
BQA: A High-performance Quantum Circuits
Scheduling Strategy Based on Heuristic Search
Xin-miao Chen

The 32nd Research Institute of China Electronics Technology Group Corporation

Shi Wang
The 32nd Research Institute of China Electronics Technology Group Corporation

Yong-jin Ye
The 32nd Research Institute of China Electronics Technology Group Corporation

Yong-zheng Wu
The 32nd Research Institute of China Electronics Technology Group Corporation

Bo Jiang
The 32nd Research Institute of China Electronics Technology Group Corporation

Research Article

Keywords: Quantum computing, Quantum compilation ,Optimal scheduling, Heuristic search

Posted Date: July 20th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3166339/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at The Journal of Supercomputing on
December 20th, 2023. See the published version at https://doi.org/10.1007/s11227-023-05848-2.

https://doi.org/10.21203/rs.3.rs-3166339/v1
https://doi.org/10.21203/rs.3.rs-3166339/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11227-023-05848-2

BQA: A High-performance Quantum Circuits

Scheduling Strategy Based on Heuristic Search
Xin-miao Chen1, Shi Wang1, Yong-jin Ye1, Yong-zheng Wu1,

Bo Jiang1

1* The 32nd Research Institute of China Electronics Technology Group
Corporation, 201808, Shanghai,China

.

Contributing authors: cxmghost@163.com; wangshiphys@foxmail.com;
yeyongjingcdx@126.com; 782613169@qq.com; b26jiang@126.com;

Abstract

Quantum computing is currently a research hotspot in both academia and indus-

try. The inherent parallelism of quantum computers and the resulting powerful

computing power will bring new solutions to many problems that are difficult

for classical computers. However, due to the limitations of technical conditions,

it is difficult to achieve full direct coupling of all qubits on a quantum chip.

When compiling a quantum circuit onto a physical chip, it is necessary to ensure

those two-qubit gates act on pairs of directly coupled qubits by inserting SWAP

gates. It will cause great additional cost when a large number of SWAP gates

are inserted, leading to the execution time of quantum circuits longer. In this

paper, we designed a strategy based on the business of each individual qubit to

insert SWAP gates, named Busy-Qubits-Avoid Strategy. On the one hand, we

try to hide the time overhead incurred by the inserted SWAP gates by exploit-

ing the uneven distribution of quantum gates over qubits. On the other hand, we

also expect the inserted SWAP gates to make as little negative impact on sub-

sequent two-qubit gates as possible. We designed a heuristic function which take

into account both of these points. Compared with Srabe and tket, we achieved

a better effect. In addition, as the number of two-qubit gates increases, better

optimization results will be achieved. This implies higher execution efficiency and

lower decoherence error rate.

Keywords: Quantum computing, Quantum compilation ,Optimal scheduling,
Heuristic search

1

1 INTRODUCTION

Since the concept of quantum computing was proposed [1], researchers around the
world have been committed to promoting the practical application of quantum com-
puters, especially in recent years, great progress in the field of quantum computing has
been made [2–4]. By utilizing the fundamental principles of quantum mechanics, such
as superposition, interference, and entanglement, quantum computers have inherent
parallelism and may outperform classical computers in many computational problems,
such as machine learning [5], chemical simulation [6], code breaking [7], financial anal-
ysis [8], cloud service [9] and etc. However, there is still a huge gap between quantum
circuits and actually executable quantum instructions, because quantum circuits are
only logical representations of quantum algorithms and do not take into account the
various constraints imposed by quantum chips, such as the basic gate-set supported
by a quantum chip, the connectivity bewteen individual qubits, the coherence time of
each qubit, etc.To solve these problems, many organizations have conducted research
on quantum compilation, such as IBM’s qiskit [10], Google’s cirq [11], Intel’s qHiP-
STER [12] and so on. Firstly, quantum compiler convert quantum gates in a quantum
algorithm to the basic gate-set supported by the target quantum chip. Then quan-
tum compiler is employed to map logical-qubits to physical-qubits [13, 14]. During the
mapping process, there is a serious problem with inserting SWAP gates. Under exist-
ing technical conditions, it is difficult to achieve full direct coupling of all qubits on a
quantum chip, whereas two-qubits gate in the logical quantum circuit may act on any
two qubits [15–17]. A simple and straightforward solution is to SWAP the quantum
states of the two qubits involved in the two-qubits gate operation to two qubits with
direct coupling by inserting a series of SWAP gates [18–20], then perform the operation
on these two qubits, after the operation, reverse the SWAP path. However, in most
quantum computers, there is no direct implementation of the SWAP gate [21], and it
is usually necessary to further decompose the SWAP gate into a combination of basic
gate-set. Inserting SWAP gates not only affects the efficiency of program execution,
but also the reliability of the program result. Excessively long program execution time
will introduce decoherence error, which in turn will lead to unreliable result[22]. To
ensure the performance and reliability of quantum circuit, it is necessary to optimize
the way to insert SWAP gate.

Therefore, the method of inserting SWAP gates has become one of the focuses
of quantum compiler research. The classical methods Srabe [23] and tket [24] have
achieved great efficiency in SWAP gate insertion. Lei Liu and Xinglei Dou availably
decreased the number of SWAP gates by inserting SWAP gates between multiple pro-
grams [25]. Zulehner et al., used A-star algorithm optimizing SWAP gates inserting
for concurrent CNOT gates [26]. Chi Zhang et al. proposed a time-optimal SWAP
insertion scheme based on heuristic search [27]. Wille work at global gates mapping
optimization with SAT solver[26]. The above studies successfully enhanced both per-
formance and reliability by decreasing the number of SWAP gates and the execution
time of quantum circuit. Compared with the above methods, we not only consider the
number of gates in the entire quantum circuit [28, 29], but also pay more attention
to the busyness of each qubit, that is, the number of quantum gates on each qubit.
In a quantum circuit, the number of quantum gates on each qubit is different, and

2

even for some algorithms, the number of quantum gates on individual busy qubits far
exceeds that of other qubits. studies, we paid more attention to business of qubits.In
a quantum circuit, qubits’ business is imbalance, for some algorithms, the distance
of business of different qubits may be strongly huge. In a pipeline, the length of the
pipeline depends on the longest state. Similar to pipeline, the execution time of a quan-
tum circuit depends on the busiest qubit. Therefore, it is a significant way to optimize
quantum circuits by making the busiest qubit’s execution time as short as possible.
However, with the SWAP gates inserted, business of qubits can not remain the same.

In this paper, we designed a strategy based on the business qubits to insert SWAP
gates called Busy-Qubits-Avoid (BQA) strategy. The rest of the paper is organized
as follows. First, we present the background and motivation of the SWAP inserting
in Section 2. Then, we introduce the architecture of BQA in Section 3. In Section 4,
we describe the heuristic search method in BQA. Afterward, Section 5 mainly include
the experiment and evaluation of our method. Finally, we summarize our findings in
Section 6.

2 BACKGROUND

2.1 Quantum Gate

The base of quantum computing is quantum state, every qubit can be |0⟩, |1⟩ or a
superposition state |ψ⟩ = α|0⟩ + β|1⟩ We can perform computation by manipulating
the state of qubits with quantum gates. In a quantum computer, each operation is
achieved by quantum gates. In general, quantum gates can be divided into three
kinds: single-qubit gate, two-qubit gate and muti-qubit gate. For single-qubit gate,
each gate operation is considered as a rotation of the unit vector on the Bloch-sphere
that represent the quantum state. Thus, any single-qubit gate can be decomposed into
a combination of Rx, Ry, and Rz gates that correpsond to rotating around x-axis,
y-axis, and z-axis, respectively. As for two-qubit gates, CNOT gate is of particular
interest from a theoretical perspective. Any two-qubit gate can be decomposed into
a series of CNOT operations by using the “Krauss-Cirac decomposition” [30–32]. In
fact, the ability to rotate about arbitrary axes on the Bloch-sphere and the operation
to entangle any two-qubit are sufficient to implement an arbitrary quanutm logic, i.e.,
to approximated any multi-qubit gate [30, 31].

2.2 Qubit Allocation

When we design the quantum circuit to implement a quantum algorithm, we can apply
any gates on any qubits because we don’t need to consider the physical topology of
quantum chips. However, these quantum circuits generally cannot be executed directly
on qunatum chips. The topology of IBM’s almaden is abstracted into a graph. In this
graph, each vertex represents a qubit and each edge between two vertexes means these
two qubits are directly coupled.

3

2.3 Challenges of SWAP Inserting

In general, the two target qubits of a two-qubit gate are not directly coupled, in order
to perform the two-qubit gate operation, it is necessary to insert auxilliary SWAP
gates. When a SWAP gate is inserted, an extra time will be added into the execution
time of the quantum circuit. In addition, because there is a dependency between the
two qubits used by the SWAP gate, even if one of the qubits is in an idle state, it
cannot continue to execute the subsequent quantum gates. It must wait until the two
qubits complete the SWAP gate together before continuing to execute the subsequent
quantum gates. For example, to map quantum circuit as shown in Fig.1(a) into a
quantum chip with linear coupling relationship (each qubit is directly coupled only
to the two nearest neighbors, except the first and the last one, see Fig.4). To execute
the CNOT gate applied on q0 and q3, it is necessary to insert SWAP gates to make q0
and q3 coupled. If we insert SWAP gates on (q0, q1) and (q1, q2)(b), problem of the
coupling relationship will be solved. However, it also makes execution time longer than
before. Because of the dependence between quantum gates, inserting a SWAP gate
may cause longer execution time. But if we insert SWAP gates on (q2, q3) and (q1,
q2) as shown in Fig.1(c), the quantum circuit will run faster than the quantum circuit
shown in Fig.1(b). Since there is no dependence between the SWAP gate applied on
(q2, q3) and the CNOT gate applied on (q0, q1), they can be executed simultaneously.
Execution time of the quantum circuit shown in Fig.1(b) is tU+2tSWAP+2tCNOT, and
the execution time of the quantum circuit shown in Fig.1(c) is tU + 2tSWAP + tCNOT.
It is obvious that the quantum circuit shown in Fig.1(c) is faster about the time of a
CNOT gate than the one shown in Fig.1(b).

Not only that, the insertion of SWAP gates in quantum circuits may affect the
coupling relationship of subsequent two-qubit gates, because the coupling relationship
will change when we insert SWAP gates, so the CNOT gate that acted on a pair
of coupled qubits may be not work. For example, mapping the quantum circuit in
Fig.1(d) into a quantum chip with linear architectural by adding a SWAP gate to
(q1, q2) as Fig.1(e) makes the next CNOT gate act on (q0, q2) so that the CNOT gate
cannot be executed. It is necessary to employ an excess SWAP gate added to (q1, q2).
However, if the SWAP gate is inserted on (q2, q3), it will only need one SWAP gate,
such the quantum circuit shown in Fig.1(f). In this way, the quantum circuit will faster
the time of a SWAP gate than the one shown in Fig.1(e).

3 ARCHITECTURE OF BQA

In this section, we go through the process to run a quantum program on a quantum
computer. First, compiling a quantum program developed with high level program-
ming languages into corresponding quantum circuit. Then reconfigure the quantum
circuit with gates supported by the target quantum chip. Next, we should optimize
the quantum circuit that consists of basic-gate set of the quantum chip according to
the topology of the quantum chip to make it run well on the quantum chip. Last, the
quantum circuit after optimizing is compiled into microwave pulses that are used to
control physical-qubits on the quantum chip. In this section, we introduce the SWAP
insertion architectural which is in the third step of running a quantum program.

4

q0

q1

q2

q3

U

U

U

U
(a)

q0

q1

q2

q3

U

U

U

U
(b)

q0

q1

q2

q3

U

U

U

U
(c)

q0

q1

q2

q3

U

U

U

U
(d)

q0

q1

q2

q3

U

U

U

U
(e)

q0

q1

q2

q3

U

U

U

U
(f)

Fig. 1 Comparison of the cost between different ways of SWAP gates insertion. (a) and (d) are two
original quantum circuits. (b) and (e) show inserting SWAP gates in a inferior way, and the SWAP
gates insertion method shown in (c) and (f) is advantage. Obviously, the quantum circuits shown in
(c) and (f) are faster than the ones shown in (b) and (e) respectively.

Firstly, we need to establish models of qubits and quantum circuit. As shown in
Fig.2(a), we receive topology and calibration data of qubits from the quantum chip and
establish the abstract graph of the quantum chip. In the graph, each node represents
a qubit and each edge means that the two qubits connected with this edge are directly
coupled. To ensure the correctness of the quantum circuit, we can employ Directed
Acyclic Graph (DAG) to make sure the dependence between quantum gates. In the
DAG shown in Figure (5), each node represents a quantum gate, and it depends on
the quantum gate represented by its predecessor nodes. In the DAG shown in Fig.2(b),
each node represents a quantum gate and depends the quantum gates indicated by its
precursor nodes. After constructing the DAG, we make a topological sorting to the
DAG (choose a node without precursor node and push it into the queue, then remove
all edges start from it until there is no node in the DAG). After completing the above
preparations, we can optimize quantum circuits according to the dependence between
quantum gates.

As Fig.2(c) shows, the architecture of optimization consists of four parts, Dis-

criminator, Searcher, Mapper and Time accumulator. Nodes enter the discriminator
from the queue, then for these nodes corresponding to single-qubit gate or two-qubit
gate that are acting on directly coupled qubits, they are sent to time accumulator to
calculate the time of qubits after this gate. Otherwise, if a gate is a two-qubit gate
acting on two qubits that are not directly coupled, it will be sent to searcher by dis-
criminator. The searcher searches the best way to insert a SWAP gate for it from the
topology graph of quantum chips. Searcher updates information of the best SWAP
gate searched by itself to the quantum circuit and mapper. Gates on the qubits which
are inserted SWAP gate are changed the qubits where they are allocated. Meanwhile,
the information of gates the information of the quantum gates is synchronized to the

5

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

Topology

Calibration data

(a)

q0

q1

q2

q3

U

U

U

U

q4 U

Quantum Circuit

Dependency

g0

g1

g2

g3

g4

g5

g7

g6

g8 g9

Topological
Sorting

g3g4 g2g5 g0g1g7 g6g8g9

Topology Queue

(b)

Quantum Circuit

Topology Queue

Time accumulator

Discriminator Searcher

Mapper

(c)

Fig. 2 (a) is the graph model of the quantum chip using the topology of the quantum chip and the
calibration data. Each node in the graph represents a qubit on the chip, and each edge represents the
two qubits connected by it are directly coupled. (b) is a directed acyclic graph (DAG) constructed by
the dependencies between quantum gates, where the quantum gate represented by each node depends
on the quantum gate represented by its precursor node. To keep the dependence between quantum
gates, it is necessary to do topology sorting on the DAG. (c)The architecture of BQA consists of
topology queue, discriminator, searcher, mapping table and time accumulator five parts. The topol-
ogy queue makes sure the reliability of the dependence between quantum gates. The discriminator
determines whether the quantum gate needs to be inserted into SWAP gates. The searcher finds the
best way to insert SWAP gates. The time accumulator is employed to count the real time of qubits.
The mapping table is used to correct the qubits position of qubit after inserting SWAP gates.

nodes that represent them. Then the quantum circuit updates the time in time accu-
mulator of the qubits inserted into the SWAP gate just inserted. Repeat these until
there is no node in the queue. Finally, the output is fed to the mapper, and it is
corrected according to the mapping relationships in the mapper.

3.1 Searcher

The searcher is used to search a way to insert SWAP gates for two-qubit gates which
are not on directly coupled qubits. When the node at the head of the queue presents
a two-qubit gate not acting on directly coupled qubits, it will not outbound team and
the information about the gate which includes the control qubit and target qubit will
be sent to the searcher. Firstly, searcher finds first steps and last steps of all paths
from control qubit to target qubit from the graph of the topology of the quantum
chip. Then the Searcher calculates the costs of inserting a SWAP gate for all steps

6

gotten from topology graph by the cost function present in last subsection and inserts
a SWAP gate according to the smallest one. The qubit information of nodes in queue
will change when the SWAP gate is inserted into the quantum circuit. If the node at
the head of the queue is on coupled qubits, it will be out of the queue and sent into
the time accumulator.

3.2 Time Accumulator

The time accumulator is employed to denote the time of each qubit in real time. When
a gate can work directly, the time accumulator will add its time to corresponding
qubits. The time accumulator can help searcher appraise the business of qubits signif-
icantly. The way to count time of qubits must be divided into two situations because
for single-qubit gate and two-qubits gate, the way to accumulate time is different.
There is no dependence between for single-qubit gates, however, two-qubits gate are
not. Therefore, the time of single-qubit gates can be add to the corresponding qubit
directly, as shown in Eq.(1),

tqi,n+1 = tqi,n + tqi,u, (n = 0, 1, · · ·) (1)

where qi is the i-th qubit in the quantum circuit, tqi,n is the i-th qubit’s time after
adding the n-th gate, tqi,u is the time of quantum gate u on qi. For two-qubit gates,
there is dependence between two qubits, so the time of the two-qubit gate must be
accumulated with the larger one of the time of two corresponding qubits, as shown in
Eq.(2),

{

tqi,n+1 = max(tqi,n, tqj ,m) + t(qi,qj),CNOT

tqi,m+1 = max(tqi,n, tqj ,m) + t(qi,qj),CNOT

(2)

where m,n = 0, 1, 2, · · · and t(qi,qj),CNOT is the time of CNOT gate on qubits i and j.

3.3 Mapping Table

By searcher’s work, the quantum circuit can work on the quantum chip, however, the
result can not output directly. Because many SWAP gates are inserted, when we map
the quantum circuit into the quantum chip. The SWAP gates solve the coupling prob-
lem between qubits, but they also lead to misalignment of qubits’ positions. Therefore,
the output quantum state is not the one needed by us. Traditionally, this problem is
solved by inserting SWAP to make the qubits locate on their start positions. The out-
put state can be corrected truly in this way, but some overhead SWAP gates needed
to be inserted and it makes the effect of optimization of BQA reduced. Therefore,
mapping table is employed to correct the qubits’ position immediately.

4 METHOD OF HEURISTICALLY SEARCH

Through the introduction of the motivation of SWAP gate insertion in subsection 2.3,
we know that when a SWAP gate is inserted, working time of the qubits acted on by
the inserted SWAP gate will increase tSWAP immediately and the CNOT gates after it
may need more SWAP gates to work. Therefore, there are two key issues to consider

7

during inserting SWAP gate: the cost of the SWAP gate and overhead SWAP gates
caused by it. To optimize SWAP gate insertion, it is necessary to overcome the two key
issues. The SWAP gate depends on the evolution time of the qubit which is determined
by the hardware. It can hardly be optimized by software. However, quantum circuits
have extremely high parallelism, it means that quantum gates can be executed if there
is no dependence. It is an opportunity that we can take the advantage of the high
parallelism of quantum circuits to hide the time of SWAP gates or other gates. For
example, in the quantum circuit shown in Fig.1(a), while the first CNOT gate on
(q0, q1) is working, q2 and q3 are free. Inserting a SWAP gate on (q2, q3) as shown in
Fig.1(c) the first CNOT gate on (q0, q1) is hidde by the inserted SWAP gate. We call
the cost caused by SWAP gate itself as front cost.

The second key issue is the newly inserted SWAP gate may break the coupling
relationship of some two-qubit gates that are originally acting on a pair of directly
coupled qubits. To avoid this issue, we can directly count the overhead SWAP gates
needed to be inserted when a SWAP gate is inserted. For example, for the quantum
circuit shown in Fig.1(d), if we insert a SWAP gate on q1, q2, the second CNOT gate
will not allocate on a pair of directly coupled qubits, it is necessary to insert another
SWAP gate before performing the second CNOT gate, see Fig.1(e) However, if the
SWAP gate is inserted on q2, q3, there will no SWAP gate needed to be inserted after
it. We call this key issue as backend cost.

Based on the above characteristics, we design a heuristic search method. In a
quantum circuit, every qubit without two-qubit gate is parallel. They can be seen
as processes in a parallel system and two-qubit gates are seen as the dependence
between processes. For a parallel system, if there is no dependence between processes,
the processes will have no free time. However, it is difficult for a parallel to avoid
all dependence. Although the free time caused by dependence is waste of resources,
in quantum circuits it can be used to insert SWAP gates. In a parallel system, the
running time of the system is determined by the longest running process. For quantum
circuits, the running time of the quantum circuit is the running time of the longest
running qubit. Due to SWAP gates are only needed by CNOT gates not on coupled
qubits, we should only consider about them. As shown in Fig.3, a quantum circuit can
be divided into several subcircuits by CNOT gates which are not on coupled qubits.
After inserting SWAP gates, the time of subcircuit which can be calculated as shown
in Eq.(3) can present cost of the SWAP gates inserted just.

Costfront = max
i

(tqi,sj) (3)

where tqi,sj is the time of the i− th qubit in the j − th subcircuit. Lower value of the
front cost means hiding time more successful. To solve the backend cost, it is necessary
to decrease the number of overhead SWAP gates caused by inserting SWAP gates.
Therefore, we should not only consider the immediate CNOT gate, but also the future
CONT gates. A counter which is used to count the number of SWAP gates needed by
future CNOT gates should be employed to choose the SWAP gate which causes least

8

backend cost. The backend cost can be calculated as follow:

Costbackend =

n
∑

i

SWAPNUM(CNOTi) (4)

where SWAPNUM(CNOT) is the number of SWAP gates needed by the CONT gate,
n is the number of CNOT gates out of the subcircuit. The cost of inserting a SWAP
gate is determined by both its front cost and backend cost. So, the cost of inserting a
SWAP gate can be presented by the sum of the front cost and backend cost. However,
when the subcircuit is small, the front cost may be small, and the backend may be
large. With the expansion of the subcircuit, the front cost will be larger, and the
backend will be smaller. It hardly has a time that front cost and backend cost are in
the same order of magnitude. It is necessary to normalize to front cost and backend
cost. The cost is only used to choose the best way to insert SWAP gate, its absolute
value is not important. Therefore, we take the ratio of the qubit value with the largest
time to the average of the times of all qubits as front cost. And the mean value of the
number of SWAP gates needed by the CNOT gates out of the subcircuit is used to
present the backend cost. The heuristic function is shown as Eq.(5).

cost =
max

i
(tqi,sj)

mean(tqi,sj)
+

∑n

i SWAPNUM(CNOTi)

n
(5)

q0

q1

q2

q4

q3

U

U

U

U

U
s1
s2

Fig. 3 The quantum circuit on a linear topology quantum chip is divided by the CNOT gates which
are not on coupled qubits. In this figure, s1, s2 are subcircuits of the quantum circuit.

5 EVALUATION

In this section, we designed experiments to inspect the performance of the BQA. The
BQA was implemented by Networkx and NumPy which are two libraries of python.

9

Table 1 Evaluation time of CNOT gates on qubits from the backend data provided by qiskit [10].

Control qubit Target qubit CNOT time (µs)
q0 q1 0.540
q1 q2 0.739
q2 q3 0.675
q3 q4 0.512
q4 q5 0.540
q5 q6 0.540
q6 q7 0.640
q7 q8 0.650
q8 q9 0.248

Linear

Ladder Square
Fig. 4 The three kinds of environment of the experiments.In the linear, qubits are connected one
by one form the first one to the last one. The ladder can be seen as folding the linear in the middle
so that each qubit relates to the qubit on or under it. And in the square, every qubit relates to the
qubits around it.

The speed of quantum computer is so fast that we cannot measure the time of a
quantum circuit accurately. What’s more, we only need to appraise the performance of
the BQA. Therefore, it is not necessary to employ a quantum computer to execute the
quantum circuits optimized by BQA. We use Python to construct a simulator based on
numerical statistics to calculate the time of circuits. The simulator calculates the time
of quantum circuits by accumulating time of quantum gates to their corresponding
qubits like the time accumulator presented in subsection 3.2. For single-qubit gates,
the time of them is added to corresponding qubits directly as Eq.(1). For two-qubit
gates, their time cannot be added to corresponding qubits without thinking about
dependence. The simulator adds the time of a two-qubit gate to the larger one of two
qubits’ time and assigns the value to both two qubits as Eq.(2). And the simulator can
simulate three kinds of topology which are linear, ladder and square of quantum chips
as shown in Fig.4. The evolution time of the single-bit gate on each qubit is 0.1µs, but
the evolution time of the CNOT gate is different on different qubits. Therefore, we
take the linear topology as an example and give the evolution time of CNOT gates on
different qubits as shown in the Table 1. To inspect the performance of BQA clearly,
the Srabe and tket are employed as the baseline of the experiment.

10

5.1 Quantum Algorithm Optimization Evaluation

0

500

1000

1500

2000

2500

T
im

e
/μ

s

(a) AND

tket_linear
BQA_linear
tket_ladder
BQA_ladder

0

500

1000

1500

2000

2500

(b) GROVER

4 5 6 7 8 9 10
Qubit Number

0

25

50

75

100

125

150

T
im

e
/μ

s

(c) QV

4 5 6 7 8 9 10
Qubit Number

0

500

1000

1500

2000

2500

3000
(d) OR

Fig. 5 The execution time of several quantum algorithms versus the number of qubits. To avoid
overlapping the curves, we shifted the blue and orange curves upward by a certain distance. The lower
black horizontal solid lines correspond to the baselines of the red and green curves and the upper
black horizontal solid lines correspond to the baselines of the orange and blue curves.

To test the effect of BQA, we employed AND, OR, GROVER and Quantum Vol-
ume (QV) algorithms of 4, 6, 8, and 10 qubits as benchmarks. And the linear and
ladder topology of quantum chips is used as environment. Fig.5 shows the result of the
experiment used to inspect the performance of BQA. As shown in Fig.5(a), 5(b) and
5(d), when the number of qubits of these algorithms is small, BQA is not better too
much than tket. However, with the number of qubits increasing, the distance between
optimization effect of BQA and tket becomes larger and larger. As we can see, when
the number of qubits is equal to ten, the performance of BQA is greatly better than the
highest-level optimization of tket, especially on linear, the time of the circuit compiled
by tket is about twice as much as the circuit compiled by BQA. For QV algorithm
shown in Fig.5(c), the advantage of BQA is not as obvious as other algorithms, even
though the number of qubits is ten, BQA is still greatly better than tket. Because the
gate number of QV is small and increases slowly with the qubit number increasing.
The gate number of QV does not have a large change when its qubit number changes.

11

Therefore, with the number of qubits increasing, the optimization effect of BQA com-
pared with tket only has little improvement. The influencing factors of the advantage
of BQA also include the topology of the working environment for quantum circuit.
From an overall perspective, algorithms on ladder needs less time than them on linear.
And the distance between BQA and tket on ladder is smaller than linear. Because the
couplers between qubits in ladder is more than linear so that fewer SWAP gates are
needed to be inserted. It means that the need for optimization in the compilation of
quantum circuits is less and optimization space is smaller. Therefore, BQA’s superior-
ity compared with tket on ladder is less than linear. From these results, we can know
that BQA makes a great effect on quantum circuit optimization and its performance
is better than tket. And BQA has greater superiority on large scale quantum circuits
and environment with less couplers between qubits.

5.2 Random Quantum Gate Sequence Evaluation

To analyze the factors affecting the performance of BQA clearly, random quantum
gate sequence was employed by us. The random quantum gate sequence was generated
by controlling qubit number, quantum gate num and the probability of CNOT gates.
And it worked on the three kinds of topologies of the simulator respectively. The
results of random quantum gate sequence is shown in Fig.6.

0.0 0.2 0.4 0.6 0.8
Gate Num

0

200

400

600

800

1000

1200

T
im

e/
μs

Srabe
tket
BQA

Fig. 6 Execution time versus the probabiltiy of CNOT gate. The qubit number is 16 the gate number
is 950 and the topology is square.

As we can see, BQA is still better than Srabe and tket with the probability from
0.1 to 0.9. And with the probability of CNOT gates increasing, the distance between
the performance of BQA and Srabe and tket is larger and larger. Therefore, we can
know that there are more two-qubit gates in quantum circuit the optimization effect
of BQA is better. The time of random quantum gate sequences whose quantum gate
number increases continue is shown as Fig.7. In this figure, the time increases with
quantum gate number increasing. And there are more quantum gates, the BQA more

12

effective. According to the above two points, we drew a new conclusion that BQA
has a greater effect on the quantum circuits having a large number of CNOT gates.
As shown in Fig.8, we can obvious clearly that the time of the quantum circuits on
square is shorter than ladder, the time of the quantum circuits on ladder is shorter
than linear. However, the optimization effect of BQA on linear is better than ladder
and on ladder is better than square. It can be seen that the optimization effect of
BQA is enhanced as the coupling between qubits are reduced.

200 400 600 800
Gate Num

0

200

400

600

800

1000
T

im
e/
μs

Srabe
tket
BQA

Fig. 7 Execution time versus the number of of quantum gates. The qubit number is 16 the ratio of
CNOT gate is 0.7 and the topology is square.

Line Ladder Square
Topology

0

500

1000

1500

2000

T
im

e
/μ

s

Srabe
tket
BQA

Fig. 8 Execution time on three different topology quantum chips. The qubit number is 16 the gate
number is 950 and the ratio of CNOT gate is 0.7.

13

6 CONCLUSION

Quantum circuit optimization is an essential component for running quantum algo-
rithms on a real quantum computer, and SWAP gate insertion optimization is at the
core of the quantum circuit optimization strategy. Especially, BQA is more suitable for
large-scale quantum circuits where a large number of SWAP gates need to be inserted.
Furthermore, for quantum chips with lower connectivity between qubits, BQA has a
better optimization effect. We hope that our research results can provide a boost to
the future development of quantum circuit optimization and promote the practical
application of quantum computing.

Declarations

Ethical Approval Not applicable
Authors’ contributions Xin-miao Chen come up with the idea, design experiments
and complete thesis writing. Xin-miao Chen and Shi Wang wrote the main manuscript
text. Yong-zheng Wu responsible for project management. Bo Jiang provided financial
support. All authors reviewed the manuscript.
Funding Not applicable
Availability of data and materials Not applicable

References

[1] Feynman, R.P.: Simulating physics with computers. International Journal of
Theoretical Physics 21, 467–488 (1982) https://doi.org/10.1007/BF02650179

[2] Gill, S.S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., Buyya, R.:
Quantum computing: A taxonomy, systematic review and future directions. Soft-
ware: Practice and Experience 52, 66–114 (2022) https://doi.org/10.1002/spe.
3039

[3] Fedorov, A.K., Gisin, N., Beloussov, S.M., Lvovsky, A.I.: Quantum computing at
the quantum advantage threshold: a down-to-business review. arXiv:2203.17181
(2022) https://doi.org/10.48550/arXiv.2203.17181

[4] Egger, D.J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Ray-
mond, R., Simonetto, A., Woerner, S., Yndurain, E.: Quantum computing for
finance: State-of-the-art and future prospects. IEEE Transactions on Quantum
Engineering 1, 1–24 (2020) https://doi.org/10.1109/TQE.2020.3030314

[5] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quan-
tum machine learning. Nature 549, 195–202 (2017) https://doi.org/10.1038/
nature23474

[6] Cao, Y., Romero, J., Olson, J.P., Degroote, M., Johnson, P.D., Kieferová,
M., Kivlichan, I.D., Menke, T., Peropadre, B., Sawaya, N.P.D., Sim, S., Veis,

14

https://doi.org/10.1007/BF02650179
https://doi.org/10.1002/spe.3039
https://doi.org/10.1002/spe.3039
https://doi.org/10.48550/arXiv.2203.17181
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474

L., Aspuru-Guzik, A.: Quantum chemistry in the age of quantum comput-
ing. Chemical Reviews 119, 10856–10915 (2019) https://doi.org/10.1021/acs.
chemrev.8b00803

[7] Clarke, S.J.: Quantum computing: A mathematical analysis of shor’s algorithm.
arXiv:1601.07195 (2020) https://doi.org/10.48550/arXiv.1601.07195

[8] Orús, R., Mugel, S., Lizaso, E.: Quantum computing for finance: Overview and
prospects. Reviews in Physics 4, 100028 (2019) https://doi.org/10.1016/j.revip.
2019.100028

[9] Rahaman, M., Islam, M.M.: An overview on quantum computing as a service
(qcaas): Probability or possibility. International Journal of Mathematical Sciences
and Computing (IJMSC) 2, 16–22 (2016) https://doi.org/10.5815/ijmsc.2016.01.
02

[10] Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., al.: Qiskit: An Open-
source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.
2562111

[11] Developers, C.: Cirq. https://doi.org/10.5281/zenodo.6599601 . See full list of
authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors

[12] Smelyanskiy, M., Sawaya, N.P.D., Aspuru-Guzik, A.: qhipster: The quantum high
performance software testing environment. arXiv:1601.07195 (2016) https://doi.
org/10.48550/arXiv.1601.07195

[13] Niu, S., Suau, A., Staffelbach, G., Todri-Sanial, A.: A hardware-aware heuristic
for the qubit mapping problem in the nisq era. IEEE Transactions on Quantum
Engineering 1, 1–14 (2020) https://doi.org/10.1109/TQE.2020.3026544

[14] Matsuo, A., Hattori, W., Yamashita, S.: Reducing the overhead of mapping
quantum circuits to ibm q system. In: 2019 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5 (2019). https://doi.org/10.1109/ISCAS.
2019.8702439

[15] Siraichi, M.Y., Santos, V.F.d., Collange, C., Pereira, F.M.Q.: Qubit allocation.
In: Proceedings of the 2018 International Symposium on Code Generation and
Optimization, pp. 113–125 (2018). https://doi.org/10.1145/3168822

[16] Veldhorst, M., Yang, C., Hwang, J., Huang, W., Dehollain, J., Muhonen, J.,
Simmons, S., Laucht, A., Hudson, F., Itoh, K.M., et al.: A two-qubit logic gate
in silicon. Nature 526, 410–414 (2015) https://doi.org/10.1038/nature15263

[17] Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drech-
sler, R.: Look-ahead schemes for nearest neighbor optimization of 1d and 2d
quantum circuits. In: 2016 21st Asia and South Pacific Design Automation

15

https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.48550/arXiv.1601.07195
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.5815/ijmsc.2016.01.02
https://doi.org/10.5815/ijmsc.2016.01.02
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.6599601
https://doi.org/10.48550/arXiv.1601.07195
https://doi.org/10.48550/arXiv.1601.07195
https://doi.org/10.1109/TQE.2020.3026544
https://doi.org/10.1109/ISCAS.2019.8702439
https://doi.org/10.1109/ISCAS.2019.8702439
https://doi.org/10.1145/3168822
https://doi.org/10.1038/nature15263

Conference (ASP-DAC), pp. 292–297 (2016). https://doi.org/10.1109/ASPDAC.
2016.7428026

[18] Kole, A., Datta, K., Sengupta, I.: A heuristic for linear nearest neighbor realiza-
tion of quantum circuits by swap gate insertion using n-gate lookahead. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 6, 62–72 (2016)
https://doi.org/10.1109/JETCAS.2016.2528720

[19] Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah,
S.: On the qubit routing problem. arXiv preprint arXiv:1902.08091 (2019)

[20] Molavi, A., Xu, A., Diges, M., Pick, L., Tannu, S., Albarghouthi, A.: Qubit map-
ping and routing via maxsat. In: 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1078–1091 (2022). IEEE

[21] WILMOTT, C.M., WILD, P.R.: On a generalized quantum swap gate. Interna-
tional Journal of Quantum Information 10(03), 1250034 (2012) https://doi.org/
10.1142/S0219749912500347

[22] Bapat, A., Childs, A.M., Gorshkov, A.V., Schoute, E.: Advantages and limitations
of quantum routing. PRX Quantum 4(1), 010313 (2023)

[23] Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for nisq-era quan-
tum devices. In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’19, pp. 1001–1014. Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3297858.3304023 . https://doi.org/10.
1145/3297858.3304023

[24] Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan,
R.: t—ket〉: a retargetable compiler for nisq devices. Quantum Science and
Technology 6(1), 014003 (2020) https://doi.org/10.1088/2058-9565/ab8e92

[25] Liu, L., Dou, X.: Qucloud: A new qubit mapping mechanism for multi-
programming quantum computing in cloud environment. In: 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA), pp.
167–178 (2021). https://doi.org/10.1109/HPCA51647.2021.00024

[26] Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to ibm qx
architectures using the minimal number of swap and h operations. In: Proceedings
of the 56th Annual Design Automation Conference 2019, pp. 1–6 (2019). https:
//doi.org/10.1145/3316781.3317859

[27] Zhang, C., Hayes, A.B., Qiu, L., Jin, Y., Chen, Y., Zhang, E.Z.: Time-optimal
qubit mapping. In: Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
360–374 (2021). https://doi.org/10.1145/3445814.3446706

16

https://doi.org/10.1109/ASPDAC.2016.7428026
https://doi.org/10.1109/ASPDAC.2016.7428026
https://doi.org/10.1109/JETCAS.2016.2528720
https://doi.org/10.1142/S0219749912500347
https://doi.org/10.1142/S0219749912500347
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1109/HPCA51647.2021.00024
https://doi.org/10.1145/3316781.3317859
https://doi.org/10.1145/3316781.3317859
https://doi.org/10.1145/3445814.3446706

[28] Banerjee, A., Liang, X., Tohid, R.: Locality-aware qubit routing for the grid
architecture. In: 2022 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 607–613 (2022). IEEE

[29] Lye, A., Wille, R., Drechsler, R.: Determining the minimal number of swap gates
for multi-dimensional nearest neighbor quantum circuits. In: The 20th Asia and
South Pacific Design Automation Conference, pp. 178–183 (2015). https://doi.
org/10.1109/ASPDAC.2015.7059001

[30] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, ??? (2010). https://doi.
org/10.1017/CBO9780511976667

[31] Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum compu-
tation. Phys. Rev. A 52, 3457–3467 (1995) https://doi.org/10.1103/PhysRevA.
52.3457

[32] Williams, C.P.: Explorations in Quantum Computing. Springer, ??? (2011). https:
//doi.org/10.1007/978-1-84628-887-6

17

https://doi.org/10.1109/ASPDAC.2015.7059001
https://doi.org/10.1109/ASPDAC.2015.7059001
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1007/978-1-84628-887-6
https://doi.org/10.1007/978-1-84628-887-6

	INTRODUCTION
	BACKGROUND
	Quantum Gate
	Qubit Allocation
	Challenges of SWAP Inserting

	ARCHITECTURE OF BQA
	Searcher
	Time Accumulator
	Mapping Table

	METHOD OF HEURISTICALLY SEARCH
	EVALUATION
	Quantum Algorithm Optimization Evaluation
	Random Quantum Gate Sequence Evaluation

	CONCLUSION

