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Social Fingerprinting:
detection of spambot groups through

DNA-inspired behavioral modeling
Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and Maurizio Tesconi

Abstract—Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection
techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with
advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we
show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA
technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation
the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital
DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and
spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among
spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social
Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the
possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of
lightweight account characteristics.

Index Terms—Spambot detection, social bots, online social networks, Twitter, behavioral modeling, digital DNA.
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1 INTRODUCTION

Online social networks (OSNs) provide Internet users with
the opportunity to discuss, get informed, express them-
selves, and interact for a myriads of goals, such as planning
events and engaging in commercial transactions. In a word,
users rely on online services to say to the world what they
are, think, do; and viceversa, they learn the same about the
other subscribers.

Quite naturally, the widespread availability and ease of
use have made OSNs the ideal setting for the proliferation of
fictitious and malicious accounts. While hiding a real iden-
tity is sometimes motivated by the harmless side of one’s
personality, there exist however deceitful situations where
accounts of social platforms are created and managed to dis-
tribute unsolicited spam, advertise events and products of
doubtful legality, sponsor public characters and, ultimately,
lead to a bias within the public opinion [1]. Nonetheless,
the plague of such social spammers and bots leads to an
ingenious and lucrative “underground economy”, where
account vendors, their customers, and oblivious victims
play a piece staging since the early 00s [2], [3], [4].

Peculiarity of social spambots is that they evolve over
time, adopting sophisticated techniques to evade early-
established detection approaches, such as those based on
textual content of shared messages [5], posting patterns [6],
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and social relationships [7], [8]. As evolving spammers be-
came clever in escaping detection, for instance by changing
discussion topics and posting activities, researchers stayed
in line with the times and proposed complex models based
on the interaction graphs of the accounts under investiga-
tion [9], [10].

Noticeably, spambots evolution still goes on. Recent in-
vestigations highlight how new waves of social spambots
are rising [11]. Their characteristics are such that a stan-
dard classification approach, where the single account is
evaluated according to a set of established features tested
over known datasets, is no longer successful. Instead, the
intuition is that the key factor for spotting new social
spambots is focusing on the “collective behavior” of groups
of accounts, rather then on single behaviors.
Contributions. In this work, we contribute along the follow-
ing dimensions.
Online behavioral modeling: We propose a strikingly novel,
simple and effective approach to model online users behav-
iors, targeted to social spambots detection. Behaviors are
modeled via digital DNA, namely strings of characters, each
of them encoding one action of the online account under
investigation. Similarly to biological DNA, digital DNA
allows a compact representation of information. In contrast,
the characters encoding the user actions are not restricted
to four (as in the case of the four nucleotide bases). Thus,
digital DNA is a flexible model, able to represent different
actions, on different social platforms, at different levels of
granularity. We extract and analyze digital DNA sequences
from the behaviors of OSNs users, and we use Twitter as
a benchmark to validate our proposal. We obtain a com-
pact and effective DNA-inspired characterization of user

ar
X

iv
:1

70
3.

04
48

2v
1 

 [
cs

.S
I]

  1
3 

M
ar

 2
01

7



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

actions. Then, we apply standard DNA analysis techniques
to discriminate between genuine and spambot accounts on
Twitter. Throughout the paper, our detection technique –
based on digital DNA modeling of accounts behaviors – is
called Social Fingerprinting.
Spambot detection: An experimental campaign supports our
application. Starting from two Twitter datasets where gen-
uine and spambot accounts are a priori known, we leverage
digital DNA to let recurrent patterns emerge. We show how
groups of spambots share common patterns, as opposite
to groups of genuine accounts. As a concrete application
of this outcome, we demonstrate how to apply our Social
Fingerprinting methodology to tell apart spambots from
genuine accounts, within an unknown set of accounts.
The excellent performances obtained in terms of standard
classifiers-based indicators (like F-Measure, Accuracy, Pre-
cision, and Recall) support the quality and viability of the
Social Fingerprinting technique.
Flexibility and applicability: While Twitter spambot detection
is a specific use case on a specific social network, our
proposed Social Fingerprinting technique is platform and
technology agnostic, hence paving the way for diverse be-
havioral characterization tasks. Indeed, we believe that the
high flexibility and applicability of digital DNA sequences
make this new modeling approach suitable to represent
different scenarios, with the potential to open new directions
of research. As example, we cite here the capability to let
behavioral patterns emerge from the crowd, as approached
with different techniques in [12], [13]. Making use of stan-
dard DNA sequences alignment tools, our approach has
the comfortable outcome of avoiding the often frustrating
intervention of humans, who may not have the means to
discriminate patterns by simply inspecting on an account by
account basis.
Roadmap. The remainder of this paper is as follows. Sec-
tion 2 presents a survey of relevant work in the field of social
networks spambot detection. The Twitter datasets of our
experiments are introduced in Section 3, while, in Section 4,
we introduce the notion of digital DNA and we propose
a similarity measure for digital DNA sequences. Section 5
depicts the characteristics of online accounts based on their
DNA sequences. Section 6 presents the analysis and the
results of our approach for Twitter spambot detection. In
Section 7, we discuss the experimental results, the lessons
learned, and the generality of the proposed approach. Fi-
nally, Section 8 draws the conclusions.

2 RELATED WORK

Ranged over a period spanning the last six years, the
academic literature has seen the flowering of scientific ap-
proaches to model and analyze anomalous accounts on
social networks. In particular, Twitter has gained a lot of
attention, since the platform massively features different
kinds of peculiar subscribers, such as spammers, bots, cyborgs,
and fake followers.

In a nutshell, spammers are those accounts that advertise
un-solicited and often harmful content, containing links to
malicious pages [6], bots are computer programs that con-
trol social accounts, as stealthy as to mimic real users [14],
while cyborgs interweave characteristics of both manual

and automated behavior [15]. Finally, there are fake follow-
ers, namely accounts massively created to follow a target
account and that can be bought from online markets [3], [16],
also attracting the interest of mass media, with sometimes
questionable results [17]. Each of these categories has been
the matter of several investigations.

2.1 Established techniques

As an example for spam detection, a branch of research
mined the textual content of tweets [18], others studied the
redirection of embedded URLs in tweets [19], or classified
the URLs landing pages [20]. Work in [21] moves beyond
the difficulty of labeling those tweets without URLs as
spam tweets, by proposing a composite tool, able to match
incoming tweets with underlying templates commonly used
by spammers.

Other work investigated spammers through a multi-
feature approach, including features on the profile, the
behavior, and the timeline of an account. Examples of such
an analysis include [6], [9], [22]. In particular, [9] designed
a series of novel criteria, demonstrating their efficacy in
detecting those spammers that evade existing detection
techniques.

Our previous work in [16] considers fake Twitter fol-
lowers. Since both spammers, bots, and genuine accounts
could fall in this category, we tested a series of rules and
features from both the grey literature and Academia on a
reference dataset of humans and fake followers. Our main
contributions were: (i) pruning those rules and features that
behaved worst in detecting fake followers, and (ii) imple-
menting a classifier which significantly reduces overfitting
and cost for data gathering.

The above listed contributions are an excerpt of the
research efforts towards malicious accounts detection over
the last recent years. Noticeably, the majority of those contri-
butions was grounded on the assumption that it is possible
to recognize an account as genuine or not, based on a series
of characteristics featured by that account. The classification
takes place on the single account, and the classification
results hold since ranges of values for such characteristics
have been previously proved on reference datasets to be
symptomatic of anomalies.

2.2 Emerging trends

Remarkably, we observe a significant shift taking place over
the last two years. As observed in [11], new social bots are
rising, whose peculiarity emerges only when considering
their collective behavior. As observed from the analysis of
the datasets introduced in Section 3, the new waves of social
bots are such that, if the accounts are considered one by
one, they are no more distinguishable from genuine ones.
We claim that such social spambots represent the third and
most novel generation of spambots, following the original
wave dating back from the 00s, passing through a second
generation dated around 2011 (described by Yang et al.
in [9]). Interestingly, the thesis of a third, recent generation
of spambots is also supported by related work carried on
over datasets dated around the early 10s, such as [23],
whose conclusions were that malicious accounts in a group
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appeared as disconnected among themselves and whose
behaviors were not similar between one another.

In this work, we show how digital DNA represents a
powerful basis for the detection of the third generation
of spambots. Noticeably, we acknowledge the publication
of a few recent work whose background philosophy is
aligned with ours. Indeed, such works consider different
shades of behavioral characteristics of the accounts, with
the commonality to study them as a group instead of one
by one. In the following, we relate on such novel work,
highlighting differences and similarities with ours.

Work in [24] and [25] study connectivity patterns in
large graphs to let unexpected behaviors emerge. Following
the factual data that unexpected behaviors feature lockstep
characteristics, e.g., large groups of followers connect to the
same groups of followees, the authors depict correspon-
dences between lockstep behaviors in the social graph and
dense blocks in the adjacency matrix of the graph. Further-
more, they propose an algorithm to spot users featuring
unexpected behaviors.

The authors of [26] move from the intuition that, if a
collective online action happens once, then that action is
not necessarily fraudulent. Instead, if that collective action
repeats over time, especially in reaction to the same kind
of event, it probably represents an anomalous activity. In
particular, the work focuses on retweeting activities, defines
features for retweet threads characterization, and proposes
a methodology for catching synchronized frauds.

SynchroTrap [27] aims at detecting loosely synchronized
behaviors for a broad range of social network applications.
Time is an important dimension for SynchroTrap (thus
marking a difference with the approach proposed here),
since the methodology forms clusters on the basis of equal
actions performed by online accounts within the same time
interval.

Inspired by particle physics, fluids mechanics, and as-
tronomy, the authors of [28] consider group anomalies in a
wider flavor, not necessarily oriented to groups of spambots.
As an example, focusing on the major conferences in the area
of artificial intelligence, they consider if there are published
papers whose topics are anomalous for those conferences,
leveraging features inherent to both the single component
(e.g., the topic of the paper) and the relationships among
components (e.g., authors common to different papers).

2.3 Comparison

We briefly highlight the main differences of our approach
with respect to the cited papers. First of all, we consider a
single dimension as the basis to let groups of social accounts
emerge: the digital DNA, i.e., the sequence of characters
encoding the accounts’ behavior. Secondly, in this work
we do not consider properties of the social graph (e.g., a
follow link over Twitter or a friendship on Facebook). This
leads to the significant advantage of reducing the cost for
data gathering. Indeed, approaches that are based on graph
mining (such as [12]) generally rely on a large quantity of
data and can require computationally expensive algorithms
to perform their detection [16]. Our proposal, instead, only
exploits Twitter timeline data to perform spambots detec-
tion.

(a) Twitter profile of a social spam-
bot, belonging to the Bot1 group.

(b) Twitter profile of a social spam-
bot, belonging to the Bot2 group.

(c) Twitter profile of a genuine
user.

Fig. 1. Examples of Twitter profiles of social spambots and genuine
users. The carefully engineered profiles of the novel spambots make
them nearly indistinguishable from genuine users.

Third, we enable analysts to leverage a powerful set
of tools – developed over decades for DNA analysis –
to validate their working hypotheses on online spambots
behaviors.

Furthermore, our DNA-inspired modeling focuses on
the concept of sequence, namely ordered lists of symbols,
with variable length, and taken from a relatively small
alphabet. This marks a clear separation from other well-
known behavioral analysis techniques that do not consider
the ordering of the elements, like hashing [29].

In Section 7, we will show a comparison of our approach
with two unsupervised approaches, namely [30] and [31], in
terms of detection performances. As discussed later on, the
results are promising and they lead us to believe that digital
DNA is a simple and compact, yet powerful, mean to detect
the novel waves of social spambots. The intuition behind
our approach has been succinctly presented in a magazine
paper [32].

3 TWITTER DATASETS

In this section, we describe the different Twitter datasets
that constitute the real-world data used in our experiments.
Specifically, we collected some months’ worth of data about
the activities of a random sample of genuine (human-
operated) accounts and of two different families of spam-
bots.

A first dataset of spambots was created after observing
the activities of a novel group of social bots that we discov-
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relationships

dataset accounts tweets followers friends total interactions

Bot1 (retweeters of the political candidate) 991 1,610,176 4,031,897 4,022,884 8,054,781 147,387
Bot2 (spammers of Amazon.com products) 464 1,418,626 1,352,370 818,913 2,171,283 15,041
human 3,474 8,377,522 4,740,286 2,153,107 6,893,393 591,768

TABLE 1
Statistics about the Twitter datasets.

ered on Twitter during the last Mayoral election in Rome,
in 2014. One of the runners-up employed a social media
marketing firm for his electoral campaign, that made use of
almost 1,000 automated accounts on Twitter to publicize his
policies. Surprisingly, we found such automated accounts
to be similar to genuine ones in every way. Every profile
was accurately filled with detailed – yet fake – personal
information such as a stolen photo, short-bio, location,
etc. Those accounts also represented credible sources of
information since they all had thousands of followers and
friends, the majority of which were genuine users. Fur-
thermore, the accounts showed a tweeting behavior which
was apparently similar to those of genuine accounts, with a
few tweets posted every day, mainly quotes from popular
people. However, every time the political candidate posted
a new tweet from his official account, all the automated
accounts retweeted it in a time span of just a few minutes.
By resorting to this farm of bot accounts, the political
candidate was able to reach many more genuine accounts
in addition to his direct followers and managed to alter
Twitter engagement metrics during the electoral campaign.
Amazingly, we also found tens of human accounts who tried
to engage in conversation with some of the spambots. The
most common form of such human-to-spambot interaction
was represented by a human reply to one of the spambot
tweets quotes. Quite obviously, no human account who tried
interacting with the spambots ever received a reply from
them.

We further investigated this issue and found it to be
widespread also outside Italy. Indeed, we uncovered a sec-
ond group of social bots whose intent was to advertise a
subset of products on sale on the Amazon.com e-commerce
platform. This time the deceitful activity was carried out
by spamming URLs pointing to the advertised products.
However, similarly to the retweeters of the Italian political
candidate, also this family of spambots interleaved spam
tweets with many harmless and genuine ones.

Henceforth, we refer to the spambots retweeters of the
Italian political candidate as Bot1 and to those spambots
advertising Amazon.com products as Bot2. In order to give
more insights into the advanced characteristics of the novel
social spambots, in Figure 1 we show the profile pages of 2
spambots belonging to the Bot1 and the Bot2 groups and
that of a genuine account. As shown, from a mere compar-
ison of the Twitter profiles, it is nearly impossible to tell
apart the spambots from the genuine account. Worryingly,
this is the same scenario that Twitter users are typically
presented to, while browsing the social platform. To make
the situation even worse, Figures 1(a) and 1(b) show that
the novel social spambots also employ social engineering
techniques, such as the profile picture of a young attractive
woman and the occasional posting of provocative tweets, in
order to lure genuine accounts. As such, any threat spread

out by social spambots (e.g., malware, phishing attacks, etc.)
is more likely to result in a successful attack with respect to
those spread by traditional spambots.

After identifying possible spambots, we exploited a
Twitter crawler to collect data about all the accounts we
suspected to belong to the two groups of spambots. All the
accounts collected in this process have then undergone a
manual verification phase to certify their automated nature.
Specifically, the spambots of our datasets were annotated by
two tech-savvy post-graduate students, with yearly expe-
rience on Twitter and social media. To evaluate the inter-
annotator agreement, we used the well-known Cohen’s
Kappa (κ) evaluation metric [33]. For the accounts of the
Bot1 group, κ = 0.824, while for the accounts of the
Bot2 group, κ = 0.351. The two values are considered,
respectively, excellent and fair [34]. The disagreements be-
tween the two annotators have been resolved by a super-
annotator, i.e., a Ph.D. student with yearly experience in
sybil and spambot detection. Summarizing, among all the
distinct retweeters of the Italian political candidate, 50.05%
(991 accounts) were certified as spambots. Similarly, 89.29%
(464 accounts) of the accounts that tweeted suspicious Ama-
zon.com URLs were also certified as spambots. These 2 sets
of accounts represent our ground truth of social spambots.

Then, in order to build a dataset of certified human
accounts, we randomly contacted Twitter users by asking
them simple questions in natural language, following a
hybrid crowdsensing approach [35]. Replies to our ques-
tions were manually verified and all the 3,474 accounts
that answered were certified as humans. For all the 4,929
accounts of our datasets, we then collected behavioral data
by crawling the content of their Twitter pages. Furthermore,
we also collected data about all their direct followers and
friends, and about all the accounts they interacted with
in their tweets. Table 1 shows some statistics about total
collected data.

4 DIGITAL DNA
The human genome is the complete set of genetic informa-
tion on humans and it is encoded in the form of nucleic
acid (DNA) sequences. A DNA sequence is a succession
of characters (i.e., a string) that indicates the order of nu-
cleotides within a DNA molecule. The possible characters
are A, C, G, and T, representing the four nucleotide bases
of a DNA strand: adenine, cytosine, guanine, thymine. Bio-
logical DNA stores the information which directs functions
and characteristics of a living organism. Nowadays, DNA
sequences are exploited worldwide in biomedical science,
anthropology, forensics, and other branches of science. DNA
sequences can be read from raw biological material through
DNA sequencing methods. Currently, such sequences are
stored in sequence databases and they are analyzed by
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means of bioinformatics techniques. Among the most well-
known and widely adopted analysis techniques are se-
quence alignment and repetition/motif elicitation. One of
the main goals of these techniques is to find commonalities
and repetitions among DNA sequences. Indeed, via an anal-
ysis of common sub-sequences and substrings it is possible
to predict specific characteristics of the individual and to
uncover relationships between different individuals.

By drawing a parallel with biological DNA, we envisage
the possibility to model OSNs users behaviors and inter-
actions by means of strings of characters, representing the
sequence of their actions. Indeed, online actions – such as
posting new content, replying to another user, following an
account – can be encoded with different characters, similarly
to DNA sequences, where the A, C, G, T characters encode
the four nucleotide bases. According to this parallelism, a
user’s actions represent the bases of his/her digital DNA.
As highlighted in [36], there exist different kinds of user
behaviors on OSNs. Digital DNA is a flexible and com-
pact – yet effective – way of modeling such behaviors. Its
flexibility lies in the possibility to choose which actions to
consider while building the DNA sequence. For example,
a digital DNA sequence can be built to model user-to-user
interactions on Facebook by defining a different base for
every possible interaction type, such as comments (base C),
likes (base L), shares (base S) and mentions (base M). Users
interactions can then be encoded as strings composed of
the C, L, S and M characters according to the sequence of
actions they perform. Similarly, it is possible to model users
tweeting behaviors on Twitter by defining different bases
for tweets, retweets, and replies. Users tweeting behaviors
can then be encoded as a sequence of characters according
to the sequence of tweets they post. To this regard, digital
DNA shows a major difference with biological DNA where
the four nucleotide bases are fixed. In digital DNA both the
number and the meaning of the bases can change according
to the behavior/interaction one aims to model. Similarly to
its biological counterpart, digital DNA is also a compact
representation of information. For example, the timeline of
a Twitter user can be encoded as a single string of 3,200
characters (one character per tweet).

There is a vast number of algorithms and techniques
to draw upon for the analysis of digital DNA sequences.
Indeed, many of the techniques developed in the last few
years in the field of bioinformatics for the analysis of bio-
logical DNA can be leveraged to study the characteristics of
digital DNA as well.

In the following we give a general definition of digital
DNA, and we introduce the Twitter’s digital DNA concept,
with one of its possible applications: spambots detection.

4.1 Definition of digital DNA sequences and its appli-
cation to Twitter

The bases used to create a digital DNA sequence are rep-
resented as a finite set of unique symbols or characters,
denoted by B and defined as:

B = {B1, B2, . . . , BN} Bi 6= Bj ∀ i, j = 1, . . . , N ∧ i 6= j

The set B is also called the alphabet of a digital DNA
sequence. The number of bases used to create a sequence

is the cardinality of its alphabet, N = |B|. A digital DNA
sequence is an ordered tuple, or row vector, of characters
(i.e., a string) whose possible values are defined by the bases
of its alphabet. A sequence s is defined as:

s = (b1, b2, . . . , bn) bi ∈ B ∀ i = 1, . . . , n

The number of actions encoded in a DNA sequence deter-
mines the length of the sequence, n = |s|. Thus, a limited
number of bases in an alphabet can be used to create
sequences of arbitrary length.

Encoding someone’s behavior in a digital DNA sequence
means linking each of the actions one aims to model, to a
base of the alphabet. For instance, one can scan someone’s
actions in chronological order and assign the appropriate
base to each of the actions: the succession of bases generated
in this way makes up the digital DNA sequence. As a
practical example, we can model Twitter accounts behavior
by defining the following alphabet, of cardinality N = 3,
based on the type of tweets produced:

B3
type =


A←[ tweet,

C←[ reply,

T←[ retweet

 = {A,C,T}

A digital DNA sequence based on the B3
type alphabet can

then be obtained by scanning the tweets produced by a user
on Twitter and by assigning the T character to every retweet,
the C character to every reply, and the A character to every
other tweet, in the same order of the tweets generated by the
user. An excerpt of a digital DNA sequence generated with
the alphabet B3

type is s = (A,A,A,C,A,T,C,A,A,C, . . .). A
digital DNA sequence can also be represented with a more
compact notation as a string s = AAACATCAAC . . . , instead
of a row vector.

The B3
type alphabet represents just one among the possible

ways of modeling users behaviors on Twitter. Other ways
of modeling such behaviors can draw upon the content
of tweets, rather than their type. For instance, in order to
classify a tweet based on its content we exploited Twitter’s
notion of entities1. We exploited Twitter entities to define the
B3

content and B6
content alphabets, which can be used to model the

content of tweets with different degrees of granularity, as in
the following:

B3
content =


N←[ tweet contains no entities (plain text),

E←[ tweet contains entities of one type,

X←[ tweet contains entities of mixed types

 = {N,E,X}

B6
content =



N← [ tweet contains no entities (plain text),

U← [ tweet contains one or more URLs,

H← [ tweet contains one or more hashtags,

M← [ tweet contains one or more mentions,

D← [ tweet contains one or more medias,

X← [ tweet contains entities of mixed types


=

= {N,U,H,M,D,X}

1. Twitter defines the following types of entities: URLs, #hashtags,
@mentions and media (images, videos). For a complete reference of
Twitter entities, see: https://dev.twitter.com/overview/api/entities

https://dev.twitter.com/overview/api/entities
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Another possible way of modeling the content of
tweets could have involved the detection of the topic of a
tweet [37], [38]. Then, it would have been possible to define
an alphabet so as to have a different base for each of the
main topics, such as politics, sports, technology, music, etc.
Anyway, for the sake of simplicity, in our work we only
exploited Twitter entities in order to obtain DNA sequences
based on the content of tweets.

In the above notations, alphabets are characterized by a
subscript (e.g., type) that identifies the kind of information
captured by the bases, and by a superscript (e.g., 3) that
denotes the number N of bases in the alphabet. These
two indices are typically enough to unequivocally identify
an alphabet. As demonstrated by the B3

content and B6
content

alphabets, the superscript is useful to distinguish alphabets
modeling the same facet with a different number of bases.

4.2 LCS: a similarity measure for digital DNA se-
quences
As seen above, a digital DNA sequence is a data repre-
sentation that is suitable to model the behavior of a single
OSN user. However, when analyses are targeted to groups
rather than single users, it could be useful to manage and
study multiple digital DNA sequences as a whole, in order
to infer the characteristics of the group. Here, we study
collective behaviors via an analysis of the similarities among
the digital DNA sequences of the users of a given group. A
group A of M = |A| users can be described by the digital
DNA sequences of the M users, namely:

A =


s1
s2
...
sM

 =


(b1,1, b1,2, . . . , b1,n)
(b2,1, b2,2, . . . , b2,m)

...
(bM,1, bM,2, . . . , bM,p)


In the above characterization, the group A is defined as
a column vector of M digital DNA sequences of variable
length, one sequence for each user of the group.

Many algorithms and techniques have been developed
in recent years for the analysis of biological DNA sequences
or, more generally, strings. Such techniques mainly come
from the fields of bioinformatics and string mining [39].
Thus, the adoption of a behavioral data representation that
is based on DNA strings opens up the possibility to lever-
age recent advances is such fields. Furthermore, decades
of research and development led to scalable and efficient
algorithms, that fit well with the need to manage and study
OSNs data, which is by its nature, humongous and ever-
growing.

Among the possible means to quantify similarities be-
tween sequential data representations, in our work we relied
on the notion of the longest common substring between two
or more DNA sequences [40]. Intuitively, users that share
long behavioral patterns are much more likely to be similar
than those that share little to no behavioral patterns. Given
two strings, si of length n and sj of length m, their longest
common substring (henceforth LCS) is the longest string
that is a substring of both si and sj . For example, given
si = WASHINGTON and sj = RINGTONE, the LCS between
si and sj is the string INGTON. The extended version of this
problem that considers an arbitrary finite number of strings,

(a) B3
type alphabet. (b) B3

content alphabet.

(c) B6
content alphabet.

Fig. 2. LCS curves of a group of genuine (human-operated) accounts.

is called the k-common substring problem [41]. In this case,
given a vector A = (s1, . . . , sM ) of M strings, the goal is to
find the LCS that is common to at least k of these strings,
for each 2 ≤ k ≤ M . Notably, both the longest common
substring and the k-common substring problems can be solved
in linear time and space, by resorting to the generalized
suffix tree and by implementing state-of-the-art algorithms,
such as those proposed in [40]. Solving the LCS k-common
substring problem for each 2 ≤ k ≤ M , it is possible
to plot an LCS curve, showing the relationship between
the length of the LCS and the number k of strings. For
example, Figures 2(a), 2(b), and 2(c) depict the LCS curves
computed for a set of genuine (human-operated) Twitter
accounts. On the x axis is reported the number of k accounts
(corresponding to the k strings, or digital DNA sequences,
used to compute LCS values) and on the y axis the length
of the LCS common to at least k accounts. Therefore, every
point in an LCS curve corresponds to a subset of k accounts
that share the longest substring (of length y) among all those
shared between all the other possible subsets of k accounts.

As a direct consequence of the definition of LCS, as the
number k of accounts grows, the length of the LCS common
to all of them shortens. In other words, LCS curves are
monotonic nonincreasing functions:

LCS[k − 1] ≥ LCS[k] ∀ 3 ≤ k ≤M

This is also clearly visible in the LCS curves of Fig-
ures 2(a), 2(b), and 2(c). Thus, it is more likely to find a
long LCS among a few accounts rather than among large
groups.
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(a) Bot1 versus human accounts. (b) Bot2 versus human accounts.

Fig. 3. Comparison between LCS curves of spambots and genuine
accounts for the B3

type alphabet.

5 CHARACTERIZATION OF ACCOUNT DNAS WITH
THE LCS CURVES

To exploit at its best the potential of digital DNA, we need
a deeper understanding of the elements that mark the dis-
tinction between genuine users and social spambots. Hence,
building on the definitions of digital DNA and LCS curves
given in Section 4, in this section we study the characteristics
of the LCS curves of the different datasets introduced in Sec-
tion 3. We evaluate the differences and similarities among
those groups of accounts, as seen through the lenses of our
digital DNA sequences.

Figure 3 shows a comparison between the LCS curves
of genuine (human) accounts and those of the Bot1 (Fig-
ure 3(a)) and Bot2 (Figure 3(b)) groups. As shown, the
LCS of both groups of spambots are rather long even when
the number of accounts grows. This is strikingly evident
in Figure 3(b) (Bot2 – spammers of Amazon.com products).
For both the spambot groups, we observe a sudden drop
in LCS length when the number of accounts gets close to
the group size, namely at the end of the x axis. In contrast
to the remarkably high LCS curves of spambots, genuine
accounts show little to no similarity – as represented by
LCS curves that exponentially decay, rapidly reaching the
smallest values of LCS length.

This preliminary yet considerable differences between
the LCS curves of genuine accounts and spambots suggest
that, despite the advanced characteristics of these novel
spambots, the B3

type digital DNA is able to uncover traces
of their automated and synchronized activity. In turn, the
automated behaviors of a large group of accounts results
in exceptionally high LCS curves for such accounts. Indeed,
we consider high behavioral similarity as a proxy for au-
tomation and, thus, an exceptionally high level of similarity
among a large group of accounts might serve as a red flag
for anomalous behaviors. In the following, we preliminarily
compare groups of heterogeneous users, looking for features
that could be used to design a detection mechanism, while
in the next section we detail how to leverage such elements
for an effective detection mechanism.

5.1 LCS curves of a group of heterogeneous users
In the above section, we have analyzed LCS curves de-
rived from digital DNA sequences of users with similar
characteristics, such as genuine Twitter accounts and spam-
bots of a given family. We saw that groups with different

(a) Mixed1 group. (b) Mixed2 group.

Fig. 4. LCS curves for two groups of heterogeneous accounts, modeled
via the B3

type alphabet.

characteristics lead to qualitatively different LCS curves.
However, we have not yet considered LCS curves obtained
from sequences of an unknown and heterogeneous group
of users. Thus, leveraging the different groups of accounts
studied until now, we built 2 sets of heterogeneous accounts,
where we mixed together all the spambots of the Bot1 and
Bot2 groups, with an equal number of genuine accounts.
Henceforth, such heterogeneous groups of accounts are
referred to as Mixed1 and Mixed2, respectively. Figure 4
shows the LCS curves obtained via the B3

type alphabet.
In the left hand plot of Figure 4, we observe a continuous

decrease in the LCS length as the number of considered ac-
counts grows. Such slow decrease is sometimes interleaved
by steeper drops, such as those occurring in the region of
500 and 1,000 accounts. Another – and even more evident
– steep drop is shown in the right hand plot of Figure 4,
in the region of 400 accounts. LCS curves in both plots
asymptotically reach their minimum value as the number of
accounts grows. Overall, such LCS curves show a different
behavior than those related to a single group of similar
accounts, such as the ones shown in Figures 3(a) and 3(b).
Indeed, the plots of Figure 4 lack a single trend that spans
for the whole domain of the LCS curves. Instead, they
depict a situation where a trend seems to be dominant
only until reaching a certain threshold. Then, a steep fall
occurs and another – possibly different – trend kicks in.
Notably, such portions of the LCS curves separated by
the steep drops resemble LCS curves of the single groups
of similar users (i.e., Bot1, Bot2, human) used to obtain
the sets of heterogeneous users (i.e., Mixed1, Mixed2).
The steep drops of LCS curves separate areas where the
length of the LCS remains practically unchanged, even for
significantly different numbers of considered accounts. In
the left hand plot of Figure 4, for instance, the LCS remains
almost unchanged when considering a number of accounts
between 500 and 1,000. The same also applies to the right
hand plot of Figure 4, for a number of accounts lower
than 400. Such plateaux in LCS curves are strictly related
to homogeneous groups of highly similar accounts. Note
that it is possible to observe multiple plateaux in a single
LCS curve, as in the case of Figure 4(a). This represents
a situation where multiple (sub-)groups exist among the
whole set of considered accounts. Furthermore, the steeper
and the more pronounced is a drop in a LCS curve, the
more different are the two subgroups of accounts split by
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that drop.
To summarize, LCS curves of an unknown and hetero-

geneous group of users can present one or more plateaux,
which are related to subgroups of homogeneous (i.e., with
highly similar behaviors) users. Conversely, steep drops rep-
resent points marking big differences between distinct sub-
groups. Finally, slow and gradual decreases in LCS curves
represent areas of uncertainty, where it might be difficult
to make strong hypotheses about the characteristics of the
underlying accounts. In conclusion, we argue that LCS
curves of an unknown and heterogeneous group of users
are capable of conveying information about relevant and
homogeneous subgroups of highly similar users.

6 SOCIAL FINGERPRINTING: LEVERAGING LCS
CURVES TO DETECT SOCIAL SPAMBOTS

In this section, we report the results of our experiments
performed to detect the two subgroups of spambots and
genuine accounts that constitute our Mixed1 and Mixed2
groups. We discuss two different methods to split the ac-
counts of the Mixed1 and Mixed2 groups, according to the
characteristics of their LCS curves. We define a supervised
and an unsupervised approach, showing the suitability of
LCS curves and also the effectiveness of the detection mech-
anisms. With both the approaches, we consider as spambots
those accounts that are related to high LCS values, namely
sharing long behavioral patterns. Conversely, we consider
as genuine users those accounts that share little portions of
their digital DNA. Our methodologies provide a rigorous
assessment of the possibility to detect spambots (namely,
subgroups of accounts with very similar behavior) using the
LCS curves of groups of heterogeneous accounts.

6.1 Finding subgroups of similar users: a supervised
approach
In the spambot detection scenario, supervised approaches
are commonly employed to discriminate between spambots
and genuine users. Supervised classifiers start analyzing a
training-set, where the class of every user is specified (i.e.,
users are labeled either as spambots or genuine ones), in
order to understand the characteristics of the two classes
of users. Then, they exploit such learned characteristics to
automatically discriminate between spambots and genuine
users in a new set of unlabeled users. In addition, a test-set is
used to evaluate and compare the effectiveness of different
classifiers. This approach is typically performed in all kinds
of machine learning classification tasks.

We devised a methodology to combine LCS curves and
user labels available from a training-set as a supervised
approach for the detection of subgroups of users (i.e., spam-
bots). A good division of the original set of users into
several subgroups is one where all the users belonging to
a given class are assigned to the same subgroup. In theory,
any point of the LCS curve of a heterogeneous group of
users can be used as a splitting point to obtain two sub-
groups of more homogeneous users. Intuitively, however,
not all possible splitting points lead to accurate subgroup
partitioning. Using the given labels, we can evaluate every
possible splitting point in the LCS curve of the training-
set users and find the one that yields the best possible

(a) Mixed1 group. (b) Mixed2 group.

Fig. 5. Application of the supervised approach for discriminating be-
tween spambots and genuine users among an unknown set of accounts.
ROC curves of the classifiers obtained with the supervised approach are
shown in the bottom plots. For each group of users, the best classifier is
denoted by a blue cross mark in the corresponding ROC curve. The LCS
curves of the 2 heterogeneous groups are shown in the top plots. The
best splitting points are marked in the LCS plots with a vertical solid blue
line. Accounts to the left of the splitting points are identified as spambots
while those to the right are identified as genuine users.

subgroup division. To this regard, every point generates a
different classifier that can be evaluated in terms of machine
learning performance metrics. The LCS value associated to
the classifier that achieves the best results, according to a
given metric of choice, is then used as a threshold to classify
users of the test-set. The different classifiers can also be
qualitatively evaluated by means of ROC curves, where the
best classifiers are those that lay near to the top-left corner
of the plot [42]. The diagonal line in ROC curves is instead
related to a random classifier.

We evaluated the effectiveness of the aforementioned su-
pervised methodology for the detection of spambots among
the Mixed1 and Mixed2 groups of heterogeneous users
introduced in Section 5.1. We used 50% of Mixed1 and
Mixed2 users as the training-set and the remaining part as
the test-set. Figure 5 shows the LCS curves of the training-
set users and the ROC curves of the respective classifiers.
Among the various metrics commonly adopted to evaluate
machine learning classifiers, we picked the best classifier as
the one achieving the highest Matthews Correlation Coefficient
(MCC)2 [43]. In the ROC curves of Figure 5, the points
corresponding to the best classifiers are highlighted with
a blue cross mark. The LCS values associated to the best
classifiers represent the best splitting points according to
our supervised approach and are highlighted in the LCS
curves of Figure 5 as solid vertical blue lines. We identified
those users laying to the left of the vertical splitting line as
spambots, and those other users laying to the right of the
vertical splitting line as genuine.

2. The definition and the meaning of the MCC evaluation metric are
given in the following Section 6.3.
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(a) Mixed1 group. (b) Mixed2 group.

Fig. 6. Application of the unsupervised approach for discriminating between spambots and genuine users among an unknown set of accounts. The
peaks in the LCS derivatives that represent the best candidate points for the split are marked in all graphs with a vertical solid blue line. Accounts
to the left of the splitting points are identified as spambots, while those to the right are identified as genuine users.

Notably, as usual for classification approaches that oper-
ate in a supervised fashion, one cannot guarantee that the
learned LCS value would still be effective when applied
on a test-set different from the one used to derive such
LCS value. This problem is known in machine learning
literature as transfer learning or inductive learning [44]. In
order to overcome this limitation, in the following section
we define an unsupervised approach for discriminating
between spambots and genuine users, that does not suffer
from this drawback.

6.2 Finding subgroups of similar users: an unsuper-
vised approach

Here, we discuss an unsupervised methodology that lever-
ages previous findings and exploits the shape of LCS curves
of heterogeneous users in order to find subgroups of users
with similar behaviors. Specifically, we propose to exploit
the discrete derivative of a LCS curve to recognize the
points corresponding to the steep drops. This approach is
applicable to a broad range of situations, since it requires no
information other than the LCS curve of the heterogenous
group of users.

The steep drops of LCS curves appear as sharp peaks in
the derivative plot and represent suitable splitting points to
isolate different subgroups among the whole set of users.
All the suitable splitting points might be ranked according
to their corresponding derivative value (i.e., how steep is the
corresponding drop) and then, a hierarchical top-down (i.e.,
divisive) approach may be applied, by repeatedly dividing
the whole set of users based on the ranked points, leading
to a dendrogram structure. For instance, this approach can
be exploited in situations where the LCS curve exhibits
multiple plateaux and steep drops, in order to find the best
possible clusters that can be used to divide the original set
of heterogeneous users.

The discrete derivative of the LCS curve of a set of M

users can be easily computed as

LCS′[k] =
∆k LCS

∆k accounts
=

LCS[k]− LCS[k − 1]

1

for k = 3, . . . ,M . Given that LCS curves are monotonic
nonincreasing functions defined over the [2,M ] range, their
derivatives LCS′ will assume only zero or negative values,
with steep drops in the LCS corresponding to sharp neg-
ative peaks in LCS′. Simple peak-detection algorithms can
be employed in order to automatically detect the relevant
peaks in LCS′ [45]. Notably, this approach does not require
a training phase and can be employed pretty much like a
clustering algorithm, in an unsupervised fashion.

To prove the effectiveness of this unsupervised ap-
proach, we applied it to the LCS obtained from the unla-
beled Mixed1 and Mixed2 groups, with the goal of sepa-
rating spambots from genuine users. Figures 6(a) and 6(b)
show stacked plots of the LCS of the Mixed1 and Mixed2
groups respectively, together with their discrete derivative
LCS′, both in linear and logarithmic scale. The logarith-
mic scale plots of the derivatives have been computed as
log10 | LCS′ | and they have been added for the sake of
clarity, since they highlight the less visible peaks of the
linear scale plots. In order to facilitate the detection of
peaks in LCS′, we smoothed the original LCS curves before
computing their derivatives [46]. This preprocessing step
acts pretty much like a low-pass filter, allowing to flatten
the majority of noisy fluctuations.

In Figure 6, the solid vertical blue lines correspond to
the most pronounced peaks in the LCS′ of Mixed1 and
Mixed2. As shown, the proposed methodology accurately
identified reasonable splitting points in order to find two
clusters among the whole sets of unlabeled users. In detail,
those users laying on the left of the vertical splitting line
– that is, users sharing long behavioral patterns (i.e., long
LCS) – are labeled as spambots. Conversely, the users to the
right of the vertical splitting line – i.e., users sharing little
similarities – are labeled as genuine ones. Together with
this qualitative assessment, in Section 6.3 we also perform a
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thorough quantitative evaluation of our spambots detection
techniques, by means of well-known performance metrics
of machine learning algorithms.

We remark that, although the Mixed1 and Mixed2
groups feature an equal number of genuine and spambot
accounts, the ratio between the two types of accounts is
generally different when considering the whole Twitter-
sphere [47]. The balance in Mixed1 and Mixed2 is be-
cause we mostly envisage the application of our digital
DNA technique to spot anomalous groups within devoted
events/campaigns, e.g., those accounts retweeting a specific
hashtag, or participating in an electoral campaign, or which
are followers of a certain account. Whereas the analysis is
concentrated on a subset of accounts acting around a par-
ticular event, the ratio between genuine and spam accounts
can drastically vary, even leading to a balance in the cardi-
nality of the two groups. For the sake of completeness, we
carried out a series of further experiments with the aim of
investigating the applicability of our technique to the whole
Twittersphere, in order to gain insights into its effectiveness
when the ratio between bot accounts and humans is likely
different than the one in our original test-sets. Results of this
experiment are presented in the next section.

6.3 A comparison of the two approaches

As shown in Figure 5 and Figure 6, both the supervised
and the unsupervised approaches identified similar splitting
thresholds, that lay inside the steepest drops of the LCS
curves of Mixed1 and Mixed2. However, results of the
supervised and unsupervised approaches are slightly differ-
ent, especially with regards to the accounts of the Mixed2
group. In the following, we provide a quantitative compar-
ison of the two approaches to assess which one actually
better discriminated between spambots and genuine users.

To summarize the outcomes of the supervised and the
unsupervised approaches, we leverage evaluation metrics
based on four standard indicators:

• True Positives (TP): the number of spambots correctly
recognized;
• True Negatives (TN): the number of genuine users cor-

rectly recognized;
• False Positives (FP): the number of genuine users erro-

neously recognized as spambots;
• False Negatives (FN): the number of spambots erro-

neously recognized as genuine users.

The meaning of each indicator is summarized by the so-
called confusion matrix of Table 2, where each column rep-
resents the instances in the predicted class and each row
represents the instances in the actual (real) class [48]:

predicted class

actual class genuine user spambot

genuine user TN FP
spambot FN TP

TABLE 2
Confusion matrix.

Then, building on the previously introduced indicators,
we computed the following standard evaluation metrics:

• Precision, the ratio of predicted positive cases (i.e.,
spambots) that are indeed real positives: TP

TP+FP ;
• Recall (or also Sensitivity), the ratio of real positive cases

that are indeed predicted as positives: TP
TP+FN ;

• Specificity, the ratio of real negative cases (i.e., genuine
users) that are correctly identified as negative: TN

TN+FP ;
• Accuracy, the ratio of correctly classified users

(both positives and negatives) among all the users:
TP+TN

TP+TN+FP+FN ;
• F-Measure, the harmonic mean of Precision and Recall:

2 · Precision · Recall
Precision+Recall ;

• Matthews Correlation Coefficient (MCC) [43], the estima-
tor of the correlation between the predicted class and
the real class of the users:

TP ·TN−FP ·FN√
(TP+FN)·(TP+FP )·(TN+FP )·(TN+FN)

Each of the above metrics captures a different aspect of
the prediction performance. Accuracy measures how many
users are correctly classified in both of the classes, but it does
not express whether the positive class is better recognized
than the other one. Moreover, there are situations where
some predictive models perform better than others, even
having a lower accuracy [49]. A high Precision indicates
that many of the users identified as spambots are indeed
real spambots, but it does not give any information about
the number of spambots that have not been identified as
such. This information is instead provided by the Recall
metric, indeed a low Recall means that many spambots are
left undetected. Specificity instead measures the ability in
identifying genuine users as such. Finally, F-Measure and
MCC convey in one single value the overall quality of the
prediction, combining the other metrics. Furthermore, MCC
is considered the unbiased version of the F-Measure, since it
uses all the four elements of the confusion matrix [49]. Being
a correlation coefficient, MCC ≈ 1 means that the prediction
is very accurate, MCC ≈ 0 means that the prediction is no
better than random guessing, and MCC ≈ −1 means that
the prediction is heavily in disagreement with the real class.
Table 3 shows the results of the evaluation for the users of
Mixed1 and Mixed2 groups, for all the considered metrics.

Overall, both the supervised and the unsupervised ap-
proaches provide accurate results towards the detection of
spambots among users of the Mixed1 and Mixed2 groups.
This is represented by the high values in all the consid-
ered metrics shown in Table 3. As anticipated, the main
differences between the two approaches are related to the
performances against the Mixed2 group. In this situation
the unsupervised approach achieves slightly worse results,
with MCC = 0.867 in contrast with MCC = 0.949 of the su-
pervised approach. Indeed, the unsupervised approach per-
forms a rather conservative split which results in degraded
performances. This is demonstrated by FP = 0 and FN = 33,
meaning that none of the accounts labeled as spambots were
instead genuine, but that some spambots were left unde-
tected. With the supervised approach, instead, the splitting
threshold is chosen in such a way that it results in FP = 8 and
FN = 4, thus leading to significantly better performances.
In addition, results of the supervised approach are very
consistent between the Mixed1 and Mixed2 groups, with
only minimal variations among the considered evaluation
metrics. In conclusion, the additional information exploited
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detection results evaluation metrics

type TP TN FP FN Precision Recall Specificity Accuracy F-Measure MCC

Mixed1

Social Fingerprinting unsupervised 963 924 18 28 0.982 0.972 0.981 0.976 0.977 0.952
Social Fingerprinting supervised 965 924 18 26 0.982 0.977 0.981 0.977 0.977 0.955
Yang et al. [9] supervised 169 811 131 822 0.563 0.170 0.860 0.506 0.261 0.043
Miller et al. [31] unsupervised 355 657 285 636 0.555 0.358 0.698 0.526 0.435 0.059
Ahmed et al. [30] unsupervised 935 888 54 56 0.945 0.944 0.945 0.943 0.944 0.886

Mixed2

Social Fingerprinting unsupervised 398 468 0 66 1.000 0.858 1.000 0.929 0.923 0.867
Social Fingerprinting supervised 446 458 10 18 0.978 0.961 0.979 0.970 0.970 0.940
Yang et al. [9] supervised 190 397 71 274 0.727 0.409 0.848 0.629 0.524 0.287
Miller et al. [31] unsupervised 142 306 162 322 0.467 0.306 0.654 0.481 0.370 -0.043
Ahmed et al. [30] ] unsupervised 428 427 41 30 0.913 0.935 0.912 0.923 0.923 0.847

TABLE 3
Comparison between the Social Fingerprinting splitting techniques and other state-of-the-art algorithms towards the detection of spambots among
test-set users of the Mixed1 and Mixed2 groups. ]: With regards to the feature set of [30], a few accounts had null values for all the features thus

resulting in the impossibility to apply the clustering algorithm to such accounts.

Fig. 7. Detection performances of the unsupervised approach with heav-
ily imbalanced data.

in the supervised approach (i.e., the class label of training-
set users) results in slightly better detections. Nonetheless,
also the unsupervised approach is able to provide overall
accurate predictions.

Finally, we evaluated the performances of the unsuper-
vised approach with a dataset that reflects a real word
scenario, where the number of spambots is supposed to
be much smaller than the number of human-operated ac-
counts. In particular, Figure 7 reports the MCC resulted from
the experiments obtained considering the ratio between the
number of spambots and genuine accounts spanning from
0.01 to 0.10, within a dataset of 5,000 total accounts. For
each experiment, we firstly set the spambots ratio. Then,
we randomly picked the DNA sequences of the two orig-
inal test-sets (Mixed1 and Mixed2) so as to build mixed
datasets with the correct numbers of spambots and genuine
accounts. Finally, we executed the unsupervised detection
approach on such datasets and evaluated the detection
performance, averaging the results over 20 executions. From
the plot in Figure 7 it is noticeable that the performance
improves as the number of bots in the dataset increases.
Considering that the number of spambot accounts in this
experiment is extremely low (the smallest one is only of 50
spambots), the reliability of the unsupervised approach is

still noticeable.

7 DISCUSSION

To thoroughly evaluate the Social Fingerprinting technique,
we compared our detection results with those obtained
by different state-of-the-art spambot detection techniques,
namely the supervised one by Yang et al. [9], and the
unsupervised approaches by Miller et al. [31] and by Ahmed
et al. [30]. The work presented in [9] provides a machine
learning classifier that infers whether a Twitter account is
genuine or spambot by relying on account’s relationships,
tweeting timing, and level of automation. We reproduced
such a classifier since the authors kindly provided us with
their training set. Instead, works in [31] and [30] define a
set of machine learning features and apply clustering al-
gorithms. Specifically, in [31] the authors propose modified
versions of the DenStream and StreamKM++ algorithms
(respectively based on DBSCAN and k-means) and apply
them for the detection of spambots over the Twitter stream.
Ahmed et al. [30] exploit the Euclidean distance between
feature vectors to build a similarity graph of the accounts
and graph clustering and community detection algorithms
to identify groups of similar accounts in the graph.

Notably, the Social Fingerprinting detection technique
outperforms the other approaches for all the considered
metrics, achieving MCC = 0.952 and 0.955 for Mixed1,
and MCC = 0.867 and 0.940 for Mixed2. Specifically, there
is a clear performance gap between the approaches of [9]
and [31] with respect to our proposed approaches and that
of [30]. The supervised approach by Yang et al. [9] proved
unable to accurately distinguish spambots from genuine
accounts, as demonstrated by the considerable number of
false negatives (FN) and the resulting very low Recall. This
result supports our initial claim that this new wave of bots is
surprisingly similar to genuine accounts: they are exception-
ally hard to detect if considered one by one. Moreover, also
the unsupervised approach in [31] provided unsatisfactory
results. Among the 126 features proposed in [31], 95 are
based on the textual content of tweets. However, novel
social spambots, such as those considered in this study,
tweet contents similar to those of genuine accounts (e.g.,
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(a) Execution time (B3
content al-

phabet).
(b) Memory usage (B3

content al-
phabet).

(c) Execution time (B6
content al-

phabet).
(d) Memory usage (B6

content alphabet).

Fig. 8. Mean execution times and memory usages for 20 runs of the Social Fingerprinting detection technique, under different conditions (i.e.,
alphabet, number of accounts, length of digital DNA sequences). Error bars report lower/upper bounds of ±3 standard deviations from the mean.

retweets of genuine tweets and popular quotes). Instead, the
approach in [30] proved effective in detecting our consid-
ered spambots, showing an MCC = 0.886 for Mixed1 and
MCC = 0.847 for Mixed2. With only 7 features, [30] focuses
on retweets, hashtags, mentions and URLs, thus analyzing
the accounts along the dimensions exploited by these spam-
mers. However, although achieving an overall good perfor-
mance for the considered spambots, the approach in [30]
might lack reusability across other groups of spambots with
different behaviors, such as those perpetrating a follower
fraud [12], [16]. Social Fingerprinting, instead, is flexible
enough to highlight suspicious similarities among groups
of accounts without focusing on specific characteristics.

7.1 Emerging novel spambots

As introduced in Section 2, our work tackled the detection
of a novel wave of social Twitter spambots. By accurately
mimicking the characteristics of genuine users, these spam-
bots are intrinsically harder to detect than those studied
by Academia in the past years. As a consequence, it is
exceptionally difficult to detect such spambots working on
an account by account basis, as in the case of machine
learning classifiers. This claim is supported by the poor
detection results obtained by the approach of Yang et al. [9].
Table 3 clearly shows that the supervised approach of [9] is
unable to effectively distinguish between genuine users and
spambots in our 2 mixed datasets. This result is particularly
important when considering that the approach of Yang
et al. was specifically designed to detect evolving Twitter
spammers. Clearly, such spambots did not evolve in the way
that Yang et al. imagined. In turn, our work also provides
additional evidence of the emergence of a new wave of
spambots, as already anecdotally observed in [11].

Despite the advanced characteristics of these new spam-
bots, we argue that the traces of their automated nature are
still present in the history of their behaviors. Such subtle
traces might not be enough to infer the nature of an account
(whether genuine or spambot) by simply analyzing his past
behaviors. Nonetheless, they can be leveraged by observing
collective behaviors of groups of accounts. Since spambots
of same family – that is, those spambots belonging to the
same bot-master and perpetrating the same illicit activity
– must necessarily have the same goal, and hence similar

behaviors, it is possible to exploit behavioral similarities
between large groups of accounts as a proxy for automation.
To verify this claim, we have devised the digital DNA
modeling technique and we have applied it to the detec-
tion of these novel Twitter spambots. Experimental results
reported in Section 6 support our claim and demonstrate
the effectiveness of our detection technique. In particular,
our supervised and unsupervised Social Fingerprinting ap-
proaches outperformed the other detection techniques of
Table 3. Indeed, the proposed technique features the ability
to uncover those characteristics that are typical of a group
of similar or synchronized accounts. Such characteristics
cannot be noticed if the accounts are considered one by one.

7.2 Notes on complexity and scalability

Notably, the best performing techniques proposed in recent
years for spambots detection are based on data- and time-
demanding analyses. This highlights a trade-off between
accuracy and responsiveness of spambots detection. The
amount of data needed to calculate features – and the re-
sulting lack of responsiveness in providing results – also un-
dermine the large-scale applicability of such detection tech-
niques. To this regard, our Social Fingerprinting technique is
not only effective, but also efficient. Indeed, some of the pre-
viously mentioned approaches for spambots detection are
among those requiring a large number of data-demanding
features and computationally demanding algorithms. For
instance, approaches that are based on graph mining, such
as [12], have been proved to be more demanding in terms
of data that is needed in order to perform the detection [16].
Instead, the Social Fingerprinting technique only exploits
Twitter timeline data to perform spambots detection, and
executed algorithms run in linear time and disk-space with
the number of accounts to investigate [40]. In addition, to
address and solve other research challenges in the field of
social networks, other algorithms for the analysis of biolog-
ical DNA and strings can be drawn from the established
literature in the fields of bioinformatics and string mining.

To provide experimental evidence of the efficiency and
scalability of our detection technique we also conducted
some benchmarks, monitoring both time and memory con-
sumption under different experimental settings. In partic-
ular, we monitored the effects of increasing the number of
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detection results evaluation metrics

TP TN FP FN Precision Recall Specificity Accuracy F-Measure MCC

Social fingerprinting (B3
content) 957 894 48 34 0.952 0.966 0.949 0.958 0.959 0.915

Social fingerprinting (B6
content) 958 891 51 33 0.950 0.967 0.946 0.957 0.958 0.913

TABLE 4
Detection performances (unsupervised approach) considering the B3

content and B6
content alphabets.

investigated accounts, increasing the length of their digital
DNA sequences, and changing the considered digital DNA
alphabet (B3

content and B6
content), on execution time and mem-

ory consumption. Results are shown in Figure 8, reporting
mean values of 20 runs that we executed under each ex-
perimental setting. Our experiments were performed on a
virtual machine with 8Gb of RAM and with a single pro-
cessor at 2.1Ghz, running Ubuntu. All the plots in Figure 8
show that the growth is linear for both the time com-
plexity and the required memory, namely doubling one of
the parameters roughly doubles the experiment complexity.
Considering that the LCS problem is still well studied and
has several solutions leveraging high parallelization [50] in
distributed computing environments, we can conclude that
our approach is scalable enough and that it can be adopted
to deal with real cases, e.g., looking for groups of spambots
within the followers of a given Twitter account.

7.3 Flexibility and multidimensionality of digital DNA

Provided the great level of flexibility of digital DNA, we
also envision the possibility to exploit results of our Social
Fingerprinting technique as a feature in a more complex
detection system. For instance, a hybrid detection system
leveraging features derived from the digital DNA analysis
and other machine learning features, or a system that simul-
taneously exploits multiple types of digital DNA. Indeed,
different types of DNA (such as B3

type, B3
content and B6

content,
defined in Section 4.1) can be exploited to model different
dimensions of user behaviors. Then, results of these models
could be used simultaneously in an ensemble or voting
system. For instance, when modeled with a given digital
DNA alphabet, some accounts might lay in an area of uncer-
tainty of the resulting LCS curve, e.g., a slow and gradual
decrease, as explained in Section 5.1. However, the same
accounts might instead be unambiguously characterized by
the LCS curve obtained with a different digital DNA alpha-
bet. Hence, exploiting multiple alphabets (and then different
aspects of the users’ behavior) might allow to uncover
more characteristics of the accounts under investigation,
ultimately leading to better detection results.

Further alphabets according to which it could be possible
to extract the digital DNA of online users are as follows. One
alphabet could capture the interaction patterns of Twitter
users, considering the popularity level of the peers with
whom a given user interacts. Specifically, we may think
to exploit retweets and replies among users as a form of
interaction and an account’s followers count as a measure
of popularity for that account. For example, the alphabet
Binteraction may define a base to represent interactions with
celebrity users, another base to represent interactions with
ordinary users, and one last base to represent tweets that are
not interactions (i.e., that are not retweets nor replies).

(a) LCS curves of permuted vs. orig-
inal DNA sequences of Bot1 ac-
counts.

(b) LCS curves of permuted vs. orig-
inal DNA sequences of Bot2 ac-
counts.

(c) LCS curve of genuine (human)
accounts and those of permuted
Bot1 and Bot2.

Fig. 9. Effects of a Monte Carlo simulation with 1,000 random permu-
tations of digital DNA sequences of Bot1 and Bot2 accounts. LCS
curves of permuted sequences report the mean values measured from
the 1,000 permutations. Colored areas (ribbons) around the permuted
LCS curves highlight lower and upper bounds of ±3 standard deviations
from the mean.

It would even be possible to easily model via our digital
DNA sequences both the web-based online behavioral fea-
tures recently studied in [51], [52], [53] and the behavioral
features studied in [54], derived from the fields of market
analysis and social security analysis.

Experimenting with different alphabets and bases may
vary the outcome of our modeling and analysis technique.
To evaluate the power of the proposed approach varying
the alphabet and the number of bases, Table 4 shows the
detection performances of Social Fingerprinting – in its un-
supervised fashion – when using B3

content and B6
content, defined

in Section 4.1, for the sequentialization of the behavior of
the Mixed1 accounts. Results in Table 4 show slightly worse
detection performance, with respect to those measured with
the B3

type alphabet: MCC = 0.915 for B3
content and MCC =

0.913 for B6
content versus MCC = 0.952 for B3

type. Anyway,
despite being slightly worse, the detection performance is
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still extremely good across all evaluation metrics, thus repre-
senting the effectiveness and applicability of our technique.

Finally, we notice how our proposed approach is very
generic and flexible, since it makes possible to deepen the
analysis of LCS curves with the straightforward use of
powerful tools, such as dendrograms for clustering and
ROC curves for classifiers, which are already and widely
adopted in a number of machine learning tasks.

7.4 Defense against evading techniques

Given the focus of the Social Fingerprinting technique on the
sequence of user actions, one could foresee evading spam-
mers to randomly re-order the sequence of their tweets, in
an effort to escape detection. In order to thoroughly assess
the impact of such evading technique on our detection
performances, we have run a series of experiments via
Monte Carlo simulations [55]. Specifically, for each account
of the Bot1 and the Bot2 groups, we have performed
1,000 random permutations of their real digital DNA strings.
Performing a permutation of a digital DNA string liter-
ally means randomly changing the order of actions. Then,
Figures 9(a) and 9(b) show how the LCS changes when
applying the permutations. As shown, the values of LCS
are lower for the permuted sequences with respect to the
original (i.e., real) sequences. This means that randomly re-
ordering the sequence of actions actually erased some of
the similarities between the spambot accounts. However,
the qualitative trend of the LCS curves did not change.
In particular, as shown in Figure 9(c), the LCS curves ob-
tained from the permuted sequences are still significantly
different from the long-tailed distribution that is typical of
genuine accounts. Such striking difference would still allow
to perform a rather accurate detection of the spambots.
These spambots are still distinguishable from the genuine
accounts, even after the permutation experiment, because
the statistical distribution of the bases in the spambot
sequences is different with respect to that of the human
sequences. On the one hand, spambots have less variability
(i.e., entropy) in their sequences and they tend to have a
DNA base that is predominant with respect to the other
ones. On the other hand, genuine accounts feature a base
distribution that is almost uniform. This explains why, in
our data, randomly reordering the sequences of spambots,
although partly erasing similar behavioral patterns, still
allows to distinguish them from humans, according to our
LCS similarity approach.

To deal with the spambot accounts under investigation,
we relied on the longest common substring metric [40].
This metric is rather rigid since it considers exact matches
of substrings among two or more digital DNA sequences.
Future spambots could make their sequence of actions more
random and with higher entropy, thus possibly evading the
longest common substring similarity metric. However, we
argue that our technique could still be adopted by relying
to more flexible similarity metrics on strings. One notable
and promising example is the longest common subsequence
metric [56]. Such metric, already largely adopted in a num-
ber of biological DNA analysis tasks, extends the longest
common substring by also considering partial matches in-
stead of exact ones. Thus, it could be exploited to uncover

an even larger set of behavioral similarities left behind by
sophisticated social spambots.

The same metric could also be used for the detec-
tion of other – more sophisticated – types of spammers,
such as crowdsourcing spammers – i.e., humans hired to
perform spamming tasks. While crowdsourcing spammers
may demonstrate a certain level of similarity, they probably
manifest behaviors that are not as consistent as the ones of
automated accounts (i.e., bots). As such, detection mecha-
nisms targeting crowdsourcing spammers may benefit from
leveraging the more flexible longest common subsequence.

8 CONCLUSIONS

In this paper, we first confirmed that recent waves of spam-
bots have been thoroughly engineered so as to mimic the
human behavior of OSNs genuine users. We also proved
that these novel species of spambots do escape state-of-the-
art algorithms specifically designed to detect them. Later, we
proposed the digital DNA behavioral modeling technique.
Leveraging this methodology, we have been able to verify
our working hypothesis: there are still low intensity signals
that make humans different from bots, when considering
users not on an account by account basis, but rather on
collective behaviors. Our Social Fingerprinting detection
approach and coupled algorithmic toolbox – drawn from
the bioinformatics and string mining domains – have shown
excellent detection capabilities for all of the most relevant
detection metrics, outperforming state-of-the-art solutions.
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