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Abstract—With the advent of Vision-Language Models
(VLMs), medical artificial intelligence (AI) has experienced sig-
nificant technological progress and paradigm shifts. This survey
provides an extensive review of recent advancements in Medical
Vision-Language Models (Med-VLMs), which integrate visual
and textual data to enhance healthcare outcomes. We discuss
the foundational technology behind Med-VLMs, illustrating how
general models are adapted for complex medical tasks, and
examine their applications in healthcare. The transformative
impact of Med-VLMs on clinical practice, education, and patient
care is highlighted, alongside challenges such as data scarcity,
narrow task generalization, interpretability issues, and ethical
concerns like fairness, accountability, and privacy. These limi-
tations are exacerbated by uneven dataset distribution, compu-
tational demands, and regulatory hurdles. Rigorous evaluation
methods and robust regulatory frameworks are essential for
safe integration into healthcare workflows. Future directions
include leveraging large-scale, diverse datasets, improving cross-
modal generalization, and enhancing interpretability. Innovations
like federated learning, lightweight architectures, and Electronic
Health Record (EHR) integration are explored as pathways to
democratize access and improve clinical relevance. This review
aims to provide a comprehensive understanding of Med-VLMs’
strengths and limitations, fostering their ethical and balanced
adoption in healthcare.

Index Terms—Medical Vision Language Models (VLMs), Med-
ical AL, Medical Image Analysis

I. INTRODUCTION

Everaging advanced algorithms and neural network archi-

tectures like Transformers [1], Al has been empowered
with strong reasoning ability and made tremendous progress
in recent years. Breakthroughs in model design and training
methodologies have allowed machines to excel in complex
tasks, including Natural Language Processing (NLP) appli-
cations such as language translation, sentiment analysis, and
text generation, achieving high accuracy and fostering intu-
itive human-computer interactions. Similarly, advancements in
Computer Vision (CV) have empowered Al to analyze and
interpret images, videos, and audio sequences with remarkable
precision. In healthcare, Artificial Intelligence (Al) is revolu-
tionizing medicine by enabling data-driven insights, improving
diagnostics, and personalizing treatments [2], [3], [4]. These
innovations have enabled significant applications, such as med-
ical imaging analysis, disease diagnosis, pathology, radiology
workflow optimization, and surgical assistance, transforming
patient care and clinical workflows [3]], [6].

The medical field faces unique challenges in data interpreta-
tion and decision-making for healthcare specialists; they must
analyze diverse types of information including medical imag-
ing (X-rays, MRIs, pathology slides), clinical notes, patient
histories, and real-time observations. Medical images are crit-
ical for diagnostic checks and measurements, such as identify-
ing anatomical abnormalities, quantifying disease progression,

or assessing treatment efficacy. On the other hand, textual data,
such as clinical notes, nurse evaluations, and patient histories,
provide essential context for screening, understanding symp-
toms, and documenting disease progression. Textual outputs,
such as radiology reports or discharge summaries, are equally
vital, as they synthesize findings into actionable insights for
clinicians. The complexity and volume of this multi-modal
medical data often lead to cognitive overload, impacting the
speed and accuracy of diagnoses. Traditional single-modality
approaches, which treat images and text separately, fail to
capture the intricate relationships between visual findings and
clinical context. This limitation underscores the need for inte-
grated vision-language models (VLMs) that can bridge the gap
between these modalities[[7], enabling more comprehensive
and accurate decision-making in healthcare. This integrated
approach promises to enhance clinical decision-making by
providing more contextually informed insights and reducing
the cognitive burden on healthcare providers.

However, visual and language provide totally different
modalities that are not trivial to be integrated directly. As
illustrated in Fig. [I] existing works address this challenge
through various strategies, including vision-text alignment (in
MedViL[8], MedCLIP[9], BioMedCLIP[10], VividMed[11]]),
knowledge distillation with VividMed[11]], masked language
modeling (in MedViL[8] and BioMedCLIP[10]) and con-
trastive learning in MedCLIP[9]], BioViL[12] & ConVIRT[13].
More recent advancements have introduced additional ap-
proaches, such as frozen encoders and Q-Former (e.g., BLIP-
2[14], InstructBLIP[1S]), image-text pair learning and fine-
tuning (e.g., LLaVA[16], LLaVA-Med[17], BiomedGPT[18],
MedVInT[19]), parameter-efficient tuning (e.g., LLaMA-
Adapter-V2[20]), two-stage training (e.g., MiniGPT-4[21]),
and modular multimodal pre-training (e.g., mPLUG-OwI[22],
Otter[23]) and the Sigmoid Loss for Language-Image Pre-
Training (SigLIP)[24]. SigLIP replaces traditional softmax-
based contrastive learning with a simpler sigmoid loss ap-
proach, enabling more efficient and scalable training by
treating image-text pair alignment as a binary classification
task. These methods aim to establish coherent relationships
between visual inputs and textual outputs, enabling models to
effectively interpret and generate relevant information across
modalities. As a comparison, the contrastive learning-based
methods leverage the similarities and differences between
paired visual and textual data to enhance model robustness
and generalization.

This paper provides a comprehensive review of VLMs and
their applications in healthcare. We first discuss how VLMs
are constructed by integrating advancements in NLP and
computer vision. Next, we summarize key methodologies and
advancements in the field, including state-of-the-art models
like Qwen-VL[25], RadFM[26], and DeepSeek-VL[27]. We
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Fig. 1. Comprehensive Framework for Medical Vision-Language Models (VLMs). (a) Training involves processing diverse inputs such as images,

texts, metadata, and historical data, followed by pre-training. (b) Benchmarking is conducted on a variety of medical datasets including GMAI-MMBench,
OmniMedVQA, RadBench, and others. (¢) Advanced training strategies are employed, such as vision-text alignment, knowledge distillation, masked language
modeling, contrastive learning, and parameter-efficient tuning. (d) Evaluation strategies encompass automated metrics like BLEU, ROUGE, BERTScore,
and clinical-specific tools like CheXpert Labeler and RadGraph, alongside human evaluation. (e) Integration of VLMs into the medical workflow leverages
contextual data to provide actionable insights and improve clinical decision-making.

then explore how VLMs are applied in the medical domain,
highlighting their potential to improve diagnostic accuracy,
clinical decision-making, and other healthcare tasks. Finally,
we conclude by outlining future directions and challenges in
the integration of VLMs into healthcare practices.

II. MULTI-MODAL VISUAL TEXT MODELS

Vision-Language Models (VLMs) are a class of artificial
intelligence models designed to process and integrate both
medical imaging data (e.g., radiographs, histopathological
slides) and clinical text (e.g., diagnostic reports, physician
notes). The evolution of modern VLMs is rooted in advances
in natural language processing, particularly the development
of Bidirectional Encoder Representations of Transformers
(BERT) [8]. BERT was originally developed for text classifi-
cation and other language-specific tasks, including clinical text
processing and medical literature analysis. Researchers soon
recognized its potential for multimodal applications, enabling
the integration of medical imaging with textual data within
a unified framework. This advancement has paved the way
for AI models capable of enhancing diagnostic interpretation,
clinical decision support, and medical research.

1) Expanding BERT to Visual Data: Several models
extended BERT’s text-processing capabilities to incorporate
visual data, enabling applications in medical imaging and
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Fig. 2. Architecture of VisualBERT[28]. This model integrates visual
and textual inputs using a transformer-based architecture. Text tokens (e.g.,
”No focal consolidation, effusion or pneumothorax”) and visual features
extracted from the corresponding image are combined, along with positional
and segment embeddings. The model is trained with dual objectives: masked
language modeling (Objective 1) and visual-text alignment (Objective 2). This
allows VisualBERT to effectively learn contextual representations that align
both modalities for downstream tasks.
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clinical decision support. A notable early example is Visual-
BERT [28)], which applies BERT’s transformer architecture to
jointly model vision and language tasks. VisualBERT operates
by stacking transformer layers, taking both a medical image
(e.g., radiographs or histopathology slides) and its corre-
sponding text (such as diagnostic reports or clinical notes) as
input, and applying self-attention to learn interactions between
the two modalities. . As illustrated in Figure 2| VisualBERT
effectively captures the semantic alignment between visual
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and textual representations, making it a valuable tool for
tasks such as automated medical report generation, radiology
interpretation, and clinical decision-making support. : After
VisualBERT, numerous other models were developed, each
bringing different innovations to vision-language modeling.

VILBERT (Vision-and-Language BERT) [29] introduces
two parallel processing streams for medical images and
clinical text. These streams interact through a co-attention
mechanism, allowing for more refined cross-modal represen-
tations. ViILBERT is particularly effective in tasks such as
visual question answering (VQA), where integrating imaging
findings with textual clinical context is essential for diagnostic
reasoning.

LXMERT [30] further refines this approach by explicitly
modeling anatomical and pathological relationships within
medical images, using region-based visual features to enhance
the understanding of complex medical scenes in conjunction
with clinical text. It employs separate transformer networks
for medical imaging and textual data before aligning the two
streams, enabling more precise integration of medical findings
with diagnostic reports.

UNITER [31] adopts a unified approach, learning a joint
embedding space for both medical images and clinical text
without relying on separate transformers for each modality.
This unified representation enhances cross-modal retrieval and
multimodal reasoning, making it particularly useful for tasks
such as automated radiology report generation, pathology
image interpretation, and clinical decision support.

Pixel-BERT [32] deviates from using object-level visual
features by directly processing raw imaging data at the pixel
level, aligning pixel-based features with text representations.
This approach eliminates the need for object detection pre-
processing steps, allowing for a more generalizable model
applicable to various imaging modalities, such as radiology,
pathology, and ophthalmology

While the previously mentioned models focus on static
medical images, some frameworks extend to video-based med-
ical data. VideoBERT [33] incorporates temporal and visual
aspects of medical videos, such as ultrasound sequences, and
endoscopic footage, aligning them with corresponding textual
data like procedural notes or transcriptions. Similarly, VD-
BERT [34] extends BERT-like architectures to video under-
standing by integrating frame-level visual features with asso-
ciated clinical text, enabling applications such as automated
surgical video analysis, real-time diagnostic assistance, and
video-based medical question answering.

2) Specialized VLMs for Specific Domains: While some
vision-language models are designed for specific industries,
such as Fashion-BERT [35] for fashion-related tasks, spe-
cialized VLMs have also emerged in the medical domain.
These models integrate visual data from medical imaging
with textual descriptions, enhancing applications such as auto-
mated diagnosis, clinical decision support, and medical report
generation. Similarly, M-BERT (Multimodal BERT) expands
the applicability of vision-language integration across multiple
medical modalities, improving Al-driven healthcare solutions.
Each of these advancements represents incremental progress
in bridging the gap between visual and textual understanding,

extending the impact of VLMs across diverse fields, including
medicine. In the healthcare sector, VLMs have demonstrated
significant potential in various applications, such as automati-
cally generating descriptive captions for medical images (e.g.,
X-rays, MRIs, and CT scans), assisting with diagnosis by
interpreting imaging data and providing Al-driven diagnostic
suggestions, generating coherent medical reports, and enabling
cross-modal retrieval by linking medical images with corre-
sponding clinical notes or retrieving relevant imaging studies
based on textual queries.

III. CORE CONCEPTS OF VISUAL LANGUAGE MODELING

VLMs represent a transformative advancement in Al, bridg-
ing the gap between visual and textual data to enable multi-
modal understanding and reasoning. These models leverage
the synergy between computer vision and NLP, allowing
them to interpret, analyze, and generate insights from com-
plex datasets that combine images and text. In the medical
domain, VLMs have emerged as powerful tools for tasks
such as medical image analysis, report generation, and visual
question answering (VQA). By integrating visual and textual
modalities, VLMs can enhance diagnostic accuracy, streamline
clinical workflows, and support medical education. This sec-
tion explores the core concepts underlying VLMs, their state-
of-the-art implementations, and their diverse applications in
healthcare as summarized in the table [

A. Sate-of-the-art VL models

Recent advancements in VLMs have led to groundbreaking
architectures like BLIP-2, LLaVA, and MiniGPT-4. These
models excel in tasks such as image captioning, visual ques-
tion answering, and medical image analysis. This subsection
examines the most influential VLMs, their methodologies, and
their contributions to multimodal Al.

1) BLIP-2: Bootstrapping Language-Image Pre-training
(BLIP-2) [14] introduces a groundbreaking approach to vision-
language pre-training that leverages frozen image encoders and
LLMs to enhance performance across various vision-language
tasks. This innovative method aims to achieve state-of-the-art
results while minimizing trainable parameters, addressing the
critical challenge of bridging visual and textual modalities.
The research is fundamentally driven by the growing need for
efficient multimodal Al systems that can effectively understand
and generate language based on visual inputs, particularly
in applications such as image captioning, visual question
answering, and image-text retrieval.

The methodology of BLIP-2 centers on a two-stage pre-
training process utilizing a Querying Transformer (Q-Former).
The first stage emphasizes vision-language representation
learning with a frozen image encoder, followed by a second
stage focused on generative learning with a frozen LLM.
This approach incorporates image-text contrastive learning
to maximize mutual information between modalities, image-
grounded text generation, and image-text matching to refine
alignment between visual and textual elements. The method-
ology’s efficiency is enhanced through the use of frozen
models, which reduces computational costs and enables larger
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TABLE I

STATE OF THE ART VLMS AND THEIR APPLICATIONS IN MEDICINE

Baseline

Training Approach

Key Benchmarks

Primary Applications

BLIP-2 [14], InstructBLIP[15]

Frozen encoders, Q-Former

COCO[36], VQA-Med[37]

Medical Image Captioning, VQA

LLaVA[16], LLaVA-Med|[17],
BiomedGPT[ 18], MedVInT[19]

Image-text pair learning, fine-tuning

VQA-RAD|38], SLAKE[39]

VQA, Clinical Reasoning

LLaMA-Adapter-V2[20]

Parameter-efficient tuning

Multi-modal datasets

Multimodal Instruction Following

MiniGPT-4[21]

Two-stage training

Vicuna[21]

Advanced Image Understanding

mPLUG-OwI1[22], Otter[23]

Multimodal pre-training

MIMIC-IT[40]

VQA, Medical Dialogue

Qwen-VL[25]

Three-stage training

MIMIC-CXR[41],

Medical Image Captioning, VQA

CheXpert[42]
MedViLL[8], MedCLIP[9]], Contrastive learning, Medical image- MIMIC-CXR[41], MS-  Medical Report Generation, VQA, Ra-
BioViL[12], BioMedCLIP[10], text pair learning, Unsupervised pre- CXR[I2], ChestX-ray[45], diology Task Performance, Medical
ConVIRT([13], VividMed[11], training, Three-stage training, Fine-  VinDr-CXR[46], IND1[43] Image Classification, Retrieval, Image
Flamingo-CXR[43], Med-  tuning Captioning
Flamingo[44]
RadFM[26] Pre-trained on MedMD RadBench[26] Medical Diagnosis, VQA

DeepSeek-VL[27]] Three-stage training: adaptor, joint pre-

training, fine-tuning

Common Crawl,Web Code, E-  Multimodal understanding and reason-
books, arXiv Articles, Sci- ing
enceQA, ScreenQA, etc.

batch sizes during training. The implementation consistently
employs the AdamW optimizer and cosine learning rate decay,
with the overall design allowing for more samples per GPU
compared to traditional end-to-end methods.

The experimental results reveal BLIP-2’s superior perfor-
mance across multiple benchmarks while maintaining a signif-
icantly reduced parameter count compared to existing models.
The system demonstrates remarkable achievements in VQA
tasks, outperforming models like Flamingo80B despite using
54 times fewer parameters. In image captioning and retrieval
tasks, particularly on COCO datasets, BLIP-2 shows compet-
itive performance and exhibits strong zero-shot capabilities in
generating accurate text descriptions from unseen images. The
model’s architecture enables rapid pre-training, requiring less
than a week of computational time on single GPU setups,
while maintaining high efficiency and generalization across
different tasks. The research also acknowledges potential lim-
itations, including risks associated with frozen LLM outputs
and the ongoing need for advancement in multimodal Al
development.

2) LLaVa: The idea behind LLaVa[l6] is to develop an
efficient foundation language model termed “LLaVA” (Lan-
guage and Vision Assistant), which integrates both language
understanding and visual comprehension. The primary ob-
jective is to enhance the capabilities of language models in
multimodal contexts, enabling them to better interpret and
generate text based on visual inputs. This involves not only
improving performance in traditional language tasks but also
expanding functionality to include complex visual reasoning
and description tasks.

The authors employed a two-step training process. Initially,
they pre-trained the LLaVA model on a filtered dataset com-
prising 595,000 image-text pairs, sourced from the CC3M
dataset. This filtering process involved selecting noun-phrases
based on their frequency to ensure diverse representation
across concepts in the dataset. The model was pre-trained

for one epoch using a learning rate of 2e-3 and a batch size
of 128. Following pre-training, the model underwent fine-
tuning on a specialized dataset, LLaVA-Instruct-158K, for
three epochs with a reduced learning rate of 2e-5 and a batch
size of 32. Various optimization techniques, such as using the
Adam optimizer with no weight decay and enabling BF16
and TF32, were implemented to balance speed and precision
during training.

The results demonstrate that the LLaVA model exhibits sig-
nificant improvements in responding to multimodal tasks com-
pared to previous models. It effectively generates detailed and
contextually appropriate descriptions of images, showcasing
an ability to understand and relate visual elements to textual
instructions. Performance benchmarks indicate that LLaVA not
only maintains high accuracy in traditional language tasks but
also excels in complex visual reasoning scenarios, establishing
it as a robust tool for applications requiring integration of
language and vision.

3) LLaMa_Adapter_y2: LLaMA-Adapter[20], introduced
in early 2023, was one of the pioneering attempts to extend
Large Language Models (LLMs) to handle visual inputs
through parameter-efficient adaptation. The model utilized a
lightweight adapter architecture that could be trained while
keeping the base LLaMA model frozen, making it computa-
tionally efficient. Its key innovation was the introduction of
a perceiver-style architecture that processed visual inputs and
injected them into the LLM’s attention layers. However, the
model faced limitations in complex visual reasoning tasks and
struggled with detailed visual instruction following.

Building upon these foundations, LLaMA-Adapter-V2[47]]
emerged as a parameter-efficient visual instruction model de-
signed to enhance the capabilities of LLMs in handling multi-
modal reasoning tasks. The goal is to improve the model’s abil-
ity to follow visual instructions and perform complex visual
reasoning, surpassing the limitations of previous models like
LLaMA-Adapter and achieving performance closer to that of
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GPT-4. The authors augmented the original LLaMA-Adapter
by unlocking more learnable parameters and introducing an
early fusion strategy to incorporate visual tokens into the early
layers of the LLM. They also implemented a joint training
paradigm using image-text pairs and instruction-following
data, optimizing disjoint groups of learnable parameters. Ad-
ditionally, they integrated expert models (e.g., captioning
and OCR systems) to enhance image understanding without
incurring additional training costs. It demonstrated superior
performance in open-ended multi-modal instructions with only
a small increase in parameters over the original LLaMA
model. The new framework showed stronger language-only
instruction-following capabilities and excelled in chat in-
teractions. The model achieved significant improvements in
multi-modal reasoning tasks, effectively balancing image-text
alignment and instruction-following learning targets.

4) MiniGPT-4: MiniGPT-4[21] is a vision-language model
designed to replicate the advanced multi-modal capabilities of
GPT-4. The authors aim to demonstrate that aligning visual
features with an advanced LLM can enhance vision-language
understanding and generation, similar to GPT-4’s abilities.

MiniGPT-4 aligns a frozen visual encoder with a frozen
advanced LLM, Vicuna, using a single projection layer. The
model is trained in two stages: initially on a large collection
of image-text pairs to acquire vision-language knowledge,
and then fine-tuned with a smaller, high-quality dataset to
improve language generation reliability and usability. It ex-
hibits advanced capabilities such as generating detailed im-
age descriptions, creating websites from hand-drawn drafts,
and explaining visual phenomena. The model’s performance
is significantly improved after the second-stage fine-tuning,
demonstrating its potential to achieve vision-language tasks
comparable to those of GPT-4.

5) mPLUG-Owl: A modularized multi-modal foundation
model known as mPLUG-OwI[22], is oriented aims to improve
multimodal reasoning and action through advanced model ar-
chitectures that allow for better comprehension and interaction
across different data types. It focuses on tasks such as VQA
and interaction in multi-round conversations. The training
procedure involves a two-stage scheme that includes multi-
modal pre-training and joint instruction tuning. This approach
allows the model to develop a nuanced understanding of both
visual and textual instructions, enhancing its performance on
tasks that require integration of these modalities. The authors
conducted quantitative and qualitative evaluations to assess
the model’s capabilities, comparing it against baseline models
like MM-REACT and MiniGPT-4. A series of experiments
focused on instruction understanding were performed, indicat-
ing that multimodal instruction tuning significantly improves
the model’s performance. The evaluation metrics included
response accuracy and the ability to comprehend complex
instructions involving spatial orientation and human behavior,
which were systematically analyzed using datasets such as
OwlEval.

mPLUG-OwI significantly outperformed baseline models
in various multimodal tasks. For instance, in knowledge-
intensive question answering, mPLUG-Owl was able to iden-
tify movie characters in images more accurately compared to

other models. It showed a superior capability in multi-round
conversations where it effectively responded to referential
questions that required spatial and contextual reasoning. The
quantitative analysis indicated that the model achieved the best
performance metrics when both multimodal pre-training and
joint instruction tuning were applied. Furthermore, the findings
highlighted that while text-only instruction tuning improved
comprehension, incorporating visual data was crucial for en-
hancing knowledge and reasoning capabilities.

6) Otter: Otter[23] is a multi-modal model based on
OpenFlamingo[48]], designed to improve instruction-following
and in-context learning abilities. It is trained on the MIMIC-
IT[23] dataset proposed in the same paper, which includes
instruction-image-answer triplets and in-context examples. The
training process involved fine-tuning specific layers while
keeping the vision and language encoders frozen, optimizing
the model to run on four RTX-3090 GPUs.

Otter demonstrated improved instruction-following and in-
context learning capabilities compared to OpenFlamingo. It
provided more detailed and accurate descriptions of images
and better understood complex scenarios. The model’s perfor-
mance was evaluated through various experiments, showing
significant advancements in visual question answering and
commonsense reasoning tasks.

7) InstructBLIP: InstructBLIP[15] is a vision-language
instruction tuning framework. A pre-trained BLIP-2 model and
introduce an instruction-aware Query Transformer (Q-Former)
are used to extract visual features tailored to given instructions.
The authors gathered 26 publicly available datasets across 11
task categories, transforming them into instruction tuning for-
mat. The model is trained on 13 held-in datasets and evaluated
on 13 held-out datasets to assess zero-shot performance. A bal-
anced sampling strategy is employed to ensure synchronized
learning progress across datasets. It achieved state-of-the-art
zero-shot performance on all 13 held-out datasets, significantly
outperforming BLIP-2 and larger Flamingo models. The model
also excels in fine-tuning on individual downstream tasks,
such as achieving 90.7% accuracy on ScienceQA questions
with image contexts. Qualitative evaluations demonstrate In-
structBLIP’s superior capabilities in complex visual reasoning,
knowledge-grounded image description, and multi-turn visual
conversations.

8) VPGTrans: a two-stage transfer framework designed to
transfer a Visual Prompt Generator (VPG) across different
Large Language Models (LLMs), VPGTrans[49]. The first
stage involves warming up the projector with a high learning
rate to adapt the pre-trained VPG to a new LLM, preventing
performance drops. The second stage is vanilla fine-tuning of
both the VPG and projector. This approach aims to reduce
computational costs and training data requirements compared
to training a VPG from scratch.

The VPGTrans framework demonstrated significant effi-
ciency improvements, achieving up to 10 times acceleration
for small-to-large LLM transfers and up to 5 times acceleration
for transfers between different model types. Notably, it enabled
a BLIP-2 ViT-G OPT2.7B to 6.7B transfer with less than 10%
of GPU hours and 10.7% of training data compared to original
training. Additionally, VPGTrans outperformed the original
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models on several datasets, showing improvements in VQAv?2
and OKVQA accuracy.

9) Qwen-VL: The Qwen-VL[25] series represents ad-
vanced large-scale vision-language models designed to under-
stand and process both text and images. These models leverage
a robust architecture that combines a large language model, a
visual encoder, and a vision-language adapter, enabling them
to perform a variety of tasks in the realm of vision and
language.

Initially, the model undergoes pre-training using a large-
scale dataset of image-text pairs, which is refined from an
original set of five billion to 1.4 billion cleaned samples, pre-
dominantly in English and Chinese. In the second stage, multi-
task pre-training is conducted, enhancing the input resolution
of the visual encoder and employing interleaved image-text
sequences. This phase utilizes a vast array of data for various
tasks, including captioning and visual question answering,
allowing the model to learn effectively from diverse sources.
Finally, the supervised fine-tuning stage focuses on instruc-
tion tuning to improve the model’s interaction capabilities,
employing mixed dialogue data and manual annotations to
enhance multi-image comprehension and localization skills.
Throughout this process, the model architecture integrates a
language-aligned visual encoder and a position-aware adapter,
ensuring efficient processing of both visual and textual data,
ultimately enabling the Qwen-VL-Chat model to perform a
wide range of vision-language tasks with impressive accuracy
and fine-grained understanding.

10) DeepSeek-VL: DeepSeek-VL[27] is an open-source
vision-language model developed for real-world applications
in vision and language understanding, available in two variants
with 1.3B and 6.7B parameters. The model aims to enhance
user experience in various scenarios by integrating diverse data
and an efficient architecture.

The architecture is built on a diverse dataset, including
web screenshots, PDFs, OCR content, and charts, to com-
prehensively represent real-world scenarios, with instruction-
tuning datasets derived from real user interactions to enhance
practical usability. The training pipeline involves three stages:
initial training of the vision-language adaptor to link visual
and textual elements, joint pretraining of the vision-language
model, and supervised fine-tuning to refine multimodal capa-
bilities. A modality warm-up strategy dynamically adjusts the
ratio of visual and language data during training, preserving
linguistic performance while improving multimodal under-
standing. The model employs a token economy, compressing
high-resolution images into 576 tokens to balance visual
richness and token efficiency, making it suitable for multi-
turn inference. Designed for scalability, DeepSeek-VL plans
to integrate Mixture of Experts (MoE) technology to further
enhance its multimodal capabilities. It demonstrates excep-
tional performance across visually-centric benchmarks while
maintaining strong language proficiency, surpassing existing
generalist models. Additionally, its open-source availability
encourages community-driven innovation and research.

DeepSeek-VL demonstrates state-of-the-art or competitive
performance across various vision-language (VL) benchmarks
at comparable model sizes, showcasing its robust multimodal

capabilities. In language-centric tasks, it performs on par with
or even surpasses its predecessor, DeepSeek-7B, achieving
scores of 68.4 on HellaSwag and 52.4 on MMLU, under-
scoring its strong linguistic proficiency alongside visual un-
derstanding. However, the model exhibits a notable decline in
mathematical reasoning tasks, scoring 18.0 on GSM8K com-
pared to DeepSeek-7B’s 55.0, highlighting a potential area for
improvement. When compared to advanced models like GPT-
4V, DeepSeek-VL-7B excels in areas such as Recognition,
Conversion, and Commonsense Reasoning, but GPT-4V main-
tains an edge in logical reasoning tasks, indicating room for
further refinement in complex reasoning capabilities. Overall,
DeepSeek-VL establishes itself as a highly competitive model
in the VL landscape, balancing strong performance across
multiple domains while identifying specific areas for future
enhancement.

11) Pre-training VL models with SigLIP: The Sigmoid
Loss for Language-Image Pre-Training (SigLIP) [24] repre-
sents a significant shift in vision-language pre-training by
replacing traditional softmax-based contrastive learning with
a simpler and more efficient sigmoid loss approach. This in-
novation simplifies distributed loss computation and enhances
training efficiency, making it particularly suitable for large-
scale VL model training.

In traditional softmax-based contrastive learning, the ob-
jective function for training a VL model involves an image
encoder f and a text encoder g. The goal is to minimize the
following loss:
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Where z; = T and y; g T)II represent the

normalized embeddilngs of the image /; and T; respectively.
While effective, this approach requires computing pairwise
similarities across the entire batch, which can be computa-
tionally expensive and complex to implement in distributed
settings.

SigL.IP addresses these limitations by reformulating the
learning problem as a binary classification task. Instead of
computing softmax probabilities over all pairs, SigLIP pro-
cesses image-text pairs independently, assigning positive labels
to matching pairs (I;,T;) and negative labels to non-matching
pairs (I;, T;;). The objective function is then defined as:

text—image softmax
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Here, z;; is the label for a given image-text pair, where
235 = 1 for positive pairs and z;; = —1 for negative pairs. The
sigmoid loss directly optimizes the binary classification task,
simplifying the training process and reducing computational
overhead. This approach not only improves scalability but
also maintains competitive performance in vision-language
alignment tasks.
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B. Applications

VLMs are particularly useful for healthcare applications
that require the interpretation of visual data, such as medical
images. They can also answer questions about this visual data,
such as identifying anomalies in the medical data.

1) MedViLL: For the task of report generation from med-
ical images, some models have been proposed in the litera-
ture. Medical Vision Language Learner (MedViLL) [50] for
example, is a medical model based on BERT architecture
combined with a novel multimodal attention masking scheme
and maximizes the generalization of both vision-language
understanding tasks including diagnosis classification, medical
image-report retrieval, and medical visual question answering.
It also enables vision-language generation task such as radiol-
ogy report generation. MedViLL is pre-trained on MIMIC-
CXR dataset [41], containing 227,835 imaging studies for
65,379 patients presenting the Beth Israel Deaconess Medical
Center Emergency Department between 2011-2016.

As illustrated in figure 3] The visual embedding consist of
extracting features from images using a CNN (ResNET-50).
Practically, if v is the flattened feature obtained from the CNN
and [ the location feature, the final visual feature embedding is
v+1+ s, where s, is the semantic vector shared by all visual
feature to differentiate themselves from language embedding.
For language feature embedding, BERT [8] is used. Visual
embedding and language embedding are concatenated to form
the input of the joint embedding.

The pre-training step of MedViLL consist of minimizing
the negative log-likelihood:

ACJWLM(G) = _E(v,w)wD [long(wm|v, wm)] 3

Where 6 is the trainable parameters, (u,v) is a pair of
images and its corresponding report. The pre-trained MedViLL
achieved the score of complexity of 4.185, 84% of accuracy
and 6.6% of BLUE4
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Fig. 3. Architecture of MedViLL [41]. The model combines visual
and language embeddings to enable joint representation learning for medi-
cal applications. (A) Visual embeddings are generated using random pixel
sampling and positional encodings from medical images (e.g., X-rays).
(B) Language embeddings incorporate tokens with segment and positional
encodings from corresponding reports. Both embeddings are processed in
(C) a joint embedding space through a bidirectional auto-regressive self-
attention mechanism within a transformer. The model supports two primary
tasks: image-report matching and masked language modeling, enabling robust
multimodal understanding for clinical applications.

ﬁ (A) Visual Embedding § (B) Language Embedding

2) MedCLIP: Several visual language models have gained
recognition for their potential in healthcare. Contrastive
Language-Image Pre-training (CLIP) [9]] is a powerful open-
source model that has shown strong performance on image-
text tasks in healthcare, including classifying medical images
and generating radiology reports. As illustrated in figure [4]
the contrastive pre-training consists of using ResNet or Vision
Transformer(ViT) to extract features from images. The ResNet
versions include improvements like anti-aliasing and attention
pooling. The text encoder utilizes a Transformer model to
convert text into feature representations. It processes text using
a byte pair encoding (BPE) with a large vocabulary. The con-
trastive learning is then the process of learning to predict which
text matches which image by maximizing the cosine similarity
of correct (image, text) pairs and minimizing it for incorrect
pairs. When testing, the model can classify images into new
categories by embedding the names or descriptions of the
target classes and comparing them to the image embeddings.

MedCLIP [51] has extended the capabilities of CLIP to the
medical domain. Unlike traditional methods that rely on paired
image-text datasets, MedCLIP decouples images and texts,
significantly increasing the amount of usable training data. It
addresses the issue of false negatives by incorporating medical
knowledge to create a semantic matching loss, ensuring that
images and reports with similar medical meanings are cor-
rectly identified. MedCLIP demonstrates superior performance
in zero-shot prediction, supervised classification, and image-
text retrieval tasks, outperforming state-of-the-art methods
with much less pre-training data (20k data). This approach
promises to improve the efficiency and accuracy of medical
image analysis, supporting better clinical decision-making.

(2) Create dataset classifier from label text

(1) Contrastive pre-training

Fig. 4. Summary of the approach for CLIP [9]: Contrastive pre-training
aligns image and text embeddings (1), enabling the creation of dataset
classifiers from textual labels (2), and facilitating zero-shot predictions by
matching image embeddings with textual prompts (3).

3) BioViL & BioMedCLIP: BioViL (Biomedical Vision-
Language Model)[12] is a specialized adaptation of CLIP, de-
signed specifically for biomedical tasks involving medical im-
ages and text. Its architecture features a CNN image encoder,
which generates a grid of local image embeddings, and a text
encoder known as CXR-BERT, optimized for radiology report
processing. Like CLIP, BioViL fuses image and text modalities
into a shared latent space to create joint representations. It is
trained on the MIMIC-CXR dataset with data augmentation. A
key advantage of BioViL is its reduced reliance on extensive
text-prompt engineering, enhancing usability in zero-shot clas-
sification tasks. BioViL demonstrates superior performance
across multiple downstream tasks compared to other state-
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of-the-art models, achieving improved segmentation results
without needing additional local loss terms or separate object
detection networks. In addition, BioViL introduces the MS-
CXR dataset, designed for evaluating image-text understand-
ing in the radiology domain, which enhances the availability
of resources for future studies.

Similar to MedCLIP, BioMedCLIP[10] uses medical image-
text pairs and applies contrastive learning to align the visual
and textual modalities. It improves over general CLIP models
by incorporating domain-specific medical knowledge.

4) ConVIRT: Contrastive Vision-Language Pre-training
(ConVIRT) [13] leverages a contrastive learning framework
to pre-train models on large-scale medical image-text pairs. It
is an unsupervised strategy to learn medical visual representa-
tions by exploiting naturally occurring paired descriptive text.
The framework takes input a pair of images x, and the text
sequence z, to describe the imaging information. The goal
is to learn an image encoder f, (modelled as a CNN) and
then transfer it into downstream tasks. A random view I, is
sampled from the inputs using a transformation function from
a family of stochastic image transformations. A span Z,, is also
sampled. Both z,, and %, are encoded in a fixed-dimensional
vector followed by a projection transforming z, and Z,, into
v and u respectively. The training step involve two loss: the
first is an image-to-text contrastive loss for a pair ¢

exp({vi, u;)/T)

107 = —log )
i N
> k=1 €xp((vi, uk) /7)
the second is the text-to-image contrastive loss
l(u%v) _ —lOg exp((ui, Ui>/T) (5)

' S eap((ui, v) /7)

The final training loss is then a weighted combination of these
two losses averaged over all positive image-text pairs in each
minibatch.

ConVIRT is pre-trained on the second version of the public
MIMIC-CXR dataset [41] and additional image-text pairs
collected from the Rhode Island Hospital system. The pre-
trained model is evaluated for three medical imaging tasks: im-
age classification, zero-shot image-image retrieval, and zero-
shot text-image retrieval. On four medical image classification
tasks and two image retrieval tasks, ConVIRT outperformed
other prominent in-domain initialization methods, resulting in
representations of significantly higher quality. In comparison
to ImageNet pretraining, ConVIRT achieved comparable clas-
sification accuracy while requiring an order of magnitude less
labeled data.

5) VividMed: Previous VLMs have shown their capability
to process medical visual data. However, these models typ-
ically rely on a single method of visual grounding and are
limited to processing only 2D images. This approach falls
short in addressing the complexity of many medical tasks,
which require more versatile techniques, especially since a
significant portion of medical images are 3D. Additionally,
the scarcity of medical data further challenges these models.
To overcome these limitations, VividMed (Vision Language
Model with Versatile Visual Grounding for Medicine)[11]] has
been proposed as a more adaptable solution.

In VividMed, the task is not only to generate responses
based on the input image and language instructions but also
to identify key phrases {r;}%_; in the generated text that refer
to ROIs in the image.

The architecture of VividMed, shown in Figure E], is built
on CogVLM [52]] as the base VLM, designed to generate
responses based on input images and language instructions.
Special tokens such as <p>, </p>, <grd> and </grd> are
incorporated to specify the target phrase for grounding and
indicate when the model should perform visual grounding.
These tokens enable more precise control over the grounding
process.

The promptable localization module follows Segment Any-
thing Model (SAM) [53], consisting of a vision encoder and
a transformer-based decoder. To ground each phrase identified
by the VLM, an embedding is generated by extracting the last-
layer hidden state of the closing token (</p>), which is then
passed through an MLP to serve as a prompt for the decoder.
The decoder generates bounding boxes or segmentation masks
based on this prompt and the encoded image.

However, adapting the SAM mask decoder to output bound-
ing boxes is complex. SAM’s mask decoder produces a
single binary mask per prompt, which cannot capture multiple
instances of the same phrase. A workaround, like merging
bounding boxes, results in information loss.

To address this, the authors introduce a new branch in the
decoder for instance-specific predictions, inspired by DETR-
like methods [54]. They add multiple query tokens, each
potentially linked to a unique instance or a dummy negative.
The set of ground-truth labels and predictions is padded with
dummy negatives to match a predefined token count ( m),
ensuring coverage of different instances.

During training, the Hungarian algorithm assigns each pre-
diction a unique label to minimize a cost function, (Lcos),
which combines a bounding box regression loss (Lpox) and a
discrimination loss (Lygis. ). The authors employ (¢;) and GloU
losses for (Lpox) and focal loss for (Lgis), as used in DINO
[55]. For segmentation masks, the loss combines Dice and
focal losses.
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Fig. 5. Architecture of VividMed[11]: Combines a ViT encoder for image
embedding and a localization decoder for binary set prediction and spatial
region identification, while leveraging a Large Language Model to generate
medical descriptions based on multimodal inputs, including mask and box
queries.

Since most medical images consist of multiple 2D slices
stacked to form a 3D structure, a single-slice X-ray represents
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a simpler case. To avoid unwanted artifacts from inter-slice
interpolation in 3D images, the authors dynamically adjusted
model weights based on the image slice count, following
methods for universal backbones in medical imaging [56].
In the ViT-based vision encoder (Fig. [5), a maximum patch
number (t4) and base patch size (Py) are set along the depth,
adjusting the effective patch size (P}) dynamically according
to the input slices. For upsampling, transposed convolutions
with a scale factor of 2 are used, disabling upsampling along
the depth when feature maps reach the input depth, with kernel
weights adjusted by mean pooling to ensure size consistency.

The training procedure of VividMed is conducted in 3
stages: (i) visual grounding pre-training, the model is in-
structed here to determine whether given targets detection
exist on the image and list the target names along with
their presence in the respons; (ii) medical visual instruction
tuning, dedicated to training the model’s visual understanding
and reasoning capabilities for medical images; (iii) alignment,
consisting of finetuning the model to align both the visual
grounding and medical image understanding abilities trained
by previous stages to unleash the combined strengths.

VividMed is trained on VinDr-CXR, MIMIC-CXR, and CT-
RATE for the task of VQA; ROCOv2[57] dataset for Image
Captioning; MIMIC-CXR[41] and CT-RATE[S58] for Report
Generation. The model is evaluated using BLEU, ROUGE and
METEOR over VQA-RADI38], SLAKE[39], VQA-Med[37]
(for VQA tasks) and the test sets of MIMIC-CXR and CT-
RATE for Report Generation. As results, ividMed shows non-
trivial general improvement over fine-tuned CogVLM and out-
performs all other baselines in VQA. For Report Generation,
VividMed outperforms all other baselines by a large margin
on both datasets.

6) Flamingo-CXR & Med-Flamingo: Flamingo-CXR[43]]
is a model designed to generate radiology reports for Chest X-
rays. As many VLMs, Flamingo-CXR aims to improve patient
care and reduce radiologists’ workload by automating report
generation. It addresses the challenge of evaluating the clinical
quality of Al-generated reports by engaging a panel of board-
certified radiologists for expert evaluation. It was fine-tuned
using two large datasets (MIMIC-CXR from a US emergency
department and IND1 from in/outpatient settings in India).
The evaluation involved comparing Al-generated reports with
human-written ones through a pairwise preference test and
an error correction task. Radiologists assessed the reports’
clinical quality as illustrated in Fig. [6] identifying errors
and providing corrections. The model showed that 56.1% of
Flamingo-CXR reports for intensive care were preferable or
equivalent to clinician reports, rising to 77.7% for in/outpatient
X-rays and 94% for cases with no pertinent abnormalities.
Both human and Al-generated reports contained errors, with
24.8% of in/outpatient cases having clinically significant errors
in both types. The authors found that clinician-Al collaboration
improved report quality, with Al-generated reports corrected
by experts being preferable or equivalent to original clinician
reports in 71.2% of IND1 cases and 53.6% of MIMIC-CXR
cases.

Med-Flamingo[44], for its part, is based on OpenFlamingo-
9B and is pre-trained on paired and interleaved medical image-

text data from publications and textbooks. The training in-
volved constructing a unique dataset from over 4,000 medical
textbooks and the PMC-OA dataset, resulting in a comprehen-
sive collection of medical images and text. The model was
trained using multi-GPU setups and advanced optimization
techniques to handle the complexity and multimodality of
medical data. It achieved a great performance in medical
VQAs, up to 20% improvement in clinician ratings over
previous models. The model was evaluated on several datasets,
including the Visual USMLE dataset, and showed superior
performance in generating clinically useful answers. The hu-
man evaluation study with clinical experts confirmed that
Med-Flamingo’s answers were most preferred by clinicians,
highlighting its potential for real-world medical applications.
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Fig. 6. Overview of the human evaluation framework by [43]. (a)
Two evaluation methods for comparing radiology reports from an Al model
with those created by human experts. The first method involves a pairwise
preference test where an expert chooses which report—Al-generated or
human-written—is better for patient care. The second method is an error
correction task, where the expert reviews a single report, makes edits, and
explains their significance. Additionally, (b) there is an assessment of the
AT’s effectiveness in an assistive role by comparing an edited Al report to a
human-only report, using data from outpatient care in India and intensive care
in the U.S., with board-certified radiologists evaluating regional differences.

7) BiomedGPT: BiomedGPT[18]] is an open-source model,
lightweight vision-language foundation model designed to
perform diverse biomedical tasks. Unlike traditional AI models
that are specialized for specific tasks, BiomedGPT aims to
be a generalist, capable of interpreting different data types
and generating tailored outputs. This model addresses the
limitations of existing biomedical Al solutions, which are often
heavyweight and closed-source, by offering a versatile and
accessible alternative.

BiomedGPT was pretrained using a large and diverse dataset
comprising 592,567 images, approximately 183 million text
sentences, 46,408 object-label pairs, and 271,804 image-
text pairs. The model was fine-tuned on various multimodal
tasks, including visual question answering (VQA) and im-
age captioning, using datasets like VQA-RAD, SLAKE, and
PathVQA. The performance of BiomedGPT was benchmarked
against leading models using recognized metrics from the
literature, and human evaluations were conducted to assess
its capabilities in radiology visual question answering, report
generation, and summarization.

BiomedGPT achieved state-of-the-art results in 16 out of
25 experiments while maintaining a computing-friendly model
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scale. It demonstrated robust prediction ability with a low error
rate of 3.8% in question answering, satisfactory performance
with an error rate of 8.3% in writing complex radiology
reports, and competitive summarization ability with a nearly
equivalent preference score to human experts. The study
highlights BiomedGPT’s potential in improving diagnosis and
workflow efficiency in medical applications, although further
enhancements are needed for clinical usability.

8) RadFM: The Radiology  Foundation = Model
(RadFM)[26] is designed to handle a wide range of
clinical radiology tasks by learning from 2D and 3D medical
scans and corresponding text descriptions. The authors
constructed a large-scale Medical Multi-modal Dataset
(MedMD), consisting of 16 million radiology scans and
high-quality textual descriptions. The model was pre-trained
on MedMD and fine-tuned on a subset called RadMD,
which includes 3 million meticulously curated multi-modal
samples. The evaluation of RadFM was conducted using
RadBench, a comprehensive benchmark covering tasks like
disease diagnosis, report generation, and visual question
answering. It demonstrated significant improvements across
all evaluated tasks compared to existing models like
OpenFlamingo, MedVInT, MedFlamingo, and GPT-4V. It
excelled in modality recognition, disease diagnosis, medical
visual question answering (VQA), report generation, and
rationale diagnosis. The model’s performance was validated
through both automatic and human evaluations, showing
superior results in terms of accuracy, precision, and recall.
The study highlights RadFM’s potential to unify 2D and
3D radiologic images and support multiple medical tasks,
marking a significant step towards developing a generalist
foundation model for radiology.

9) LLaVa-Med: 1LaVa-Med[17] enhances medical VQA
through the integration of vision-language models. The authors
developed a structured approach that involves curating high-
quality instruction-following data based on medical images
and their corresponding textual descriptions. This process
includes filtering a large dataset to focus on single-plot images
across common imaging modalities, such as chest X-rays, CT
scans, and MRIs. They manually curated few-shot examples
to demonstrate effective conversation generation based on
provided captions and contextual information extracted from
PubMed papers. This structured approach aims to improve the
model’s ability to generate accurate and contextually relevant
responses to visual questions in the medical domain. Quanti-
tative results showcased significant improvements in accuracy
for both open-ended and closed-ended questions compared to
prior methods. For instance, their model variants demonstrated
high recall rates and accuracy across various question types,
indicating enhanced generalization capabilities. Notably, the
LLaVA-Med model achieved new state-of-the-art results, un-
derscoring the effectiveness of their instruction-following data
generation strategy and the model’s ability to integrate external
knowledge for better contextual understanding.

10) MedVInT: The MedVInT[19] model utilizes a gen-
erative learning approach for Medical Visual Question An-
swering (MedVQA), achieved by aligning a pre-trained vi-
sion encoder with a large language model through visual

instruction tuning. The model is pre-trained on the proposed
PMC-VQA[19] dataset, which covers various medical modal-
ities and diseases, significantly exceeding the size and diver-
sity of existing datasets. The training process involves fine-
tuning the model on established benchmarks such as VQA-
RADI[38]] and SLAKE[39]], leading to substantial performance
improvements. Notably, two versions of MedVInT, named
MedVInT-TE and MedVInT-TD, are tailored for different
types of questions—open-ended and close-ended, respectively.
The model’s architecture is designed to leverage domain-
specific pre-training, enhancing its ability to interpret medical
visuals accurately and generate relevant answers to text-based
queries. For open-ended questions, the accuracy improved
significantly, with MedVInT-TE achieving a 16% increase
on VQA-RAD and 4% on SLAKE when pre-trained. In
terms of specific results, the MedVInT-TE version reached
an accuracy of 70.5% on the ImageCLEF[59] benchmark,
surpassing the previous state-of-the-art accuracy of 62.4%.
Additionally, when compared to models trained from scratch,
those utilizing the PMC-CLIP vision backbone showed consis-
tent performance improvements, underscoring the importance
of domain-specific pre-training. Overall, the MedVInT model
outperformed several existing models, including LLaVA-Med,
demonstrating its effectiveness in handling both open-ended
and close-ended questions in medical image interpretation.

C. VLMs integration in the medical workflow

The practical application of VLMs in the medical domain
is diverse and profound. VLMs offer capabilities such as mul-
timodal data interpretation, where they integrate textual data
(e.g., patient records) with visual inputs (e.g., medical images),
enabling enhanced diagnostic and decision-making processes.
For instance, these models can assist in generating detailed
reports from radiological images or identifying anomalies in
pathology slides. Such tools have the potential to improve the
efficiency and accuracy of diagnostic workflows, especially in
resource-constrained settings [60], [61].

In clinical decision support systems, VLMs can interpret
complex datasets to predict patient outcomes or recommend
treatments. Models like GPT-4V have been used to evaluate
dermatological conditions, providing differential diagnoses
and triaging recommendations. However, their integration into
clinical workflows requires addressing challenges such as bias
in predictions, lower performance in rare conditions, and the
need for robust privacy protections.

Another critical application is in medical education and
training. VLMs can synthesize multimodal datasets to create
case simulations for trainees, facilitating experiential learning.
For instance, generating synthetic but realistic case scenarios
from de-identified datasets can provide students and clinicians
with valuable practice.

Despite their promise, integrating VLMs into the medical
workflow requires rigorous validation and regulatory approval.
Ethical considerations, such as ensuring equity in model
performance across diverse patient populations, must also
be addressed to avoid perpetuating existing disparities in
healthcare access and quality.
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IV. VLM BENCHMARKING AND EVALUATIONS

The progress of VLMs in medicine heavily depends on
the availability of high-quality datasets. These datasets, along
with established benchmarks, have played a pivotal role in
driving both research and practical applications in the field.
Several key datasets and benchmarks have already contributed
significantly to the development and evaluation of VLMs,
shaping the advancements in this domain.

A. CheXpert & CheXpert Plus

Chest X-rays (CXR)[45] are one of the most commonly
used imaging techniques in medical diagnostics. They provide
a non-invasive and quick method to capture images of the
lungs, heart, airways, blood vessels, and bones of the chest.
CXRs are essential for diagnosing a variety of conditions,
including: pulmonary diseases EL cardiac conditions EI, trauma
E| and infections

Due to their widespread use in medical practice, chest X-
rays generate a vast amount of clinical data, making them
an ideal modality for training machine learning models. This
volume of data, coupled with the relative simplicity of in-
terpreting certain conditions on X-rays, makes chest X-rays a
prime focus for Al-based research and development, including
in the area of VLMs.

CheXpert [42] is a large-scale dataset widely used in med-
ical imaging research, particularly for chest X-ray analysis.
Developed by researchers at Stanford University, it serves
as a valuable resource for training and evaluating machine
learning models in radiology. The dataset is notable for its size,
diversity, and comprehensive labeling of medical conditions
observed in chest X-rays. However, CheXpert has certain
limitations, most notably the lack of demographic information,
which can be critical for developing equitable and generaliz-
able AI models.

To address these limitations, CheXpert Plus [62] was in-
troduced. This enhanced dataset includes 36 million tokens
comprising images, radiology reports, demographic details,
14 pathology labels, RadGraph annotations, and pre-trained
models for key machine learning tasks. By incorporating these
additional elements, CheXpert Plus significantly expands the
scope and utility of the original dataset, enabling more robust
and inclusive research in medical Al

B. MIMIC-CXR-JPG

The MIMIC-CXR-JPG [63] dataset is a large collection of
chest radiographs designed to facilitate research in automated
analysis of chest images. It consists of 377,110 chest X-ray
images associated with 227,827 imaging studies collected from
the Beth Israel Deaconess Medical Center between 2011 and
2016. The dataset includes 14 binary labels indicating the
presence or absence of various pathologies derived from NLP
tools applied to radiology reports.

'Pulmonary diseases include pneumonia, tuberculosis, and lung cancer
2Cardiac conditions include heart failure and cardiomegaly

3Trauma include fractures of the ribs or injuries to the lungs
“4Infections related to bronchitis or pleural effusion (fluid in the lungs).

C. Medtrinity-25M

Medtrinity-25M|[64] is a large-scale multimodal dataset with
multigranular annotations for medicine. The dataset is a set
of {image,ROI,description} where ROI (Region Of
Interest) is associated with an abnormality and is represented
by a bounding box or a segmentation mask, specifying
the relevant region within the corresponding image. Each
of these images is associated with a multigranular textual
description describing the disease/lesion type and other
discoveries as illustrated in the pipeline in Figure
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Fig. 7. Data pipeline of Medtrinity-25M[64]. The framework consists of
three main components: (1) Data processing pipeline that integrates ROI
localization, metadata integration, and medical knowledge retrieval from
established databases like PubMed and STATPEARLS, (2) Multigranular
textual description generation powered by MLLM incorporating prompts
based on coarse captions and medical knowledge, and (3) Data triplet output
displaying the original image with ROI annotation alongside comprehensive
multigranular descriptions. The framework leverages classification, report
analysis, and knowledge integration to generate detailed medical image
interpretations.
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The images are collected from various sources including on-
line resources (Kaggle, Zenodo, Hugging Face, GitHub,etc.),
relevant medical dataset research (such as CheXpert). They
contain either local or global annotations according to their
sources, and 25,001,668 samples spanning 10 modalities and
over 65 diseases have been collected. The captions and anno-
tations like masks and bounding boxes from these sources are
utilized to construct ROIs and corresponding textual descrip-
tions.

As illustrated by Figure [7] the pipeline consists of two
stages. The first stage is the data processing, where the lack of
domain-specific knowledge is addressed by integrating meta-
data, ROI locating, and medical knowledge retrieval. These
informations processed in the first stage are used in the second
stage to prompt LLMs (GPT-4V, LLAVA-Med, LLaMA3) to
produce the multigranular textual descriptions.

MedTrinity-25M being a large-scale dataset (25 million
image-text pairs), is designed to advance research in medical
Al, providing a rich resource for various tasks in medical
image analysis and natural language processing. It can be used
to develop and fine-tune large multimodal VLMs capable of
understanding both visual and textual medical data.

D. GMAI-MMBench

GMAI-MMBench[635] is a comprehensive multimodal eval-
uation benchmark towards general medical Al It features data
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TABLE 11
BENCHMARKING IN MEDICAL VLMS. THIS TABLE SUMMARIZES KEY BENCHMARKS IN MEDICAL VLMS, INCLUDING THEIR MODALITIES, DATASET
SIZES, TASKS, AND SOURCES. THE BENCHMARKS COVER A WIDE RANGE OF MEDICAL IMAGING MODALITIES AND TASKS, SUCH AS CLASSIFICATION,
SEGMENTATION, AND VQA

Benchmark Modality  Size Task Source

CheXpert[42] 1 224,316 14 (Pathology classification tasks) from 65,240 patients

CheXpert Plus[62] 1 224,316 14 (Classification + Localization tasks) from 187,711 studies and 64,725 patient
MIMIC-CXR-JPG[63] 2 377,110 14 (Pathology classification + Report generation)  from 227,827 imaging studies
Medtrinity-25M[64] 3 25M 30+ (Multi-task learning) from radiology, pathology, and EHRs'
GMAI-MMBench[65] 38 26k 18 (Diverse medical tasks) 28 datasets from hospitals

PMC-VQAI19] 2 1.5M 4 (Visual Question Answering tasks) PubMed Central

PathVQAL[66] 1 6k 7 (Visual Question Answering tasks) Textbook, PEIR

VQA-RADI38] 3 3k 11 (Visual Question Answering tasks) Teaching cases from Medpix

BESTMVQA|[67] 2 N/A 5 (Visual Question Answering tasks) as X-rays, CT scans, MRIs, and pathology slides.
CT-RATE[SS8] 2 N/A 3 (Classification, Segmentation tasks) from radiology departments & imaging repositories.
SLAKE[39] 3 2k 10 (Visual Question Answering tasks) MSD, Chesx-ray8, CHAOS

RadBench[68] 6 137k 5 (Image-text understanding tasks) 13 image-text paired datasets

OmniMedVQAI69] 12 128k 5 73 classification datasets

T: Electronic Health Records (EHRSs)

from 284 datasets across 38 medical imaging modalities and
spans 18 clinical-related tasks, 18 medical departments, and
4 perceptual granularities in VQA format. These datasets are
organized in a way that allows for flexible and customizable
evaluations through a lexical tree, making it easier for re-
searchers to focus on specific medical Al challenges.

The GMAI-MMBench benchmark is constructed in three
steps as illustrated in Figure [§] The first step consists of data
collection and standardization where the datasets are sourced
both from Internet searches and hospitals. As standardization,
all 2D/3D medical images are converted into 2D RGB images
and some additional processing such as expanding all abbrevi-
ations, unifying different expressions for the same target, and
merging labels with left and right distinctions. The second step
is the label categorization and lexical tree construction where
three subjects tailored for the biomedical field are proposed
from data; they include clinical VQA tasks, departments, and
perceptual granularities. The well-organized structure from
this categorization is then used in the third step to generate
VQA pairs for labels.

First, candidate questions are formulated by combining
modality, clinical task hints, and perceptual granularity infor-
mation. For each label, 10 options are selected at random,
and GPT-40 is employed to generate 10 candidate questions
for each, ensuring diversity in question phrasing and con-
tent. After this automated generation process, the questions
undergo manual review by medical professionals to ensure
relevance, accuracy, and clarity. For the options generation,
the process is carefully designed to handle different levels of
perceptual granularity in medical images, separating global
(image-level) and local (mask, bounding box, or contour-
level) views. For the global view, answer options are sourced
from other categories in the dataset, ensuring no overlap with
the correct answer to avoid ambiguity. In the local view,
options are derived from a shared pool based on modality,
clinical task, and the specific detail being queried. Second,
a question is selected for each image, and a set of answer
options (including the correct one) is randomly generated,
ensuring a well-structured and diverse set of question-answer
pairs for evaluation. Third, manual validation and selection are

performed to ensure data quality and balanced distribution.

|

& m,)o EoEl

Question-answering
generation & selection

Given the <modality> image and its
<detailed description>, generate 10
question templates

Label, odalty, Cilical VOA Task, Perceptual Granulariy

Label categorization &
lexical tree construction
Labels Clinical VQA Tasks Departments

Data collection & standardization

)

Anatomical Structure
Bladder
Recognition

Urology

Debris
Clearance

Surgical Workflow

General Surgey
Recognition

Tmages

Neoplas
“’: ! Disease Diagnosis Oncology

uuuuuu

Question
ox in this endoscopy
y is most likely present ?

Clinical VOA Tasks | Departments
[
[

Disease
Diagnosis

t z- Medical Subject Heading 2024

ACL Pathology, AMD |
( 2 L)

Cell
Recognition

Severity
Grading
Expand

thology Age-related

X-ray Endoscopy Fundus

Standardize Pulmonary
Nodule

Kidney

M vai
/'X Select

Tnvalid
Pulmonary
Nodule

Merge Pylorus  Polyp Not Select

Fig. 8. Overview of the GMAI-MMBench[65] framework comprising
three main components: (1) Data collection and standardization pipeline inte-
grating multiple medical imaging datasets (RadlmageNet, ChinaSet, ADAM,
Kvasir) with standardized labeling through Medical Subject Heading 2024,
(2) Label categorization and hierarchical lexical tree construction organizing
clinical VQA tasks across medical departments, and (3) Question-answering
generation and selection system producing structured questions with modality-
specific options and validation criteria. The framework enables comprehensive
evaluation of medical visual question-answering capabilities across different
imaging modalities, clinical tasks, and diagnostic scenarios.

This benchmark has been used to evaluate several LVLMs,
including general models and medical-specific models. 29
out of 50 models are picked and evaluated using macro-
averaged accuracy (ACC) as the evaluation metric for single-
choice questions.For multiple-choice questions, the models are
evaluated using both macro-averaged accuracy (ACCp,q) and
recall (Recallpq) to account for the proportion of correct
answers selected relative to the total predictions and the
ground-truth options. This evaluation revealed that medical
tasks are still challenging for all LVLMs, since even the most
advanced model (GPT-40) is limited to 54% accuracy.

E. PMC-VQA

PMC-VQA (PubMed  Central  Visual  Question
Answering)[19] is a groundbreaking large-scale medical
Visual Question Answering dataset, introduced by Zhang et



VISION LANGUAGE MODELS IN MEDICINE

al. in 2023. The dataset comprises 227,117 diverse image-
question-answer triplets, extracted from over 40,000 medical
research papers in PubMed Central. It features a wide range
of medical images, including radiological scans, pathology
slides, clinical photographs, and medical illustrations, paired
with expert-authored questions and answers. The dataset’s
strength lies in its comprehensive coverage of various medical
domains and question types, from diagnostic interpretations
to anatomical identifications and technical analyses.

What sets PMC-VQA apart is its instruction tuning ap-
proach for medical visual understanding tasks. The dataset
not only provides factual question-answer pairs but also
incorporates complex reasoning scenarios that mirror real
clinical decision-making processes. With a reported model
performance achieving approximately 76% overall accuracy
and clinical correctness of 72%, PMC-VQA has established
itself as a benchmark for evaluating and advancing medical
VQA systems. Its applications span clinical decision sup-
port, medical education, and research assistance, making it
a valuable resource for developing more robust and clinically
relevant medical Al systems.

F. Hallucination benchmark

The pretrained medical VLMs have shown great potentials
for VQA tasks but are not tested on hallucination phenomenon
in the clinical settings. To solve this problem, a hallucina-
tion benchmark in medical VQA [70] have been developed,
aimed at evaluating the performance of LLMs in detecting
hallucinations during medical VQA. It outlines the importance
of minimizing hallucinations in healthcare settings, where
inaccuracies could lead to misdiagnoses or inappropriate treat-
ments. The authors modified existing VQA datasets (PMC-
VQA, PathVQA and VQA-RAD) to assess model responses
to both genuine and nonsensical questions, as well as mis-
matched image queries. They analyzed the performance of
various models, including LLaVA and GPT-4, highlighting
that while GPT shows strong overall performance, it poses
privacy concerns in clinical settings. The findings suggest
that the LLaVA-v1.5-13B model, when combined with an
effective prompting strategy (L+D), exhibits the best accuracy
and minimal irrelevant predictions, making it suitable for
deployment as a visual assistant in healthcare environments.

G. BESTMVQA

The Benchmark Evaluation System for Medical Visual
Question Answering (BESTMVQA) [67] involves several key
components designed to address challenges such as data
insufficiency and the need for a unified evaluation system.
The process begins with data preparation, where users upload
their self-collected clinical data. This data is then processed
using a semi-automatic tool that extracts medical images and
relevant texts for medical concept discovery. A human-in-the-
loop framework assists in annotating these medical concepts,
which are auto-labeled initially and later verified by profes-
sionals. The annotated data is utilized to generate high-quality
question-answer pairs with the help of a pre-trained language
model. Furthermore, BESTMVQA provides a comprehensive

model library containing a variety of state-of-the-art models
for users to select from, facilitating ease in evaluating dif-
ferent models against benchmark datasets. Users can conduct
experiments with simple configurations, allowing the system to
automatically train and evaluate models, ultimately generating
comprehensive reports on their performance and applicability
in medical practice.

H. CT-RATE dataset

The CT-RATE dataset [58] comprises pairs of 3D medical
images and corresponding textual reports. Initially, it included
25,692 non-contrast 3D chest scans, which were subsequently
expanded to over 14.3 million 2D slices using advanced
reconstruction techniques as illustrated in figure [9]
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Fig. 9. Overview of the CT-RATE dataset and CT-CLIP [67]: ( Finetuning
CT-CLIP and the validation strategy. a. Illustration of linear probing finetuning
method (ClassFine) for CT-CLIP, where a linear layer is incorporated into
the vision encoder. b. ClassFine enables multi-abnormality classification but
is limited to the classes predefined during finetuning. c. Illustration of CT-
CLIP’s open vocabulary finetuning method (VocabFine) for each abnormality.
d. VocabFine allows for open vocabulary abnormality classification even
after finetuning, although it is constrained to the prompts provided during
finetuning. e. Validation: models are trained on the CTRATE dataset and then
tested on both an internal CT-RATE validation set and an external dataset ; f.
Comparison: a comprehensive evaluation is performed in multi-abnormality
detection across two different cohorts, evaluating CT-CLIP, the two finetuned
models, and a fully supervised method.

The authors also introduced the CT-CLIP framework, which
leverages contrastive language-image pre-training to enable
broad applicability without requiring task-specific fine-tuning.
This framework excels in multi-abnormality detection and case
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retrieval tasks, demonstrating robust performance not only on
data with similar distributions but also under distribution shifts.

By integrating CT-CLIP’s vision encoder with a pretrained
large language model (LLM), the authors developed CT-
CHAT, a model tailored for 3D chest CT volumes. CT-CHAT
outperforms other multimodal Al assistants, such as LLaVa
1.6, LLaVa-Med, and CXR-LLaVa, in generating both concise
and detailed responses, handling multiple-choice questions,
and producing high-quality radiology reports. The strength of
CT-CHAT lies in its ability to utilize 3D spatial information
processed by CT-CLIP’s pretrained vision transformer, which
captures more intricate anatomical details compared to 2D
models. Additionally, the integration of 3D CT volumes with
radiology-specific linguistic data from CT-RATE enables CT-
CHAT to deliver highly accurate and clinically relevant out-
puts, surpassing models trained on general-purpose text data.

1. OmniMedVQA

OmniMedVQA[69]] is a large-scale evaluation benchmark
designed for medical Visual Question Answering. It includes
118,010 images and 127,995 question-answer items, covering
different modalities across more than anatomical regions,
sourced from 73 distinct medical datasets. This dataset aims
to facilitate the evaluation of Large Vision-Language Models
(LVLMs) in medical applications.

The benchmark encompasses various imaging modalities,
including: Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), X-Ray, histopathology, fundus photogra-
phy, digital photography, ultrasound, endoscopy, dermoscopy,
Optical Coherence Tomography (OCT), Infrared Reflectance
Imaging (IRI) and colposcopy.

J. Evaluation metrics

1) Medical VQA metrics: The performance of Visual Lan-
guage Models (VLMs) on Visual Question Answering (VQA)
tasks in the medical domain is evaluated based on how
accurately and coherently they generate textual interpretations
of medical images in response to specific questions. These
metrics assess various aspects of the generated text in relation
to a reference answer, measuring factors such as lexical
similarity, semantic relevance, and clinical accuracy.

a) BLEU Score: BLEU measures the n-gram overlap be-
tween the model’s generated response and a reference answer.
While commonly used in general NLP tasks, in medical VQA,
it highlights the degree of exact phrase matching, though it
may not fully capture semantic relevance in complex medical
descriptions.

Although this metric is well-established in NLP and ef-
fective for comparing concise, factual responses, they have
limitations in capturing clinical significance. As shown by
[71], it fails to assign partial credit for semantically correct
answers that differ lexically from the reference, have limited
output ranges, and can penalize clinically accurate responses if
phrasing differs. This is especially pertinent in medical VQA,
where correct clinical information is crucial, even if expressed
differently from the reference text.

b) ROUGE Score: : ROUGE evaluates recall by mea-
suring the overlap of key words or phrases, emphasizing
the capture of critical content in the response. For medical
VQA, it ensures the model includes essential terms that
may be crucial for interpreting medical findings. Contrary to
BLEU, ROUGE is better for longer medical descriptions and
capture content coverage. But there are still questions about
its relevance; since it measures overlap between generated and
reference texts based on n-grams, it may fail to capture the nu-
anced, specialized language of medical contexts. Additionally,
it can overlook clinical accuracy, focusing on surface-level
similarities rather than the semantic or clinical relevance of
terms, which can lead to misleadingly high scores even when
hallucinations or inaccuracies are present in generated reports
[72]].

¢) BERTScore: This metric leverages pre-trained BERT
embeddings to compare the semantic similarity between the
generated response and the reference answer. BERTScore is
beneficial in medical contexts because it evaluates meaning be-
yond surface-level text matching, helping to assess the model’s
understanding of complex medical language. BERTScore can
struggle with medical VLMs because it primarily focuses on
semantic similarity, often missing finer distinctions crucial
for medical accuracy. It may also underperform in scenarios
where precise domain knowledge is necessary to assess the
relevance of generated content, leading to challenges in accu-
rately evaluating models used for clinical report generation or
interpretation of radiological images [72].

d) Clinical Accuracy Score: This metric assesses the
clinical correctness of the generated response, going beyond
textual similarity. It evaluates whether the response aligns
with accurate medical knowledge and terminology, which
is essential for medical applications where the precision of
information is critical.

2) Domain-Specific Metrics:

a) CheXpert Labeler: The CheXpert Labeler[42] is a
rule-based system designed to evaluate the presence or absence
of various pathologies in chest X-ray reports. It automates
the annotation process by identifying clinical findings such as
pneumothorax, edema, and cardiomegaly. For report genera-
tion, this metric can serve as a validation tool by assessing
whether generated reports accurately include or omit rele-
vant clinical observations. The CheXpert Labeler has become
widely used due to its reliability in automated evaluation for
large-scale datasets, such as MIMIC-CXR[41]], enabling sys-
tematic comparison between generated and reference reports
in clinical language models.

b) RadGraph: RadGraph[73] is a graph-based evaluation
framework designed to capture anatomical and pathological
relationships in radiology reports. It structures reports into
a directed graph of entities and relationships, representing
anatomical locations, conditions, and their attributes. This en-
ables more precise assessment of generated reports, especially
for clinical accuracy and relational correctness. RadGraph is
useful for models that need to convey not only individual find-
ings but also their relationships, such as locating pathologies
in specific anatomical regions, which is crucial in radiology.
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TABLE III
EVALUATION METRICS OF MEDICAL VLMS

Evaluation Metrics Description

Use Case

BLEU N-gram overlap for text similarity.

ROUGE Recall-based keyword overlap.

BERTScore Semantic similarity using BERT embeddings.
CheXpert Labeler Rule-based pathology detection.

RadGraph Graph-based entity-relationship evaluation.

Clinical Correctness Score

Expert evaluation of diagnostic accuracy.

General VQA evaluation.

Long medical descriptions.
Semantic relevance in medical text.
Chest X-ray report evaluation.
Radiology report accuracy.

Clinical report validation.

c) Clinical Correctness Score: The Clinical Correctness
Score (CCS)[74] involves expert human evaluators assessing
the diagnostic accuracy and appropriateness of generated re-
ports. This score addresses potential hallucinations and ensures
that generated content aligns with medical standards, focusing
on whether diagnoses, observations, and recommendations
reflect clinical expertise. CCS is invaluable for assessing the
real-world applicability of generated reports, as it captures
nuances that automated metrics might miss.

d) Human evaluation metrics: Human evaluation metrics
are critical in the medical domain, especially for tasks such
as report generation, where clinical accuracy and contextual
relevance cannot be fully captured by automated metrics alone.
Key human evaluation metrics commonly used for assessing
the quality of medical language models are: (i) Content
Quality and Relevance to determine whether the generated
report includes the necessary medical findings, diagnoses, and
insights relevant to the clinical task [41]], [75]; (ii) Fluency and
Naturalness referring to the grammatical correctness, readabil-
ity, and flow of the generated report, ensuring it resembles a
report written by a clinical professional[[76]; (iii) Diagnostic
Accuracy; (iv) Coherence with Image; (v) Comprehensiveness
and Coverage; (vi) etc.

V. CHALLENGES AND LIMITATIONS

The rapid advancement of VLMs in medicine has demon-
strated their potential to revolutionize tasks such as medical
image analysis, report generation, and visual question an-
swering. However, significant challenges remain that hinder
their widespread adoption and effectiveness in clinical settings.
These limitations stem from issues such as data scarcity,
narrow task generalization, lack of interpretability, ethical con-
cerns, computational resources and the difficulty of integrating
VLMs into clinical workflows.

A. Scarcity and quality of medical datasets

A critical limitation remains the scarcity of high-quality,
task-specific datasets, particularly for specialized applications
like visual question answering (VQA) and report generation.
For instance, while large-scale datasets such as Medtrinity-
25M (25M samples across radiology, pathology, and EHRs)
and PMC-VQA (1.5M VQA pairs) demonstrate progress in
data volume, many widely used benchmarks—including VQA-
RAD (3k samples), SLAKE (2k samples), and PathVQA
(6k samples)—remain limited in size and diversity[38], [39],
[66]. These smaller datasets often lack representation of rare
conditions or underrepresented modalities, leading to biases

in model performance. For example, CheXpert and MIMIC-
CXR-JPG focus predominantly on chest X-rays, limiting their
utility for training models to interpret MRI or CT scans
(Irvin et al., 2019; Johnson et al., 2019). This imbalance is
further compounded by the labor-intensive process of medical
data annotation, which relies heavily on expert clinicians and
radiologists, as seen in datasets like CheXpert Plus[62].

B. Narrow scope of task generalization

While benchmarks such as GMAI-MMBench (26k samples
across 38 modalities) and OmniMedVQA (128k samples span-
ning 12 modalities) aim to evaluate multi-modal understand-
ing, most models are still trained and validated on modality-
specific tasks [65], [69]. For instance, RadBench (137k sam-
ples across 6 modalities) emphasizes image-text alignment but
does not fully address the complexity of real-world clinical
workflows, where models must integrate heterogeneous data
types like EHRs, pathology reports, and imaging studies
[68]. This specialization limits the adaptability of VLMs to
cross-modal tasks, such as correlating radiology findings with
pathology results, a gap partially addressed by Medtrinity-25M
but still underexplored in practice [64].

C. Lack of interpretability and trust

Despite advancements in models like PMC-VQA and Med-
Flamingo, which generate detailed answers to medical ques-
tions, the reasoning processes behind these outputs are of-
ten opaque [18]], [44]. Benchmarks such as BESTMVQA
and CT-RATE evaluate diagnostic accuracy but lack met-
rics to assess the clinical plausibility or explainability of
model predictions, leaving clinicians skeptical of Al-generated
reports [67], [58]]. Furthermore, ethical and privacy con-
cerns persist, particularly with datasets sourced from EHRs
(e.g., Medtrinity-25M) or hospital repositories (e.g., GMAI-
MMBench), where de-identification protocols may not fully
eliminate re-identification risks [[64], [65].

Many of these models operate as “black boxes,” making it
difficult for clinicians to understand how they arrive at specific
diagnoses or recommendations. For example, while models
like MedViLL and BioViL demonstrate strong performance in
tasks such as medical image captioning and visual question
answering, their decision-making processes remain opaque
[50], [12]. This lack of transparency can hinder clinician
trust and adoption, particularly in high-stakes medical appli-
cations where understanding the rationale behind a diagnosis
is critical. Efforts to improve interpretability, such as attention
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visualization or explainable AI (XAI) techniques, are still in
their infancy and require further development to bridge this

gap[9], [18]

D. Ethical and privacy concerns

The use of patient data for training these models raises
issues related to data privacy and compliance with regulations
such as HIPAA. For instance, datasets like MIMIC-CXR,
while de-identified, still contain sensitive patient information,
and their use in training VLMs must be carefully managed to
avoid privacy breaches [41]]. Additionally, there is a risk of per-
petuating biases present in the training data, which could lead
to disparities in healthcare outcomes for different demographic
groups. For example, if a VLM is trained predominantly on
data from a specific population, it may underperform when
applied to patients from underrepresented groups, exacerbating
existing healthcare inequities [12], [18].

E. Computational resources required

The computational resources required to train and deploy
VLMs are another limitation. Training state-of-the-art models
like BLIP-2, LLaVA, and MiniGPT-4 requires substantial
computational power, often involving large-scale GPU clusters
and extensive training times [14]], [L6], [21]. This makes it
challenging for resource-constrained healthcare institutions to
adopt these technologies. Furthermore, the need for continuous
fine-tuning and updates to keep the models relevant adds
to the computational burden, limiting their scalability and
accessibility in low-resource settings[l18]], [S6].

F. Difficulty of integrating VLMs into clinical workflows

While the developed models show promise in tasks such
as medical image analysis and report generation, their real-
world application requires seamless integration into existing
electronic health record (EHR) systems and clinical work-
flows. For example, models like Flamingo-CXR and Med-
Flamingo have demonstrated the ability to generate radiology
reports, but their adoption in clinical practice depends on
their ability to provide real-time, actionable insights without
disrupting existing workflows [43]], [44]. Clinicians may also
require additional training to use these tools effectively, further
complicating their integration into routine practice.

VI. OPPORTUNITIES AND FUTURE DIRECTIONS

Despite the challenges, the field of medical VLMs is ripe
with opportunities for innovation. By leveraging large-scale
multimodal datasets, improving cross-modal generalization,
and prioritizing interpretability and ethical considerations,
researchers can develop models that are not only more accurate
but also more aligned with clinical needs. These advancements
have the potential to transform medical workflows, enhance
diagnostic accuracy, and improve patient outcomes, paving the
way for a new era of Al-driven healthcare.

A. Scaling and diversifying datasets

Scaling and diversifying datasets could address current
limitations in data quality and task specificity. For example,
Medtrinity-25M’s integration of radiology, pathology, and
EHR data provides a template for building comprehensive
multimodal datasets that bridge imaging, text, and clinical
context [64]. Similarly, synthetic data generation techniques,
as proposed in VividMed, could augment smaller benchmarks
like VQA-RAD or SLAKE, enhancing their utility for training
robust models [11]. Collaborative efforts to expand datasets
such as PMC-VQA (1.5M samples) and OmniMedVQA (128k
samples) could also improve coverage of rare diseases and
underrepresented modalities [18]], [69].

B. Cross-modal generalization

Benchmarks like GMAI-MMBench, which evaluate 18 tasks
across 38 modalities, highlight the need for models capable
of integrating diverse data types [65]. Techniques such as
contrastive learning, employed in ConVIRT and MedCLIP,
could be extended to align features from radiology, pathology,
and EHRs, enabling VLMs to perform tasks like correlating
imaging findings with lab results [13], [34]. Additionally,
frameworks like LLaMA-Adapter-V2, which use parameter-
efficient tuning to adapt models to new modalities, could
facilitate rapid deployment across clinical settings without
requiring retraining from scratch [47].

C. Interpretability and clinical relevance

Advancing interpretability and clinical relevance will re-
quire rethinking evaluation metrics. For instance, benchmarks
such as RadBench and BESTMVQA could incorporate criteria
for explainability, such as attention map accuracy or alignment
with clinical guidelines [68], [67]. Models like VividMed,
which localize anatomical regions during diagnosis, demon-
strate how visual grounding mechanisms can make outputs
more transparent [L1]. Similarly, integrating expert feedback
loops, as seen in Flamingo-CXR’s human evaluation frame-
work, could refine model outputs to better match clinician
expectations [43]].

D. Ethical and computational opportunities

Finally, addressing ethical and computational challenges
will be essential for real-world deployment. Federated learning
approaches, as explored in BiomedGPT, could enable training
on distributed datasets like Medtrinity-25M without compro-
mising patient privacy [18]. Lightweight architectures such
as DeepSeek-VL (1.3B parameters) and LLaMA-Adapter-V2,
which reduce computational costs through token compression
and parameter-efficient tuning, offer pathways to democratize
access to VLMs in resource-constrained settings [27], [47].
By aligning technical advancements with clinical needs—such
as seamless EHR integration and real-time decision sup-
port—future VLMs could transform medical workflows while
adhering to ethical and regulatory standards.
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VII. CONCLUSION

Medical Vision-Language Models (VLMs) represent a
transformative advancement in Al-driven healthcare, offer-
ing the potential to enhance medical image interpretation,
automated reporting, and clinical decision-making. However,
several challenges hinder their widespread adoption and effec-
tiveness. These include limitations in semantic understanding,
dataset biases, computational constraints, and the inadequacy
of traditional evaluation metrics in assessing clinical relevance.
Addressing these issues is critical to ensuring that VLMs pro-
vide reliable, accurate, and contextually meaningful insights
in real-world medical applications.

Despite these challenges, the future of medical VLMs
is promising. Advances in pretraining methodologies, mul-
timodal integration, and robust benchmarking will enhance
model performance and generalizability. The incorporation of
diverse data sources, such as electronic health records and
genomic data, will further improve the contextual understand-
ing of patient health. Additionally, mitigating dataset biases
through diverse and representative training data will enable
VLMs to perform effectively across varied patient populations
and imaging modalities.

Furthermore, the seamless integration of VLMs into clinical
workflows through intuitive and physician-friendly interfaces
will foster trust and adoption among healthcare professionals.
Expanding applications in digital pathology, Al-driven image
retrieval, and precision medicine will unlock new opportunities
for improving patient outcomes. Ultimately, by addressing
current limitations and capitalizing on emerging advance-
ments, medical VLMs can revolutionize healthcare, making
Al-powered medical imaging and diagnosis more accurate,
accessible, and impactful.
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