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Abstract— Multi-Temporal Synthetic Aperture Radar 

Interferometry (MTInSAR) is an efficient geodetic tool for earth 

surface displacement measurement, and the polarimetric 

capability of current and upcoming Synthetic Aperture Radar 

(SAR) satellites offers a new opportunity to further improve 

MTInSAR phase series estimation. However, none of existing 

estimators for multipolarimetric MTInSAR phase series of 

distributed scatters (DSs) is derived under the minimum root 

mean square error (RMSE) criterion. In this work, a maximum 

likelihood estimator for multipolarimetric phase linking (MLE-

MPPL) is proposed and the corresponding Cramer-Rao lower 

bound (CRLB) is also derived by modeling the polarimetric 

interferometric coherence matrix as the Kronecker product of 

polarimetric coherence matrix and interferometric coherence 

matrix. In addition, a new metric called Pol-detR is proposed for 

performance evaluation of multipolarimetric MTInSAR phase 

series estimation in practical scenarios where the RMSE is not 

feasible any more. Experimental results based on both simulated 

and real data show that the proposed MLE-MPPL achieves the 

best estimation performance and is more robust against inter-

channel interference than existing methods.  

 
Index Terms—Multi-Temporal SAR Interferometry 

(MTInSAR), multipolarimetric phase linking, CRLB, maximum 

likelihood estimation. 

I. INTRODUCTION 

ULTI-TEMPORAL Synthetic Aperture Radar 

Interferometry (MTInSAR) has become a well-

established geodetic mapping tool in the study of earthquakes 

[1], volcanos [2], landslides [3] [4], and earth surface 

displacement induced by anthropologic activities [5]. It can 

characterize centimeter to millimeter level of surface 

deformation [6]. Thanks to the shorter revisit time and higher 

image resolution of SAR satellites, much finer deformation 

monitoring can be achieved in both space and time domains. In 

the meantime, the multipolarimetric capability of current and 

upcoming SAR satellites, such as TerraSAR-X/TanDEM-X, 

Sentinel-1 constellation, Radarsat-2, ALOS-2, BIOMASS, and 

NISAR, can further enhance the deformation monitoring 

accuracy and robustness. 
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A critical problem facing MTInSAR is the decorrelation 

induced by temporal and spatial baseline, which will hamper 

accurate estimation of phase series and thereby degrade the 

deformation monitoring performance. Based on different 

strategies to handle the decorrelation problem in phase series 

estimation, MTInSAR techniques can be divided into three 

classes, which are persistent scatters interferometry (PSI) [7]-

[9], Small BAseline Subset (SBAS) [10], and distributed 

scatters interferometry (DSI) [11]-[15]. 

PSI identifies persistent scatters (PSs) exhibiting stable 

amplitude dispersion and performs subsequent phase series 

analysis on these PSs, thereby avoiding potential performance 

degradation in the measured displacement field as the 

decorrelation on PSs is negligible [7]. Hooper developed a 

Stanford method for persistent scatters [16], which is able to 

identify more PSs in natural scenes and successfully applied in 

volcano eruption studies. Many other PSI methods have also 

been proposed [17]-[19], which mostly differ in their PS 

selection criteria or displacement field models. However, a 

main limitation of PSI is its mandatory requirement for PSs, 

which makes it unsuitable for scenes where PSs are sparse or 

even nonexistent. 

 Unlike PSI, SBAS tackles the spatial and temporal 

decorrelation problem by spatial multilooking and small 

baseline combination, respectively, and the subsequent phase 

series estimation is performed on these selected multilooking 

interferograms through singular value decomposition (SVD). 

Nevertheless, the multilooking operation inevitably causes loss 

in resolution. Furthermore, a phase series inconsistency 

problem was reported in recent studies on SBAS [20] [21]. 

In DSI, decorrelation of distributed scatters (DSs) is dealt 

with through adaptive multilooking, which is realized by 

constructing an interferometric coherence matrix with 

identified statistical homogeneous pixels (SHPs), and then 

phase-linking algorithms are applied to estimate the phase 

series from the constructed interferometric coherence matrix. 

Under the hypothesis of circular complex gaussian (CCG) 

distribution, Ferretti et al proposed a maximum likelihood 

phase-linking algorithm [11], i.e., the so-called phase 
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triangulation algorithm (PTA). Later, Ansari et al proposed a 

more computationally efficient solution [14], which is the 

eigendecomposition-based maximum-likelihood-estimator of 

interferometric phase (EMI). Several other phase-linking 

algorithms like those in CAESAR [12] and PD-PSInSAR [13] 

have also been proposed. 

Through adaptively multilooking and phase-linking, DSI can 

mitigate the problem of resolution loss and phase inconsistency 

in SBAS. In the meantime, it improves the phase series 

estimation accuracy of DSs, thus making up for PSI’s weakness. 

However, all these three techniques are single polarimetric. 

Additional polarimetric information offered by polarimetric 

SAR satellites can be exploited to further mitigate the 

decorrelation problem and achieve more accurate and robust 

phase series estimation. 

Current strategies to apply multipolarimetric data in 

MTInSAR phase series estimation can be categorized into two 

types. One is based on polarimetric optimization, and the other 

is based on interferometric coherence matrix stacking.  

The concept of polarimetric differential InSAR optimization 

in ground base SAR was introduced by selecting the acquisition 

channel with the highest temporal coherence value in [22]. An 

exhaustive search polarimetric optimization (ESPO) method 

was proposed to optimize MTInSAR results under the criterion 

of amplitude dispersion index (ADI) for PSs or average 

coherence magnitude for DSs [23] [24]. The suboptimum 

scattering mechanism [25] method is another option when 

polarimetric stationarity does not hold. These three methods 

were then compared systematically using both ground base and 

orbital data, showing that ESPO can achieve the best 

performance [26]. In addition, to reduce the huge computational 

burden of ESPO, coherency matrix decomposition-based 

PolPSI was proposed as a suboptimal solution [27]. To 

adaptively identify and process PSs and DSs, a scattering-

mechanism-based filtering polarimetric phase OPTimization 

method was proposed in [28]. In terms of the selection of 

homogeneous pixels for DSs, Mullissa and Zhao applied the 

H/A/Alpha-Wishart PolSAR classifier [29]. Apart from ADI 

and average coherence magnitude, Sadeghi directly employed 

the temporal coherence, a metric for evaluation of MTInSAR 

results, as the optimization objective function [30], but it mainly 

targeted for PSs. Moreover, for multipolarimetric MTInSAR 

phase series estimation, optimal average coherence does not 

necessarily indicate the lowest root mean square error (RMSE). 

Therefore, it cannot guarantee an optimal MTInSAR result, i.e., 

displacement field. Another polarimetric method for PSs based 

on maximum likelihood theory constructs the polarimetric 

likelihood function by assuming the independence of three 

different polarimetric channels and temporal invariance of 

decorrelation noise between acquisitions and obtains the 

optimum deformation and elevation parameters through a time-

consuming two-step optimization method [31]. 

Different from the polarimetric optimization methods, Shen 

et al proposed a total power (TP) coherence matrix construction 

method [32]-[35], by taking the interferometric coherence 

matrices of different polarimetric channels as statistical samples 

and stacking them together to construct a TP coherence matrix. 

Then, the phase series can be extracted either directly from the 

off-diagonal elements of the TP coherence matrix [32], or by 

further employing phase-linking algorithms on the TP 

coherence matrix [34]. The TP coherence matrix construction 

method has been proved effective in multipolarimetric phase 

series estimation [34] [35]; however, by simply stacking the 

interferometric coherence matrices together, TP is not really the 

optimal estimator under the hypothesis of CCG distribution.  

In pursuit of the optimal solution for multipolarimetric 

MTInSAR phase series estimation of DSs, a maximum 

likelihood estimator for multipolarimetric phase linking, 

hereafter referred to as MLE-MPPL, is proposed in this work 

and the Cramer-Rao lower bound (CRLB) for multipolarimetric 

MTInSAR phase series estimation is also derived by modeling 

the polarimetric interferometric coherence matrix as the 

Kronecker product of polarimetric coherence matrix and 

interferometric coherence matrix. Under the hypothesis of CCG 

distribution, polarimetric stationarity and invariance of 

decorrelation mechanism among different polarimetric 

channels, MLE-MPPL is the optimal solution for DSs under the 

criterion of RMSE and able to asymptotically reach the CRLB. 

In addition, to further quantitatively evaluate the performance 

of phase series estimation, a new metric called Pol-detR is 

proposed as an alternative for RMSE. 

The remainder of this paper is organized as follows. In 

Section II, the maximum likelihood estimation (MLE) for 

single polarimetric MTInSAR phase series is briefly reviewed. 

The MLE-MPPL is proposed for multipolarimetric MTInSAR 

phase series estimation and corresponding CRLB is derived in 

Section III. Experimental results on both simulated and real 

data are conducted in Section IV. Conclusions are drawn in 

Section V. 

II. MAXIMUM LIKELIHOOD ESTIMATION FOR SINGLE 

POLARIMETRIC MTINSAR PHASE SERIES  

For a single polarimetric single look complex (SLC) series of 

N  acquisitions  1 2, , ,
T

Nx x x=x that follows the CCG 

distribution, its probability density function (PDF) is expressed 

as [11]  

 ( ) ( )
11

exp{ }
det

H

N
f


−= −x x C x

C
                       (1) 

where ( )det   denotes the determinant operator, 
H

E  =  C xx  

is the interferometric coherence matrix,  E   is the expectation 

operator and ( )H  is the Hermitian transpose. C  is modelled as  

 H=C Θ ΓΘ                                    (2) 

where  diag exp( )j= −Θ θ ,  1 2, , ,
T

N  =θ  includes the 

phase series to be estimated, and N NΓ  is the real-valued 

coherence matrix. Then, a logarithmic likelihood function can 

be constructed by the product of P  SHPs series 
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 ( ) ( )
1

1

1
ln exp{ }

det

P
H

k kN
k

L


−

=

= −θ x C x
C

             (3) 

where 
kx  is the SLC series of the thk  SHP. (3) can be 

formulated in a more compact form as  

( ) ( ) ( )1 ˆln det traceL
−= − −θ C C C                      (4) 

where ( )trace   is the trace operator and 
1

1ˆ
P

H

k k

kP =

= C x x  is the 

sample coherence matrix (SCM). By substituting (2) in (4) and 

eliminating unrelated terms, the likelihood function is rewritten 

as  

 ( ) ( )1 ˆH
L

−= −θ Λ Γ C Λ                       (5) 

where  denotes the Hadamard product, and 

 1 1exp( ) exp( ),exp( ), ,exp( )
H

Nj j j j  = − = − − −Λ θ . Then, 

the MLE of phase series θ can be obtained by maximization of 

(5), i.e.,  

 ( )1 ˆarg max H

MLE

−= −
θ

θ Λ Γ C Λ                    (6) 

Two approaches can be employed to solve this optimization 

problem. One is the iterative PTA method proposed in [11], 

which uses the computationally expensive Broyden–Fletcher–
Goldfarb–Shanno algorithm. The other is EMI [14], which is 

more efficient by performing eigenvalue decomposition of  
1 ˆ−Γ C  and then taking the eigenvector corresponding to the 

smallest eigenvalue as the solution. It should be noted that the 

coherence matrix Γ  is unknown and thus needs to be estimated. 

A widely used estimation for the coherence matrix is ˆˆ =Γ C , 

where   is the modulus operator. 

III. MLE-MPPL AND CRLB 

In polarimetric SAR, the Sinclair backscattering matrix   

 
HH HV

VH VV

S S
S

S S

 
=  

 
                               (7) 

can be fully represented by a Pauli basis scattering vector as [23]  

 
1 1

, , 2
2 2

T

HH VV HH VV HV
S S S+ −

 
=  

 
k           (8) 

where the cross-polar reciprocity 
HV VHS S=   is assumed. 

ESPO is a typical optimal polarimetric optimization method, 

and searches for an optimum projection vector 
opt
ω  through 

maximization of the average coherence magnitude [24]   

( ) 1

2
arg max

1

HN N
ij

opt
H H

i j i
ii jj

N N = 

=
− 

ω

ω Ω ω
ω

ω T ω ω T ω
   (9) 

where 
H

ii i i
E  =  T k k  ,

H

ij i j
E  =  Ω k k  and 

ik  is the Pauli 

basis scattering vector of the thi  acquisition. The polarimetric 

stationarity is often assumed in the optimization of (9). By 

projecting the multipolarimetric data onto 
opt
ω , an optimum 

polarimetric channel H

opt
 =ω k  is obtained. Subsequent phase-

linking operation described in Section II is then applied on the 

optimum channel to estimate the phase series. However, for 

DSs, an optimal average coherence magnitude achieved by 

ESPO cannot guarantee the best phase series estimation with 

the lowest RMSE. 

The TP method considers the interferometric coherence 

matrix of different polarimetric channels as statistical samples 

and adds them up to construct a TP matrix, which can be 

expressed as  

 
3

1

TP i

i=

= C C                                   (10)                       

where 
iC  stands for the interferometric coherence matrix of the 

thi  channel in Pauli basis. Then, the phase series is acquired by 

replacing Γ  and Ĉ  in (6) with 
TP

C  and 
TP

C  respectively. 

Nevertheless, it is still not the optimal solution under the 

hypothesis of CCG distribution.  

In this section, the MLE for multipolarimetric MTInSAR 

phase series estimation, MLE-MPPL, is derived under three 

hypotheses: CCG, polarimetric stationarity and invariance of 

decorrelation mechanism among different polarimetric 

channels. The latter two hypotheses are already applied in 

ESPO and TP respectively. The likelihood function for 

multipolarimetric MTInSAR phase series estimation is 

constructed and MLE-MPPL is obtained by modeling the 

polarimetric interferometric coherence matrix as the Kronecker 

product of polarimetric coherence matrix and interferometric 

coherence matrix. Furthermore, the CRLB for 

multipolarimetric MTInSAR phase series estimation is also 

derived by referring to the single polarimetric scenario. 

A. MLE-MPPL 

Similar to the single polarimetric case in (1), for a fully 

polarimetric SLC series of  N  acquisitions y  following CCG 

distribution, its PDF can be written as  

( ) ( )
11

exp{ }
det

H

N
f


−= −y y T y

T
                  (11) 

where 
H

E  =  T yy  is the polarimetric interferometric 

coherence matrix, and 1 2 3, ,
T

T T T =  y K K K , with  

 1 2, , , , 1, 2,3
T

i i i

i N
x x x i = = K              (12) 

where , 1,2, ,i

j
x j N=  is the thj  SLC of the thi  channel in 

Pauli basis. Like in (3), a logarithmic multipolarimetric 

likelihood function can be constructed as  
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( ) ( )
1

1

1
ln exp{ }

det

P
H

pol k kN
k

L


−

=

= −θ y T y
T

           (13) 

where  P  is the SHPs number. (13) can be further expanded as   

 ( ) ( ) 1

1

ln det ln
P

H

pol k k

k

L P NP −

=

= − − −θ T y T y        (14) 

Replacing the second term in (14) with its trace and using the 

trace property, it follows that  

( ) ( ) 1

1

ln det trace ln
P

H

pol k k

k

L P NP −

=

 = − − − 
 
θ T T y y  (15) 

Eliminating the constant terms and constant factor, (15) can be 

formulated in a more compact form,   

 ( ) ( ) ( )1 ˆln det tracepolL
−= − −θ T T T                   (16) 

where 
1

1ˆ
P

H

k k

kP =

= T y y  can be interpreted as the sample 

polarimetric interferometric coherence matrix (SPCM). Now 

the multipolarimetric likelihood function in (16) takes a similar 

form as the single polarimetric one in (4). Therefore, to achieve 

the MLE, the polarimetric interferometric coherence matrix T  

has to be further analyzed. 

Given the polarimetric stationarity and invariance of 

decorrelation mechanism among different polarimetric 

channels [36], T  can be modelled as  

 
pol coh

= T C C                                (17) 

by assuming an equal scattering mechanism (ESM), where   

denotes the Kronecker product, 3 3

pol

C  and N N

coh

C  

are the polarimetric coherence matrix and interferometric 

coherence matrix corresponding to the ESM, respectively. In 

order to relate T  with the phase series to be estimated, 
cohC  

can be further modelled as in (2), which is 

 H

coh ESM
=C Θ Γ Θ                                (18) 

where 
ESMΓ  is the real-valued interferometric coherence 

matrix corresponding to the ESM.  

According to [37], the SPCM T̂  can be decomposed by the 

sum of a set of kronecker products as  

 
3 3

, ,

1

ˆ
pol i coh i

i



=

= T C C                        (19) 

where 3 3

,pol i

C  and 
,

N N

coh i

C . This operation is called 

sum of kronecker product (SKP) decomposition [36].  

Substituting (17)-(19) into (16), the multipolarimetric 

likelihood function ( )pol
L θ  can be transformed into  

( ) ( )( )
( )( ) ( )( )3 3 1

, ,

1

ln det

trace

H

pol pol ESM

H

pol ESM pol i coh i

i

L

 −

=

= − 

−  

θ C Θ Γ Θ

C Θ Γ Θ C C
     (20) 

Before performing further analysis on (20), some properties 

of Kronecker product need to be reviewed. Let 
m mA , 

n nB , 
m mM , 

n nN . The following properties for 

Kronecker product hold. 

Determinant property:  

( ) ( ) ( )det det det
n m =A B A B             (21) 

Inverse property: if A and B  are full rank, 

( ) 1 1 1− − − = A B A B                    (22) 

Trace property:  

( ) ( ) ( )trace trace trace =A B A B              (23) 

Mixed-product property:  

( )( ) ( ) ( )  = A B M N AM BN                (24) 

According to the determinant and inverse properties, (20) is 

transformed into  

( ) ( ) ( )

( )( )( )( )
3 3

1 1

, ,

1

3ln det ln det

trace

pol ESM pol

H

pol ESM pol i coh i

i

L N


− −

=

= − −

−  

θ Γ C

C Θ Γ Θ C C
   

(25) 

Exploiting the mixed-product and trace properties, (25) is 

rewritten as  

 
( ) ( ) ( )

( ) ( )

3 3
1 1

, ,

1

trace trace

3ln det ln det

H

pol pol pol i ESM coh i

i

ESM pol

L

N


− −

=

= −

− −

θ C C Θ Γ ΘC

Γ C

   

(26) 

Eliminating the terms unrelated to θ , (26) becomes  

 ( ) ( ) ( )
3 3

1 1

, ,

1

trace trace H

pol pol pol i ESM coh i

i

L


− −

=

= −θ C C Θ Γ ΘC    

(27) 

Then, the MLE-MPPL of  θ  can be obtained from (26) as  

( )( )
3 3

1 1

, ,

1

arg max traceH

MLE MPPL pol pol i ESM coh i

i


− −

−
=

 = −  
 


θ
θ Λ C C Γ C Λ

(28) 

Finally, by performing eigenvalue decomposition of 

( )( )
3 3

1 1

, ,

1

trace pol pol i ESM coh i

i


− −

=
 C C Γ C  and taking the eigenvector 

corresponding to the minimum eigenvalue as the solution, the 

proposed MLE-MPPL is completed.  

Note that in (28) ,pol i
C  and ,coh i

C  can be directly acquired by 

performing SKP decomposition on the SPCM, whereas the 

polarimetric coherence matrix 
pol

C  and coherence matrix 

ESMΓ are unknown and thus need to be estimated.  

Under the hypothesis of polarimetric stationarity, the 
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polarimetric coherence matrix 
pol

C  can be estimated by  

 
1

1ˆ
N

H

pol i i

iN =

= C k k                          (29) 

 The estimation of coherence matrix 
ESMΓ  in 

multipolarimetric scenario is different from that in the single 

polarimetric scenario. Given ESM and invariance of 

decorrelation mechanism among different polarimetric 

channels, a reasonable estimation of coherence matrix 
ESMΓ  

can be achieved by averaging the interferometric coherence 

matrices of three different polarimetric channels, given by   

 
3

1

1 ˆˆ
3

ESM i

i=

= Γ C                                (30) 

where ˆ
i

C  is the SCM of the thi polarimetric channel in Pauli 

basis. As suggested in [36], to calibrate the unbalanced 

backscattered signal power among different tracks and 

polarimetric channels, a normalization operation is 

recommended. Therefore, T̂ , ˆ
pol

C and ˆ
i

C are normalized as in 

[36] before they are employed in MLE-MPPL. 

From (6), (10) and (28), a noteworthy inherent relationship 

between TP and the proposed MLE-MPPL can be found that 

TP is equivalent to MLE-MPPL when the polarimetric 

coherence matrix  
pol

C  is an identity matrix. However, since 

pol
C  is unlikely to be an identity matrix in practice [44], MLE-

MPPL is more effective in general than TP. 

 In summary, the flowchart of MLE-MPPL is shown in Fig. 

1. First, the SKP decomposition is performed on the SPCM as 

in (19) to obtain ,pol i
C  and ,coh i

C ; the polarimetric coherence 

matrix and interferometric coherence matrix are estimated 

through (29) and (30) respectively; then, substitute  ,pol i
C , 

,coh i
C , ˆ

pol
C  and ˆ

ESM
Γ  into (28) and solve the optimization 

problem to acquire the multipolarimetric MTInSAR phase 

series. 

B. CRLB for multipolarimetric MTInSAR phase series 

estimation  

The CRLB for single polarimetric MTInSAR phase series 

estimation has already been derived in [38] [39]. Here, we 

derive the CRLB for fully polarimetric MTInSAR phase series 

estimation with the model described in (16).  

According to [40], the Fisher information matrix (FIM) for 

the fully polarimetric phase series estimation can be expressed 

as  

( ) 1 1trace
ij

i j
 

− −
  

=     

T T
J T T                   (31) 

where ( )
ij

J  denotes the element of FIM J  at the thi row and 

the thj column.  Substituting (17) into (31), we have  

 

Multipolarimetric MTInSAR data
Multipolarimetric MTInSAR dataMultipolarimetric 

MTInSAR data

SKP decomposition 

of SPCM (19)

Polarimetric 

coherence matrix 

estimation (29)

Interferometric 

coherence matrix 

estimation (30)

Maxumaziation of the 

multipolarimetric 

likelihood function (28)

Multipolarimetric 

MTInSAR phase series

 
Fig. 1. Flowchart of the proposed MLE-MPPL. 

 

 

( ) ( ) ( )

( ) ( )

1

1

trace
pol coh

pol cohij

i

pol coh

pol coh

j





−

−

  
= 
 

 

 

C C
J C C

C C
C C

        (32) 

Considering the differential property of Kronecker product  

 ( ) ( ) ( )d d d =  + A B A B A B               (33) 

(32) can be further transformed into  

 

( ) ( )

( )

1

1

trace +

+

polcoh

pol coh pol cohij

i i

polcoh

pol coh pol coh

j j

 

 

−

−

  
=        

 
      

CC
J C C C C

CC
C C C C

     

(34) 

As 
pol

C  is not related to θ , using the inverse property, (34) can 

be simplified as  

( ) ( )

( )

1 1

1 1

trace coh

pol coh polij

i

coh

pol coh pol

j





− −

− −

  
=      

 
    

C
J C C C

C
C C C

        (35) 

Applying the mix-product property, (35) becomes  

 

( ) ( )

( )

( )

1 1

1 1

1 1

3 3 3 3

= trace

trace

coh

pol pol cohij

i

coh

pol pol coh

j

coh coh

coh coh

i j





 

− −

− −

− −
 

  
    

 
    

   
 =        

C
J C C C

C
C C C

C C
I I C C

      (36) 
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where 
3 3I  is the 3 3  identity matrix. Then, according to the 

trace property of Kronecker product, (36) can be further 

transformed into  

( ) ( ) 1 1

3 3

1 1

trace trace

3trace

coh coh

coh cohij

i j

coh coh

coh coh

i j

 

 

− −


− −

  
=     

  
=     

C C
J I C C

C C
C C

    (37) 

where 
1 1trace coh coh

coh coh

i j
 

− −
  
    

C C
C C   is exactly the element of 

FIM for single polarimetric MTInSAR phase series estimation 

at the thi row and the thj column. Therefore, the relationship 

between the FIMs of single and fully polarimetric scenarios can 

be derived  

 
single3=J J                                      (38) 

where 
singleJ  is single polarimetric FIM. From (38), it can be 

found that the CRLB for fully polarimetric phase series 

estimation is 1 3  that of the single polarimetric scenario. 

IV. NUMERICAL RESULTS 

In this section, a new metric called Pol-detR for performance 

evaluation of multipolarimetric MTInSAR phase series 

estimation is firstly proposed. Then, phase estimation is 

conducted on both one-dimensional and two-dimensional 

synthetic data generated through the Monte Carlo method [41], 

by considering an extended Bragg scattering model for 

polarimetric coherence matrix and two different decorrelation 

models for interferometric coherence matrix [32]. Through 

experiments on data generated at different inter-channel 

interference level, the robustness of MLE-MPPL against inter-

channel interference is verified. In addition, the validity of the 

new metric Pol-detR is also shown by exploring its relationship 

with RMSE. Finally, real data experiments are conducted on 30 

dual polarimetric VV-VH Sentinel-1A Interferometric Wide 

swath SLC images to further demonstrate the performance of 

the proposed MLE-MPPL method. 

A. Pol-detR: a new metric to evaluate the performance of 

multipolarimetric MTInSAR phase series estimation 

The RMSE of the estimated phase series with respect to its 

true value can perfectly describe the accuracy of estimation. 

However, it is not applicable in practice as the true phase series 

value is unknown. Therefore, pseudo coherence [42] and 

residue points [43] are often used in a real situation, which only 

reflects the spatial phase quality of interferograms constructed 

by the estimated phase series. To complement the currently 

limited metrics, a new metric called Pol-detR is proposed. 

Inspired by the detR metric proposed in [15] for single 

polarimetric MTInSAR phase series estimation, Pol-detR is 

defined as the likelihood value of a certain solution, which is 

expressed as  

( ) ( )
3 3

1 1 1

, ,

1

ˆ ˆPol-detR trace trace 3lnH

pol pol i coh i MLE MLE

i


− − −

=

= + C C ΘC Θ Γ Γ     

(39) 

where Θ̂  is constructed by the estimated phase series and 

MLEΓ  is the MLE of interferometric coherence matrix 
ESMΓ , 

which has been derived as  

( ) ( )
3 3

1

, ,

1

1 ˆ ˆtrace Re
3

H

MLE pol pol i coh i

i


−

=

= Γ C C ΘC Θ      (40) 

where ( )Re   denotes the real part of its complex argument. 

Detailed derivation of 
MLEΓ  can be found in appendix A. By 

replacing the coherence matrix 
ESMΓ  with its MLE 

MLEΓ , Pol-

detR represents a more accurate likelihood value for a given 

solution, and it can be seen as a goodness-of-fit index between 

the observed data and estimation result under the CCG model. 

B. Experiments on simulated multipolarimetric MTInSAR 

data  

To evaluate the performance of the proposed MLE-MPPL, 

Monte Carlo method [41] is employed to simulate 

multipolarimetric MTInSAR data. As shown in (17), the 

polarimetric interferometric coherence matrix is modelled as 

the Kronecker product of polarimetric coherence matrix and 

interferometric coherence matrix. Therefore, their simulation 

models are discussed separately. 

For the polarimetric coherence matrix, an extended Bragg 

scattering model [44] is considered, which is  

 

( )
( ) ( )( )

( )( )

1 2 1

2 1 3 1

3 1

sinc 2 0

sinc 2 1 sinc 4 0

0 0 1 sinc 4

pol

C C

C C

C


 





 
 

= + 
 −  

C

(41) 

where 
1 2 31.0, 0.2 0.2 , 0.5C C i C= = + =  and 

1 0.05 = . 

As in (18), the interferometric coherence matrix can be fully 

represented by the phase series θ and real-valued coherence 

matrix 
ESMΓ . Considering a general decorrelation model [14] 

 ( ) ( ) ( )0 exp
ESM ijij

t     = − − +Γ              (42) 

where 
ij

t  denotes the temporal baseline between the thi  and 

thj acquisition,   is a constant which reflects the extent to 

which the decorrelation increases with the temporal baseline. 

0  and    are initial coherence and long-term coherence 

values, respectively. When 0 = ,  (42) is referred to as the 

exponential decay model, and 0   indicates a long-term 

coherence model. In this simulation, both decorrelation models 

are applied by setting 
0 0.6, 0 = =  for exponential decay 

and 
0 0.6, 0.2 = =  for long-term coherence, respectively. 

  is set to be 50 days, and the temporal sampling interval 
0  is  
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(a) 

 
(b) 

Fig. 2. RMSEs of different methods: (a) long-term coherence decorrelation model; (b) exponential decay decorrelation model. 

 

 
(a) 

 
(b) 

Fig. 3. RMSEs of four methods with different inter-channel interference level: (a) long-term coherence decorrelation model; (b) exponential decay decorrelation 

model. 

 

 
(a) 

 
(b) 

Fig. 4. Relationship between RMSE and Pol-detR: (a) long-term coherence decorrelation model; (b) exponential decay decorrelation model. 

 

identical to the configuration of Sentinel-1A/B constellation, 

which is 6 days.  

The phase series θ  is generated by applying a 1 mm/year 

deformation velocity and temporal sampling interval 
0 6 =  

days. Note that the random atmospheric delay and orbit error 

signals are ignored here to ensure the stationarity of simulated 

CCG data [14]. A series of 50 fully polarimetric SLC images 

are simulated with 300 independent samples, and 2000 

realizations are implemented to evaluate the RMSE of the 

estimated phase series  θ̂  of different methods. 

To further demonstrate the advantage of the proposed MLE-

MPPL, a two-dimensional phase series 
2Dθ  is generated by a 

Gaussian function as in [35]. And a series of 50 fully 

polarimetric 101×101 SLC images are simulated in the long-

term coherence decorrelation model. 

1) Result analysis for one-dimensional data  

Phase series estimation on the one-dimensional simulated 

data is conducted with four different methods, i.e., single 

polarimetric EMI [14], ESPO [24], TP [32] and the proposed 

MLE-MPPL. ESPO is implemented with additional EMI phase-

linking operation on the optimal polarimetric channel and the 

searching step size for the parameter group ( ), , ,     is set 

to ( )5 ,5 ,5 ,5 . In the TP method, the phase series is also 

extracted by applying EMI phase-linking to the TP matrix. The 

RMSEs of four methods in long-term coherence model and 

exponential decay model are shown in Fig. 2(a) and 2(b), 

respectively. In addition, the CRLB of single polarimetric phase 

series estimation CRLB1 and fully polarimetric phase series  
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(a) 

     

 

 

 

(b) 

     

 

 

 

(c) 

     

 

 

 

(d) 

     

 

 

 

(e) 

     

 

 

 

(f) 

     

Fig. 5. Interferograms of the 1st  and thi images, 10,20,30,40,50i =  respectively (left to right) by each method: (a) reference; (b) original VV; (c) EMI; (d) ESPO; 

(e) TP; (f) MLE-MPPL. 

 

TABLE I 

AVERAGE RMSE BY FOUR METHODS  

Method  EMI  ESPO  TP  MLE-MPPL  

Average RMSE (rad) 0.4051 0.3706 0.3141 0.2525 

 

estimation CRLB2 are also plotted in Fig. 2.  

From Fig. 2(a) and 2(b), it can be observed that the single 

polarimetric EMI presents much larger RMSE than the other 

three fully polarimetric methods. Among three fully 

polarimetric methods, ESPO has the largest RMSE, whereas the 

proposed MLE-MPPL outperforms the other two methods with 

the minimum RMSE at all SLCs. Besides, its RMSE curve is 

the closest to the corresponding CRLB in both long-term 

coherence and exponential decay models. The gap between the 

CRLB and MLE-MPPL is due to errors induced by the biased 

estimation of 
ESMΓ  and 

pol
C  as in (29) and (30).  

2) Investigation of the influence induced by inter-channel 

interference on the estimation accuracy 

As mentioned in [32] [34], the inter-channel interference can 

degrade the accuracy of phase series estimation. To investigate 

its effect on the proposed method, a set of experiments at 

different levels of inter-channel interference are conducted. 

In the polarimetric coherence matrix of the extended Bragg 

scattering model, the off-diagonal elements, such as the 

correlation coefficient ( )2 1sinc 2C  , indicate the level of 

inter-channel interference between different polarimetric 

channels. A higher ( )2 1sinc 2C   indicates a higher level of 
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inter-channel interference. A set of multipolarimetric 

MTInSAR data are simulated by setting different 

( )2 1sinc 2C  . EMI, ESPO, TP and MLE-MPPL are applied to 

these data, and the resultant RMSEs are shown in Fig. 3(a) and 

3(b). It can be found that the RMSE of EMI is not affected by 

the inter-channel interference level because EMI is a single 

polarimetric method. As for fully polarimetric methods, the 

increase of inter-channel interference level leads to the increase 

of RMSE for ESPO and TP in both decorrelation models, 

resulting in degradation of estimation accuracy. For MLE-

MPPL, its RMSE basically remains unchanged in the long-term 

coherence model, while in the exponential decay model, the 

RMSE curve of MLE-MPPL increases more slowly than those 

of ESPO and TP.  In summary, MLE-MPPL is more robust than 

ESPO and TP against the inter-channel interference.  

3) Verification of the new metric: Pol-detR  

To demonstrate the effectiveness of the newly proposed 

metric, the Pol-detR and RMSE of the estimated phase series 

acquired by four methods are compared. The average RMSE 

and Pol-detR values of four methods with two different 

decorrelation models are illustrated in Fig. 4. It is shown that 

Pol-detR monotonically increases with the increase of RMSE 

in both decorrelation models. Thus, a lower Pol-detR value 

indicates a lower RMSE and a higher estimation accuracy. 

Therefore, Pol-detR can serve as an alternative metric for real 

data processing when the RMSE is not applicable. 

4) Result analysis for two-dimensional data  

EMI, ESPO, TP and MLE-MPPL are applied to the two-

dimensional simulated data respectively [35], with the window 

size for estimation of interferometric coherence matrix and 

polarimetric interferometric coherence matrix being 9×9. 

Interferograms constructed by the estimated phase series of 

these four methods are shown in Fig. 5 and they are constructed 

by the first and the thi  images, where 10,20,30,40,50i = , 

respectively (left to right). The average RMSEs by the four 

methods are listed in Table I. It can be seen from Table I and 

Fig. 5 that the proposed MLE-MPPL method performs the best 

among the four methods. 

C. Experiments on real data  

To further verify the performance of the proposed MLE-

MPPL, real spaceborne multipolarimetric data experiments are 

conducted. Thanks to the open access data policy of Sentinel-

1A/B constellation mission, the (Pol)InSAR community has 

been constantly benefiting from its dual polarimetric data. 

Therefore, the dual polarimetric VV-VH Sentinel-1 data are 

employed here to validate our method. Specifically, 30 VV-VH 

Sentinel-1A Interferometric Wide swath SLC images acquired 

from 2017/12/10 to 2018/12/29 are selected here. Fig. 6(a) 

shows the spatial-temporal baseline distribution of the 

investigated images stack. The average temporal baseline 

between two neighboring acquisitions is about 12 days, and the 

test site is situated in Beijing, China.  Fig. 6(b) shows the 

temporal averaged Pauli basis RGB images of the investigated 

scene. As marked by the red frames in Fig. 6(b), two regions of 

interest (ROIs), denoted as ROI-A and ROI-B, are examined. 

ROI-A has a size of 601×1401 and ROI-B’s size is 501×1201. 

Their enlarged views are shown in Fig. 6(c) and 6(d), 

respectively. ROI-A is in Tongzhou district, Beijing, while 

ROI-B is in Beijing Capital International Airport. 

Before performing phase series estimation, these SLCs are 

co-registered with respect to a common master image acquired 

at 2018/06/20 through the enhanced spectral diversity (ESD) 

method [45]. To reduce the impact of insufficient estimation of 

coherence matrix, the flat earth phase and topographic phase in 

each SLC are compensated using the 3 arcseconds digital 

elevation model (DEM) provided by the NASA SRTM mission. 

Figs. 6(g) and 6(h) show the original interferograms constructed 

by the 1st and 30th image acquisitions of VV channel in ROI-A 

and ROI-B, respectively. Evidently, the original VV 

interferograms of both ROIs have been severely contaminated 

by noise induced by the large temporal baseline of more than 

one year. 

To achieve more accurate estimation of interferometric 

coherence matrix and separate PSs from DSs, a Kolmogorov-

Smirnov (KS) test [11] with significance level 0.05 =  is 

applied to identify SHPs. Pixels with less than 8 SHPs inside a 

11×11 local window are deemed as PSs, which are not 

processed in this article. The homogeneous test is applied on 

both VV and VH channels, and pixels that are identified as 

SHPs in both channels are finally accepted as SHPs. Figs. 6(e) 

and 6(f) show the maps of SHPs number of each pixel in ROI-

A and ROI-B, respectively, where 96.31% and 96.90% of pixels 

are identified as DSs.  

 To quantitatively evaluate the performance of the proposed 

method on this Sentinel-1A dataset, the proposed Pol-detR is 

applied. In addition, pseudo coherence [42] is also introduced, 

which is defined as  

 
1

1
i

M
j

i

e
M




=

=                              (43) 

where M  is the number of samples inside the pseudo 

coherence estimation window, and 
i  is the interferometric 

phase.   reveals the spatial variance in a local window, thus 

reflecting the spatial phase smoothness and stability of 

interferograms. Larger pseudo coherence indicates better phase 

quality. As suggested in [42], the window size for pseudo 

coherence computation is set to be 7×7.  Furthermore, the 

number of residue points [43] is employed as another metric for 

phase quality evaluation, as it can partially reflect the difficulty 

of the phase unwrapping step in subsequent MTInSAR 

processing and thereby affect the deformation estimation result. 

Thus, less residue points usually indicate less phase unwrapping 

errors and more accurate deformation estimation. 

Four phase series estimation methods, i.e., EMI, ESPO, TP 

and MLE-MPPL are performed on ROI-A and ROI-B, 

respectively. EMI is only performed on the VV channel. After 

obtaining the estimated phase series of 30 image acquisitions, 

interferograms are constructed by the 1st and 30th acquisitions, 

which have the longest temporal baseline up to 384 days. Figs. 

7 and 8 show the interferograms of ROI-A and ROI-B acquired 

by four methods, respectively. Compared to the original VV  
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(a) 

 
 

(c) 
 

(e) 

 
 

(g) 

 
 

(b) 

 
 

(d) 
 

(f) 

 
 

(h) 

 

Fig. 6. Illustration of the investigated scene: (a) spatial-temporal baseline distribution of the investigated images stack; (b) PauliRGB images of whole investigated 

scene; (c) enlarged view of ROI-A; (d) enlarged view of ROI-B; (e) SHPs number map of ROI-A; (f) SHPs number map of ROI-B; (g) original VV interferogram 

of ROI-A constructed by the 1st and 30th acquisition; (h) original VV interferogram of ROI-B constructed by the 1st and 30th acquisition. 

 

interferograms in Figs. 6(g) and 6(h), the noise in 

interferograms constructed from the estimated phase series by 

the four methods has been suppressed to certain extent. Further 

quantitative performance evaluation of the four methods is 

performed in terms of three metrics: residue points, pseudo 

coherence and Pol-detR respectively. 

1) Pseudo coherence and residue points evaluation 

The pseudo coherence distribution histograms for 

interferograms obtained by the four methods are shown in Fig. 

9(a) and 9(b), and the corresponding average pseudo coherence 

values are listed in Table II. In addition, pixels with pseudo 

coherence 0.6   are defined as high-quality pixels. The 

number of high-quality pixels and residue points by each 

method is also shown in Table II. 

From Figs. 9(a) and 9(b), it can be observed that the single 

polarimetric EMI histograms mainly concentrate on much 

lower values close to 0, and ESPO histograms are slightly better. 

On the other hand, TP and MLE-MPPL histograms are much 

more concentrated on higher values close to 1, while MLE-

MPPL’s histograms are the closest to 1. In Table II, it has also 

shown that MLE-MPPL has the highest average pseudo 

coherence value, the most high-quality pixels, and the least 

residue points. Clearly MLE-MPPL has achieved the best 

performance in terms of reduction of residues points and 

improvement of high-quality pixels at the same time. 

It is also worth noting that in Table II, EMI has even more 

residue points in both ROI-A and ROI-B than the original VV. 

As EMI strongly depends on estimation accuracy of the 

magnitude of interferometric coherence matrix [46] [47], i.e., 

Γ  in (2), a poor estimate of Γ  will severely degrade EMI’s 

phase-linking performance, resulting in more residue points, 

even than that of the original VV; whereas in the MLE-MPPL, 

ESMΓ  is estimated using three polarimetric channels, which 

significantly increases the number of looks and thereby 

improves the estimation accuracy.  

2) Pol-detR evaluation 

 The average Pol-detR values of DSs by four methods in both 

ROIs are shown in Table III. It can be found that the proposed 

MLE-MPPL has the minimum average Pol-detR in both ROIs, 

which implies that it has the minimum average RMSE. To 

compare the Pol-detR performance of MLE-MPPL to other 

three methods on pixel basis, the pixel-based Pol-detR 

differences of MLE-MPPL with respect to EMI, ESPO and TP 

are computed as 

( ) ( )
( ) ( )

( ) ( )

diff-EMI  =  Pol-detR Pol-detR

diff-ESPO  =  Pol-detR Pol-detR

diff-TP  =  Pol-detR Pol-detR

EMI MLE MPPL

ESPO MLE MPPL

TP MLE MPPL

−

−

−

−

−

−

       (44) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Interferograms constructed by the 1st and 30th acquisitions of each method in ROI-A: (a) EMI; (b) ESPO; (c) TP; (d)MLE-MPPL. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Interferograms constructed by the 1st and 30th acquisitions of each method in ROI-B: (a) EMI; (b) ESPO; (c) TP; (d)MLE-MPPL. 

 
TABLE II 

QUANTITATIVE EVALUATION OF PSEUDO COHERENCE PERFORMANCE BY FOUR METHODS 

Method Average pseudo 

coherence in ROI-A 

Average pseudo 

coherence in ROI-B 

High-quality pixels 

in ROI-A  

High-quality pixels 

in ROI-B 

Residue points in 

ROI-A  

Residue points in 

ROI-B 

Original VV 0.3201 0.2951 49813 37595 145782 115002 

EMI 0.2788 0.4198 55526 170787 219022 119491 

ESPO 0.4785 0.4830 285017 209145 149019 103901 

TP 0.7080 0.6924 614802 413894 62632 44463 

MLE-MPPL 0.7352 0.7294 651718 453554 52077 34517 

For a certain pixel, a positive Pol-detR difference value 

indicates that MLE-MPPL has better Pol-detR performance 

than the other method on that pixel. The histograms of diff-EMI, 

diff-ESPO and diff-TP are shown in Fig. 10, where the y-axis 

in Fig. 10 has been transformed into logarithm for better visual 

inspection. It can be seen that the value of diff-EMI, diff-ESPO 

and diff-TP mostly concentrate on positive values. The ratios of 

positive value in diff-EMI, diff-ESPO and diff-TP are 

computed and shown in Table IV. It can be found that MLE-

MPPL outperforms EMI, ESPO and TP on 85.81%, 91.82% and 

72.59% pixels accordingly in ROI-A and on 86.54%, 91.73% 

and 64.22% pixels respectively in ROI-B. 

3) Computational complexity comparison  

As a rough indicator of the computational complexity of 

these four methods, their running time in both ROIs is recorded 

and listed in Table III. All experiments are conducted in 

MATLAB on a PC with 8-core Intel Core i7-8850H CPU and 

16GB RAM environment. 

As shown, the proposed MLE-MPPL takes more time than 

EMI and TP because it requires the additional sum of 

Kronecker product decomposition, but it is far more 

computationally efficient than ESPO. 

V. CONCLUSIONS 

In this work, a maximum likelihood estimator for 

multipolarimetric phase series estimation, MLE-MPPL, has 

been proposed and the corresponding CRLB derived, which is 

1/3 of that for the single polarimetric scenario. An optimum 

solution for multipolarimetric phase series estimation is 

achieved with the minimum RMSE and it can asymptotically 
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(a) 

 
(b) 

Fig. 9. Histograms of the pseudo coherence of four methods in two ROIs: (a) ROI-A; (b) ROI-B. 

 

 
(a) 

 
(b) 

Fig. 10. Histograms of the diff-EMI, diff-ESPO and diff-TP in two ROIs: (a) ROI-A; (b) ROI-B. 

 

 

TABLE III 

AVERAGE POL-DETR VALUES AND RUNNING TIME OF FOUR METHODS 

 

Method  

Average 

Pol-detR in 

ROI-A 

Average Pol-

detR in ROI-

B 

Running time 

of ROI-A 

(hour) 

Running time 

of ROI-B 

(hour) 

EMI -51.76 -32.82 0.6186 0.5251 

ESPO -51.04 -31.80 84.83 63.25 

TP -53.35 -33.62 1.087 0.9519 

MLE-MPPL -53.73 -34.09 9.351 7.701 
 

 

 

 
TABLE IV 

RATIO OF POSITIVE POL-DETR DIFFERENCE 

 

Pol-detR 

difference  

Ratio of 

positive 

value in ROI-

A (%) 

Ratio of 

positive value 

in ROI-B (%) 

diff-EMI  85.81 86.54 

diff-ESPO  91.82 91.73 

diff-TP  72.59 64.22 
 

 

reach the CRLB.A new metric called Pol-detR was proposed as 

an alternative to RMSE to evaluate the performance in 

multipolarimetric phase series estimation when the RMSE is 

not feasible in practice.  As demonstrated by experiments based 

on both simulated and real data, the proposed MLE-MPPL has 

achieved the best performance among the considered solutions. 

APPENDIX A 

In this appendix, derivation of the MLE of 
ESMΓ  is 

elaborated in detail.  

Using the trace property, ( )pol
L θ  in (26) can be transformed 

into  

 
( ) ( ) ( )

( ) ( )

3 3
1 1

, ,

1

trace trace

3ln det ln det

H

pol pol pol i coh i ESM

i

ESM pol

L

N


− −

=

= −

− −

θ C C ΘC Θ Γ

Γ C

   

(45) 

For convenience of further analysis, we define an assistant 

variable  

 ( ),Re H

i coh i=W ΘC Θ                            (46) 

Since the logarithmic likelihood function ( )pol
L θ  and 

ESMΓ  

are all real-valued, (45) can be transformed into 
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( ) ( ) ( )
( ) ( )

3 3
1 1

,

1

trace trace

3ln det ln det

pol pol pol i i ESM

i

ESM pol

L

N


− −

=

= −

− −

θ C C WΓ

Γ C

          (47) 

With (47), the Jacobian matrix of ( )pol
L θ  with respect to 

ESMΓ  

can be derived  

( ) ( )( )
3 3

1 1 1 1

,

1

trace 3
pol

ESM pol pol i i ESM ESMT
iESM

L 
− − − −

=


= −

 
θ

Γ C C W Γ Γ
Γ

     

(48) 

A necessary condition for the maximum likelihood requires a 

zero Jacobian matrix, which means  

( )( )
3 3

1 1 1 1

,

1

trace 3ESM pol pol i i ESM ESM

i


− − − −

=

− =Γ C C W Γ Γ 0         (49) 

Thus, the MLE of 
ESMΓ  can be derived from (49) 

( )
3 3

1

,

1

1
trace

3
MLE pol pol i i

i


−

=

= Γ C C W              (50) 

For a given solution of phase series estimation, 
MLEΓ   

is  

( ) ( )
3 3

1

, ,

1

1 ˆ ˆtrace Re
3

H

MLE pol pol i coh i

i


−

=

= Γ C C ΘC Θ       (51) 
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