address bar, then you’ll
have to provide that functionality yourself. And, without the
browser’s usual interface, visitors to your site will have no
back or forward options. You will need to make sure that your
navigation accounts for that.

So, while the standalone and fullscreen options sound
good, there are many times when the browser or mimimal-ui
value is the right one for your progressive web app.

Fig 9.3: the dconstruct archive
is a progressive web app that
launches with a display value of
standalone (http://bkaprt.com/
go/09-05/).

http://bkaprt.com/go/09-05/
http://bkaprt.com/go/09-05/

127ProgreSSIve WeB aPPS

display

If someone has bookmarked your website, then (on some
mobile devices) this property determines how your site will
launch when the bookmark is activated:

"display": "standalone"

The display property accepts one of four values: browser,
minimal-ui, standalone, or fullscreen:

• A display value of browser will launch your site as normal.
It will appear in a browser tab, complete with address bar.

• A display value of minimal-ui will launch your site with
much less browser interface on display.

• If you specify a display value of standalone or fullscreen,
then your site will start up as though it were a native app
(Fig 9.3). There won’t be any address bar, or indeed any
indication that it’s a website.

With the fullscreen option, even the operating system’s
task bar will be covered up. That could be useful if you’re build-
ing a game that needs to take over the whole screen.

Having your website behave exactly like a native app sounds
appealing, but please take the time to stop and think about what
your users might end up missing out on. If your site launches
in standalone or fullscreen mode, how will visitors be able
to share individual URLs? Normally they could copy the URL
in the address bar, but if you banish the address bar, then you’ll
have to provide that functionality yourself. And, without the
browser’s usual interface, visitors to your site will have no
back or forward options. You will need to make sure that your
navigation accounts for that.

So, while the standalone and fullscreen options sound
good, there are many times when the browser or mimimal-ui
value is the right one for your progressive web app.

Fig 9.3: the dconstruct archive
is a progressive web app that
launches with a display value of
standalone (http://bkaprt.com/
go/09-05/).

icons

Up until now, every property in your JSON file has had one
value—a string of text. The icons property can accept multiple
values. To do that, you can use an array:

"icons": []

Then each item in the array can be a whole new object. In
the case of the icons array, each item within it can have its own
src, sizes, and type properties:

http://bkaprt.com/go/09-05/
http://bkaprt.com/go/09-05/

128 goIng oFFLIne

"icons": [

 {

 "src": "/images/small-icon.png",

 "sizes": "48x48",

 "type": "image/png"

 },

 {

 "src": "/images/large-icon.jpg",

 "sizes": "512x512",

 "type": "image/jpeg"

 }

]

You can provide as many icons as you want. The images
should be square. It’s a good idea to make sure there’s a fairly
large one in there—at least 512 pixels square. You can use what-
ever image formats you like: JPG, PNG, or SVG. When someone
bookmarks your website, the browser can then choose the
most appropriate image to associate with your site. Quite often,
manifest files will feature the same image—usually a logo—at
many different sizes. You could make the larger-sized versions
more detailed, and keep the smaller ones simpler.

Putting all of that metadata together, our Web App Manifest
code looks like this:

{

 "lang": "en",

 "name": "My Website",

 "short_name": "Website",

 "description": "This is my website. There are many

like it but this one is mine.",

 "theme_color": "#336699",

 "background_color": "#336699",

 "start_url": "/",

 "display": "standalone",

 "icons": [

 {

 "src": "/images/small-icon.png",

 "sizes": "48x48",

129ProgreSSIve WeB aPPS

 "type": "image/png"

 },

 {

 "src": "/images/large-icon.jpg",

 "sizes": "512x512",

 "type": "image/jpeg"

 }

]

}

With the introduction of nested curly braces for icons, your
JSON is getting a bit more complex. The order of the proper-
ties doesn’t matter, and many of them are optional—but make
sure your commas are all in the right place. Whenever I’ve got
a problem with my JSON, it’s usually either a missing comma,
or a comma where there shouldn’t be one. You can test your
JSON by copying and pasting it into the form at .

HOMESCREEN
Browsers have always offered the option to bookmark websites
so that you can get back to them quickly. On mobile devices,
there’s another option: You can save a website to the homes-
creen of the device, where its icon sits alongside the icons of
native apps.

Usually a visitor to your site has to actively seek out the
Add to Homescreen option from their browser’s interface. But
Google’s Chrome for Android can actually prompt visitors to
your progressive web app to add it to their homescreen (Fig 9.4).

In order for this prompt to appear, these conditions need
to be met:

• The site must be running on HTTPS.
• The site must have a service worker that will display some-

thing when the user is offline.
• The site must have a Web App Manifest file.
• The manifest must have a name value and a short_name value.

130 goIng oFFLIne

• The manifest must have an icon that’s at least 144 pix-
els square.

• The user must visit the site more than once in a relatively
short space of time.

• The manifest must have a display value of minimal-ui,
standalone or fullscreen.

If your site fulfills those conditions, then visitors using
Chrome on Android will be prompted to add it to
their homescreen.

This is wonderful! By introducing this algorithm, Google
found a way to promote progressive web apps. If a website
fulfills all the criteria for the prompt to appear, then the user can
be confident that it’s a site worth bookmarking. As a site owner,
you get rewarded for following best practices. Everybody wins.

If you use a display property of standalone or fullscreen,
then once your website’s been added to the homescreen, it will
be treated exactly like a native app (Fig 9.5). It will appear in the
app switcher, just like a native app. From the user’s point of
view, there’s no distinction. And with features like notifications
now possible through the web, there’s no reason for the user
to prefer a native app over a well-made progressive web app.

BE PROGRESSIVE
The early days of the responsive web weren’t smooth sailing.
Developers tried to make mobile-friendly sites by adding a
sprinkling of media queries, but they were still starting from a
desktop-first mindset. That led to frustration and disappoint-
ment. It took time for people to realize that a mobile-first
approach made more sense. Even then, there was a tendency
for designers and developers to focus on the specific dimen-
sions of the latest and greatest mobile devices instead of letting
the content dictate the breakpoints.

But we got there eventually. Over time, it became normal
for websites to adapt to mobile devices, tablets, and desk-
top displays. Users came to expect that responsive behavior.

Fig 9.4: chrome on android prompting
a visitor to my site to add it to their
homescreen (adactio.com).

Fig 9.5: a progressive web app that has
been added to the homescreen is treated
the same as a native app.

https://adactio.com/

131ProgreSSIve WeB aPPS

• The manifest must have an icon that’s at least 144 pix-
els square.

• The user must visit the site more than once in a relatively
short space of time.

• The manifest must have a display value of minimal-ui,
standalone or fullscreen.

If your site fulfills those conditions, then visitors using
Chrome on Android will be prompted to add it to
their homescreen.

This is wonderful! By introducing this algorithm, Google
found a way to promote progressive web apps. If a website
fulfills all the criteria for the prompt to appear, then the user can
be confident that it’s a site worth bookmarking. As a site owner,
you get rewarded for following best practices. Everybody wins.

If you use a display property of standalone or fullscreen,
then once your website’s been added to the homescreen, it will
be treated exactly like a native app (Fig 9.5). It will appear in the
app switcher, just like a native app. From the user’s point of
view, there’s no distinction. And with features like notifications
now possible through the web, there’s no reason for the user
to prefer a native app over a well-made progressive web app.

Fig 9.4: chrome on android prompting
a visitor to my site to add it to their
homescreen (adactio.com).

Fig 9.5: a progressive web app that has
been added to the homescreen is treated
the same as a native app.

Device-specific URLs—such as m-dot subdomains—became
ever rarer.

Progressive web apps have also been through an awkward
early childhood. Many of the initial examples were made to
only work on mobile devices, despite the fact that the “progres-
sive” part of progressive web apps means they should work for
everyone, regardless of device or browser (Fig 9.6).

Creating progressive web apps in silos, separate from the
“real” website, feels like a step backwards to the days before
responsive web design. As a minimum baseline, progressive
web apps should be responsive.

https://adactio.com/

132 goIng oFFLIne

There’s also been a tendency for developers to go a bit over-
board with the “app” part of progressive web app. Many of the
early progressive web apps were entirely JavaScript-driven and
tried to closely mimic the behaviors of native apps. This led to
a widespread misunderstanding that progressive web apps had
to be client-side, single-page apps built from scratch. But as
you’ve seen in this book, just about any existing website can be
turned into a progressive web app by:

• running the site on HTTPs,
• adding a service worker script, and
• creating a Web App Manifest file.

That’s it.

Fig 9.6: the Washington Post’s first progressive web app turned away perfectly capable
desktop browsers.

133ProgreSSIve WeB aPPS

Planning your progressive web app

If you’re building a progressive web app from scratch, I recom-
mend taking a layered approach.

1. Start with the content. What’s the fundamental action that
someone needs to be able to do on your site? For some sites,
it’s reading. For others, it’s shopping. For yet others, it’s
sharing photos or videos.

2. Once you’ve identified the core functionality, think about
the simplest technology to make it work. Not the best. The
simplest. Quite often, the answer is good ol’ HTML sent
from a web server, where all the smart logic resides.

3. When you’ve built that, then you can start to layer on more
and more functionality. Use the latest and greatest CSS. Take
advantage of all the wonderful JavaScript APIs available in
modern browsers. If some browsers don’t support those
features, that’s okay; you’ve made sure that they can still
accomplish the core task.

It’s during that third phase that you can go wild with service
workers. You can make sure that returning visitors to your site
will have a fast, reliable experience.

We can learn a lot by looking to native apps. If there are
design patterns or interactions that work well, we can apply
them to our progressive web apps. But we should be careful not
to simply imitate native apps wholesale. There’s one feature of
the web that native apps can’t match: URLs.

The power of URLs

Instead of making your users go to an app store, find your
app, and then install it (assuming they have the bandwidth to
do that), you can give them the URL of your website. You can
give them the URL in an email, or on another site, or written
on a poster. Once they visit your site—just once—they’ve got
what they need. What an amazing way of distributing software!

If someone keeps returning to your site, maybe they’ll add it
to their homescreen. That’s like installing a native app, but with

134 goIng oFFLIne

one big difference: there’s nothing more to install. Putting your
site’s icon on the homescreen is merely a convenient shortcut.
There’s no hefty download. Everything’s already cached.

That process is also great for developers. Without app stores,
there’s no need to go through an approval process to publish a
progressive web app. And whenever you need to make a change
to the site, you don’t need to submit an update for approval—
you simply make the change.

Native apps rely on app stores for distribution. Progressive
web apps use URLs. The World Wide Web becomes one big
app store, but an app store where everyone is free to publish
without asking for permission.

URLs are the standout feature of the web. We should learn
what we can from the design of native apps, but let’s not lose
sight of what makes the web great. I think it’s wonderful that
we can create sites that provide an amazing, rich experience
in the latest browsers, but still work perfectly well for older or
less capable devices.

THE FUTURE
We live in paradoxical times. Web technology has never been
more powerful. We can create incredible layouts with CSS; we
can deploy lightweight optimized images; we can access device
sensors through JavaScript APIs; we can even go offline using
service workers.

Yet, for many people, using the web is painful. Despite all the
wonderful advances in web technology, too many websites are
bloated, buggy, and slow. No wonder people think that native
apps are somehow inherently better—a typical web experience
can be an exhausting trial, especially on mobile.

Sturgeon’s Law states that 90% of everything is crud. Alas,
that certainly seems to hold true when browsing the web on a
mobile device. You could see this as an opportunity to differ-
entiate yourself from the competition. If 90% of websites are
too big and slow, your nimble performant site should stand
out from the herd.

135ProgreSSIve WeB aPPS

But the truth is that we all suffer if the web is perceived to
be unusable. We need to work to change that perception. It will
be a challenge, but I think we can do it. Progressive web apps
can light the way to a brighter future.

My friend Remy Sharp described the work ahead of us:

With time, and persistence, users (us included) will come to
expect PWAs to work. If it’s on my home screen, it’ll work. The
same way as any good native app might work today. (http://
bkaprt.com/go/09-06/)

Progressive web apps are driven by three technologies:
HTTPS, service workers, and Web App Manifests. Master-
ing some of those technologies can be tricky, but not insur-
mountable. The real challenge is figuring out how to apply
the technology.

There’s no one-size-fits-all service worker. Just as every
website offers unique value and must be built with unique
constraints, the corresponding service worker script needs to
be written to match the site’s individual profile.

Service workers give you the opportunity to really make
your websites shine. If enough of us rise to the challenge, we
can make the whole web shine. Just think—by building pro-
gressive web apps, you can make a better World Wide Web.
What an opportunity!

I can’t wait to see what you build.

http://bkaprt.com/go/09-06/
http://bkaprt.com/go/09-06/

136 goIng oFFLIne

ACKNOWLEDGEMENTS
Everyone should experience the joy of working with Katel
LeDû and Lisa Maria Martin. From initial discussions right up
until the final tweaks, they were unflaggingly fun to collaborate
with. Thank you, Katel, for turning my idea into reality. Thank
you, Lisa Maria, for turning my initial mush of words into a far
more coherent mush of words.

Jake Archibald and Amber Wilson were the best of technical
editors. Jake literally wrote the spec on service workers so I
knew I could rely on him to let me know whenever I made any
factual missteps. Meanwhile Amber kept me on the straight
and narrow, pointing out wherever the writing was becoming
unclear. Thank you both for being so generous with your time.

Thanks to my fellow Clearlefty Danielle Huntrods for giving
me feedback as the book developed.

Finally, I want to express my heartfelt thanks to everyone
who has ever taken the time to write about their experiences
with service workers. Lyza Gardner, Ire Aderinokun, Una
Kravets, Mariko Kosaka, Jason Grigsby, Ethan Marcotte, Mike
Riethmuller, and others inspired me with their generosity.
Thank you to everyone who's making the web better through
such kind acts of openness. To quote the original motto of the
World Wide Web project, let's share what we know.

137reSourceS

RESOURCES
If this book were a podcast, then this would be the point at
which I would be imploring you to rate me on iTunes (or I’d
be telling you about a really good mattress). Instead, I’d like to
give you some hyperlinks so that you can explore some of the
topics in this brief book in more detail.

Explanations

• Mariko Kosaka wrote and illustrated an explanation of ser-
vice workers in a post on her site called “Service Worker,
what are you?” (http://bkaprt.com/go/10-01/).

• Mariko also wrote and illustrated an explanation of promises
called “The Promise of a Burger Party” (http://bkaprt.com/
go/10-02/).

• Ire Aderinokun wrote a clear guide to “The Service Worker
Lifecycle” (http://bkaprt.com/go/10-03/).

• Yoav Weiss has an explanation of different kinds of caching
in “A Tale of Four Caches” (http://bkaprt.com/go/10-04/).

Guides

• Lyza Gardner wrote a step-by-step guide for Smashing Mag-
azine on “Making A Service Worker: A Case Study” (http://
bkaprt.com/go/10-05/).

• Jake Archibald has collected a series of service worker strate-
gies into an “offline cookbook” (http://bkaprt.com/go/10-06/).

• Jake also recorded an excellent online video series that you
can enjoy for free (http://bkaprt.com/go/10-07/).

Examples

• Mike Riethmuller has on offline page on his site that
shows articles you’ve previously visited (http://bkaprt.com/
go/10-08/).

• Ethan Marcotte has a similar offline page, but he also shows
metadata for each article (http://bkaprt.com/go/10-09/).

http://bkaprt.com/go/10-01/
http://bkaprt.com/go/10-02/
http://bkaprt.com/go/10-02/
http://bkaprt.com/go/10-03/
http://bkaprt.com/go/10-04/
http://bkaprt.com/go/10-05/
http://bkaprt.com/go/10-05/
http://bkaprt.com/go/10-06/
http://bkaprt.com/go/10-07/
http://bkaprt.com/go/10-08/
http://bkaprt.com/go/10-08/
http://bkaprt.com/go/10-09/

138 goIng oFFLIne

• Una Kravets allows you to choose which pages on her site
you want to save for reading offline (http://bkaprt.com/
go/10-10/).

Progressive web apps

• Alex Russell answers the question “What, Exactly, Makes
Something A Progressive Web App?” (http://bkaprt.com/
go/10-11/).

• Ada Rose Cannon goes into the details of “The Building
Blocks Of Progressive Web Apps” (http://bkaprt.com/
go/10-12/).

• Aaron Gustafson quite rightly points out that “Yes, That
Web Project Should Be a PWA” (http://bkaprt.com/go/10-13/).

• Jason Grigsby outlines “The Business Case for Progressive
Web Apps” (http://bkaprt.com/go/10-14/).

Tools

• Google released a collection of scripts and tools for going
offline called Workbox (http://bkaprt.com/go/10-15/).

• To get started with your manifest and service worker, you
can paste your website’s URL into PWA Builder (http://
bkaprt.com/go/10-16/).

• Lighthouse is a great testing tool for progressive web apps
that’s now bundled into Chrome’s Developer Tools under
the Audits panel (http://bkaprt.com/go/10-17/).

Documentation

• Over at the website of the World Wide Web Consortium
(W3C) you can dig into the details of the Web App Manifest
specification (http://bkaprt.com/go/10-18/).

• The ever-evolving service worker specification is on the
W3C’s Github account (http://bkaprt.com/go/10-19/).

http://bkaprt.com/go/10-10/
http://bkaprt.com/go/10-10/
http://bkaprt.com/go/10-11/
http://bkaprt.com/go/10-11/
http://bkaprt.com/go/10-12/
http://bkaprt.com/go/10-12/
http://bkaprt.com/go/10-13/
http://bkaprt.com/go/10-14/
http://bkaprt.com/go/10-15/
http://bkaprt.com/go/10-16/
http://bkaprt.com/go/10-16/
http://bkaprt.com/go/10-17/
http://bkaprt.com/go/10-18/
http://bkaprt.com/go/10-19/

139reFerenceS

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Chapter 1

01-01 https://www.w3.org/tr/service-workers/#origin-relativity

01-02 https://certbot.eff.org

Chapter 3

03-01 https://github.com/extensibleweb/manifesto

Chapter 8

08-01 https://madebymike.com.au

08-02 https://ethanmarcotte.com

Chapter 9

09-01 https://fberriman.com/2017/06/26/naming-progressive-web-apps/

09-02 https://w3c.github.io/manifest/

09-03 https://resilientwebdesign.com

09-04 https://thesession.org

09-05 https://archive.dconstruct.org

09-06 https://remysharp.com/2016/05/28/state-of-the-gap

Resources

10-01 https://kosamari.com/notes/Service-Worker-what-are-you

10-02 https://kosamari.com/notes/the-promise-of-a-burger-party

10-03 https://bitsofco.de/the-service-worker-lifecycle/

10-04 https://blog.yoav.ws/tale-of-four-caches/

10-05 https://www.smashingmagazine.com/2016/02/making-a-service-worker/

10-06 https://jakearchibald.com/2014/offline-cookbook/

10-07 https://www.udacity.com/course/offline-web-applications--ud899

10-08 https://madebymike.com.au/writing/service-workers/

10-09 https://ethanmarcotte.com/wrote/going-offline/

https://www.w3.org/TR/service-workers/#origin-relativity
https://certbot.eff.org
https://github.com/extensibleweb/manifesto
https://madebymike.com.au
https://ethanmarcotte.com
https://fberriman.com/2017/06/26/naming-progressive-web-apps/
https://w3c.github.io/manifest/
https://resilientwebdesign.com
https://thesession.org
https://archive.dconstruct.org
https://remysharp.com/2016/05/28/state-of-the-gap
https://kosamari.com/notes/Service-Worker-what-are-you
https://kosamari.com/notes/the-promise-of-a-burger-party
https://bitsofco.de/the-service-worker-lifecycle/
https://blog.yoav.ws/tale-of-four-caches/
https://www.smashingmagazine.com/2016/02/making-a-service-worker/
https://jakearchibald.com/2014/offline-cookbook/
https://www.udacity.com/course/offline-web-applications--ud899
https://madebymike.com.au/writing/service-workers/
https://ethanmarcotte.com/wrote/going-offline/

140 goIng oFFLIne

10-10 https://una.im/save-offline/

10-11 https://infrequently.org/2016/09/what-exactly-makes-something-a-pro-
gressive-web-app/

10-12 https://www.smashingmagazine.com/2016/09/the-building-blocks-of-
progressive-web-apps/

10-13 https://alistapart.com/article/yes-that-web-project-should-be-a-pwa

10-14 https://cloudfour.com/thinks/the-business-case-for-progres-
sive-web-apps/

10-15 https://developers.google.com/web/tools/workbox/

10-16 https://preview.pwabuilder.com/

10-17 https://developers.google.com/web/tools/lighthouse/

10-18 https://www.w3.org/tr/appmanifest/

10-19 https://w3c.github.io/ServiceWorker/

https://una.im/save-offline/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://www.smashingmagazine.com/2016/09/the-building-blocks-of-progressive-web-apps/
https://www.smashingmagazine.com/2016/09/the-building-blocks-of-progressive-web-apps/
https://alistapart.com/article/yes-that-web-project-should-be-a-pwa
https://cloudfour.com/thinks/the-business-case-for-progressive-web-apps/
https://cloudfour.com/thinks/the-business-case-for-progressive-web-apps/
https://developers.google.com/web/tools/workbox/
https://preview.pwabuilder.com/
https://developers.google.com/web/tools/lighthouse/
https://www.w3.org/TR/appmanifest/
https://w3c.github.io/ServiceWorker/

141INDEX

A

Aderinokun, Ire 137
Ajax 28, 121
APIs

Background Sync 119
Cache 6, 44–52, 94, 108
Fetch 6, 37–39
Geolocation 13
IndexedDB 114
Notifications 119

Application Cache (or AppCache)
25–26

application manifest 26
Application Programming Interface

(API). See APIs
Archibald, Jake 137
arguments 16, 22–24
async functions 103
asynchronous tasks 21

B

Berriman, Frances 120

C

cache
deleting 57–60
hygiene 99
updating 53–56
web pages 83–86

caniuse.com 10–11
Cannon, Ada Rose 138
CD-ROM 2
Certbot 8–9
Chrome

Developer Tools 27–29
Cloudflare 9
coding style 102
cookies 5, 42

D

dConstruct 127
Document Object Model (DOM) 3

E

ES6 34, 59
events 27–29
extensible web 26

F

fallback 63
feature detection 13
fetch

events 33–36
images 81–82

Flash 2
functions 99–107

G

Gardner, Lyza 137
Garrett, Jesse James 121
Google Workbox 138
Grigsby, Jason 138
Gustafson, Aaron 138

H

homescreen 129–130
HTTP cache 42–44
HTTP headers 43–44
HTTPS 7–8
HTTPS-only polic 7

I

IndexedDB 94
interaction states 41
internet 1

J

JavaScript 3–4
JavaScript Object Notation (JSON)

114–115
Joyce, James 20

INDEX

142 goIng oFFLIne

K

Kosaka, Mariko 137
Kravets, Una 138

L

Lighthouse (testing) 138
localhost 8
localStorage 94, 114–117

M

managing space 95
Marcotte, Ethan 118, 121, 137
m-dot 131
method 16
Montulli, Lou 42

N

native apps 133
Netscape 42
networks 1

O

Object-Oriented Programming 14–15
offline first 93

P

patterns 92–93
Pearce, Guy 13
postMessage 97
progressive enhancement 120
progressive web app 120–121
promises 19–24

R

registration 12–18
rejection 21
Resilient Web Design 125
responsive web design 121
Riethmuller, Mike 110, 137
Russell, Alex 138

S

same-origin policy 7
save for offline 110–117, 119
Schwarzenegger, Arnold 13
security 7–8
service worker 3–4

life cycle 30–32
updating 32–33

Sharp, Remy 135
strategy

headers 67
images 69–74
pages 69

Sturgeon’s Law 134

T

The Session 125
The Washington Post 132
Trivago 65–66

U

URL 4, 133–134
handling 86–90
patterns 88–92

user agent 4

V

versioning 54

W

web 1
Web App Manifest 122, 138
web worker 3
Weiss, Yoav 137
Wi-Fi 1
World Wide Web 1
World Wide Web Consortium (W3C)

123

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
we want to help you get back to doing great work.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans,
both by Xavier Dupré. Headlines and cover are set in Titling
Gothic by David Berlow.

ABOUT THE AUTHOR
Jeremy Keith lives in Brighton,
England where he makes websites
with the splendid design agency
Clearleft. You may know him
from such books as HTML5 for
Web Designers, DOM Scripting, Bul-
letproof Ajax, and Resilient Web
Design. Hailing from Erin's green
shores, Jeremy maintains his link
to Irish traditional music running

the community site The Session. He also indulges a darker side
of his bouzouki-playing in the band Salter Cane. Jeremy spends
most of his time goofing off on the internet, documenting his
time-wasting on adactio.com, where he has been writing for
over fifteen years.

http://www.adactio.com

	Cover
	Foreword
	Chapter 1. Introducing Service Workers
	Chapter 2. Preparing for Offline
	Chapter 3. Making Fetch Happen
	Chapter 4. Cache Me If You Can
	Chapter 5. Service Worker Strategies
	Chapter 6. Refining Your Service Worker
	Chapter 7. Tidying Up
	Chapter 8. The Offline User Experience
	Chapter 9. Progressive Web Apps
	Acknowledgements
	Resources
	References
	Index
	About A Book Apart
	About the Author

