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Abstract—Maulti-view Clustering (MVC) has achieved signifi-
cant progress, with many efforts dedicated to learn knowledge
from multiple views. However, most existing methods are either
not applicable or require additional steps for incomplete MVC.
Such a limitation results in poor-quality clustering performance
and poor missing view adaptation. Besides, noise or outliers
might significantly degrade the overall clustering performance,
which are not handled well by most existing methods. In this
paper, we propose a novel unified framework for incomplete
and complete MVC named self-learning symmetric multi-view
probabilistic clustering (SLS-MPC). SLS-MPC proposes a novel
symmetric multi-view probability estimation and equivalently
transforms multi-view pairwise posterior matching probability
into composition of each view’s individual distribution, which
tolerates data missing and might extend to any number of views.
Then, SLS-MPC proposes a novel self-learning probability func-
tion without any prior knowledge and hyper-parameters to learn
each view’s individual distribution. Next, graph-context-aware
refinement with path propagation and co-neighbor propagation
is used to refine pairwise probability, which alleviates the impact
of noise and outliers. Finally, SLS-MPC proposes a probabilistic
clustering algorithm to adjust clustering assignments by maximiz-
ing the joint probability iteratively without category information.
Extensive experiments on multiple benchmarks show that SLS-
MPC outperforms previous state-of-the-art methods.

Index Terms—Complete and Incomplete Multi-view Cluster-
ing, Multi-view Pairwise Posterior Matching Probability, Proba-
bilistic Clustering, Probability Estimation and Refinement.

I. INTRODUCTION

ULTI-VIEW clustering (MVC) [[1] aims at exploiting

both correlated and complementary information from
multi-view data and improving clustering performance beyond
single-view clustering. With the explosion of multi-source and
multi-modal data, a great deal of effort has been put into
MVC. Different methods have been proposed to handle multi-
view data, trying to classify samples into various clusters.
Co-Regularization [2f, based on co-training, intends to learn
classifiers in each view through forms of multi-view regular-
ization. Large-Scale Bipartite Graph [3] fuses local manifold
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to integrate heterogeneous features and uses bipartite graphs
to improve efficiency for large-scale MVC tasks. MKKM [4]]
proposes an effective matrix-induced regularization to enhance
the diversity of the selected kernels, trying to maximize
the kernel alignment. BMVC [5] first introduces a compact
common binary code space for MVC task to optimize clusters
in the hamming space with bit-operations. SMSC [6] seeks to
learn the importance of different views and integrates anchor
learning and graph construction into a unified framework to
capture the complementary information from multiple views.

Despite previous progresses, MVC methods still face var-
ious challenges. Absence of partial views among data points
[7], [8] might frequently take place in practice, while existing
methods are either not applicable [6]], [9] or require specific
additional steps [[10], [11] for these cases. Such a limitation re-
sults in poor-quality clustering performance and poor missing
view adaptation. Besides, noise or outliers might significantly
degrade the overall clustering performance, which are not
handled well by most existing methods. Moreover, K-means
[12] clustering and spectral [[13] clustering are usually used
for MVC tasks at the last step. Most of existing methods are
less practical in real world cases because they have complex
hyper-parameters and use extra information, including but not
limited to the number of categories. This information plays
an important role in their methods, and the absence of this
information either causes their methods to fail or may degrade
their clustering performance.

To address these issues, we propose a novel unified frame-
work for incomplete and complete MVC named self-learning
symmetric multi-view probabilistic clustering (SLS-MPC). It
is difficult and complicated to learn a fusion similarity matrix
in a linear or nonlinear manner based on the original similarity
matrix. Thus, from a new perspective of probability, we utilize
posterior probability to directly measure the probability that
two samples belong to the same class. To obtain the posterior
probability matrix, SLS-MPC mathematically decomposes it
into the formulas of each views’ distribution, which can extend
to any number of views in an easy way. The proposed multi-
view pairwise posterior matching probability is symmetric for
each view and tolerates view missing in an intuitive way.
Then, equipped with the consistency information excavation in
single-view, cross-view and multi-view, a novel self-learning
probability function is proposed to effectively learn each
view’s individual distribution without any prior knowledge and
hyper-parameters. Next, SLS-MPC performs graph-context-
aware probability refinement with path propagation and co-
neighbor propagation, which can effectively alleviate the im-
pact of noise and outliers. Finally, clusters are generated using
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the proposed probabilistic clustering algorithm, which is more
robustness to noise and does not require the prior knowledge
of cluster numbers. Extensive experiments demonstrate that
SLS-MPC significantly outperforms state-of-the-art methods.

In summary, the main novelties of this paper are as follows:

o A novel symmetric pairwise posterior matching prob-
ability is proposed and SLS-MPC equivalently trans-
forms multi-view pairwise posterior matching probability
into compositions of each view’s individual distribution,
which tolerates data missing and might extend to any
number of views.

« To fully dig out the consistency information from multiple
views in an unsupervised manner, a novel self-learning
probability function is proposed to effectively learn each
view’s individual distribution without any prior knowl-
edge and hyper-parameters.

o To further alleviate the impact of noise and outliers, a
novel graph-context-aware refinement is proposed based
on the aspect of graph context.

o Besides, a novel probabilistic clustering algorithm is
proposed to generate clustering results in an unsupervised
manner without any prior knowledge.

o Extensive experiments on multiple benchmarks for in-
complete and complete MVC show that SLS-MPC sig-
nificantly outperforms previous state-of-the-art methods.

II. RELATED WORK

A modern MVC method is usually composed of two parts,
a consistent representation constructed from all views which is
used to learn consensus from multi-view data and a clustering
algorithm based on the consistent representation which is used
to generate clustering result. Based on the mechanisms and
principles used in learning consensus from multiple views,
existing MVC algorithms can be grouped into several cate-
gories. The first category is based on graph clustering [9],
[11], [14]], ['15]. As a typical graph clustering method, PIC
[11] seeks to complete the similarity matrix and learn a
consensus matrix and finally performs spectral clustering on
the consensus laplacian matrix. GMC [9] weights each view’s
graph matrix to learn a unified graph matrix. The second
one is based on matrix factorization [[16]—[21]]. This category
seeks to learn a consensus representation by performing low-
rankness to achieve clustering. For example, MIC [18]], based
on weighted non-negative matrix factorization and Ly ;-norm
regularization, minimizes the consensus by learning the latent
feature matrices for each view. The third one is multiple
kernel learning [22]-[25]. In brief, this category seeks to
combine different predefined kernels either linearly or non-
linearly in order to arrive at a unified kernel. For example,
OSLF [25]] proposes to learn consensus cluster partition matrix
by combing linearly-transformed base partitions obtained from
single views. Besides, the methods like [[26[]-[28]] are based on
deep multi-view clustering and MCDCF [27] performs multi-
layer concept factorization and derives a common consensus
representation matrix from the hierarchical information. More-
over, some ensemble-based [29] MVC methods and scalable
[6], [30] MVC methods are proposed to advance MVC un-
derstanding in new ways. Different from the aforementioned

methods, we propose a novel self-learning probability function
to effectively learn each view’s individual distribution without
any prior knowledge and hyper-parameters from the aspect of
consistency in single-view, cross-view and multi-view and a
novel method to adaptively estimate the posterior matching
probability from multiple views without complicated hyper-
parameters fine-tuning.

K-means clustering [12], spectral clustering [[13[], hierar-
chical clustering [31] and some other traditional clustering
algorithms [32f], [33] are usually used for clustering tasks.
With a given number of clusters K, K-means clustering [12]
is an iterative algorithm that tries to partition samples into K
clusters and makes the intra-cluster data points as similar as
possible while also keeping the clusters as far as possible by
minimizing the total intra-cluster variance. Spectral clustering
[13] uses information from the eigenvalues of similarity matrix
derived from the graph and seeks to choose appropriate eigen-
vectors to cluster different data points. Hierarchical clustering
[31] seeks to create a hierarchical clustering tree in which the
original data is at the bottom and the root node is at the top.
The clustering performance of these algorithms is affected by
the optimization parameters and the number of clusters. As
one of effective clustering algorithms, probabilistic clustering
algorithms [34], [35]] are pioneered to incorporate pairwise
relations and have achieved state-of-the-art performance in
clustering tasks. The basic idea of probabilistic clustering is to
maximize the intra-cluster similarities and minimize the inter-
cluster similarities among the objects. Empirical functions and
weighted confidence or preference are usually used to sepa-
rate samples, which limits the final clustering performance.
Moreover, the matching probability of all pairwise relations
are taken into consideration in [34], [35] resulting in high
computational complexity. Besides, the number of categories
is used in optimization process in some methods and these
information plays an important role in their methods [11],
[25]], without which either causing the failure of their methods
or might degrade the performance. Thus, we propose a novel
probabilistic clustering algorithm, which has no optimization
parameters and generates clustering results in an unsupervised
manner and an efficient way without category information.

This work is different from existing methodologies in sev-
eral key aspects. First, almost all these methods [6]], [O]—[11],
(201, [21f, [25], [27], [28], [30] contain complicated model
design, which make them infeasible in real-world applications.
In contrast, our SLS-MPC contains an intuitive and efficient
clustering framework with multiple clear steps, including sym-
metric multi-view probability estimation, probability function
self-learning, graph-context-aware refinement and probabilistic
clustering. Second, different from the works like [O—[11],
our SLS-MPC seeks to adaptively handle multi-view data and
missing data from a probabilistic perspective rather than fusing
multi-view data using a set of weights, thus embracing higher
explainability. In addition, this paper is extended from MPC
[36] but differs in the following two aspects. First, multi-view
probability estimation has been optimized from an asymmetric
form to a symmetric form (Section [lI-A). This advancement
eliminates the inherent issue of view order selection in the
asymmetric form in MPC and ensures consistency in the prob-
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ability form across all views. Second, MPC utilizes pseudo-
labels to independently estimate each view’s probability func-
tion. However, pseudo-labels may conflict across different
views, making it difficult to ensure the consistency between
the estimated probability functions. In contrast, our method
proposes a novel self-learning probability function (Section
to effectively learn each view’s individual distribution
from the perspective of consistency of probability function.
The proposed self-learning probability function, in conjunction
with the other components of our method, constitutes a more
robust theoretical framework.

III. METHODOLOGY

A. Symmetric Multi-view Probability Estimation

Given a multi-view dataset of N samples with M views
S = (v, y@ v} ym) ¢ Ri"*N denotes the
feature matrix in m-th view, where d("™ is the feature di-
mension of the m-th view. Let W) ¢ RN*N calculated
by V(™) using cosine similarity denotes the similarity matrix
of the m-th view. Assuming that all views are conditionally
independent similar to previous works [37]-[41], the pairwise
posterior probability of sample ¢ and 7 proposed in MPC [36]
is:

M (m) (1)
(IT Plwi"les; = D)P(eij = Lwy’)

i (m) 8
> (I Pwj;7lei; = 1) P(ei; = lw;;”)
1€{0,1} m=2

where e;; indicates that the two samples belong to the same
class and wgn’) denotes the similarity of the two samples
in m-th view. Eq. (I) is asymmetric for each view and has
two types of probability function. Considering the consistent
representation across multiple views, we further derive the Eq.
. Let d,,, = wg”),el = (e;; = 1),e9 = (e;; = 0) for short
and Eq. (I) can be expressed as:

P(Zaj) :P(€1|d1ad27"'7dM)

M
(mlLP(dmlel))P(ﬁIdﬂ )

M
>>  (II P(dmle))P(eldy)

ec{eg.er} m=2

Based on Bayesian formula, P(d,,|e1) and P(d,,|eg) can be
expressed as:

Plduler) = 2 (ellﬁTe)ll)’(dm)

P(eg|d,)P(dpm,)
P(eo)

3)
P(dmleo) =

Naturally, Eq. (Z) can be expressed as:
P(i,j) = P(eild1, dz, ..., dnr)

M
(I1

m=2

e1|dm)P(dm
Plerlde) D)) (e |dy)

M
(11 w)p(e”do

1€{0,1} m=2 Ple) “4)
M
(II P(erldm))P(eo)™ "
m=1

M
SN (I Plerldm))Pler_)M—1

1e{0,1} m=1

Thus, the pairwise probability of sample ¢ and j can be
expressed as:

M (m)
(11 Pley = 1) Ry

P(i,j) = —5 o
(II Pless = L") Po+ (T1 Pleis = 0hw)) P

(%)
where Py = P(e;; = 0)M~1 and P, = P(e;; = 1)M~L
Given sample ¢ and sample j without any prior information,
the two samples either belong to the same class or do not
belong to the same class, which indicates P(e;; = 0) =
P(e;; = 1) = 0.5. Finally, the pairwise probability of sample
1 and j can be expressed as:

M
I1 Pleij = 1jwi™)

ij

P(i,j) = — e — ©)
T Pleis = 1hwi”) + 11 Plei; = 0fw7")

which is symmetric for each view.

B. Self-Learning Probability Function

Eq. (6) defines the decomposition form and the probability
function P(e;; = 1\w§§"’)) for each view needs to be es-
timated. A simple way to estimate the probability function
is using isotonic regression to fit the pairwise relationship
between samples based on pseudo labels (pseudo labels can
be generated on each view by a simple clustering algorithm,
such as K-means). The performance of the MVC task depends
on the quality of the generated pseudo labels. Besides, this
simple approach estimates the probability function on each
single view, overlooking the important consistent information
across multiple views. Thus, to fully dig out the consistency
information from multiple views in an unsupervised manner,
we propose a self-learning probability function to learn the
P(e;; = 1|w§;«n) ) from the aspect of consistency in single-
view, cross-view and multi-view without any prior knowledge
and hyper-parameters. Fig. [T] illustrates the detailed learning
process of the proposed self-learning probability function.
And, this section is structured as follows: (1) In Section
II-BIl we first introduce the motivation behind the self-
learning probability function and provide the definition of
consistency. (2) Section presents the definitions of mul-
tiple probability functions that need to be used in consistency
learning defined in the first step. (3) In Section [[II-B3] we
finally design the objective function to learn each view’s
individual distribution based on the definitions of consistency
and multiple probability functions.
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Fig. 1. Tllustration of the self-learning probability function. Given a multi-view dataset of N samples with M views S = {V(1) v @) yv()}

KNN(™) ¢ RN*K can be generated on the similarity matrix W (™) € RN*N of the m-th view. K NN (™) construct the training data including total T

pairwise samples (p¢, g¢) and the corresponding similarity values (qut7
I parts in the order of {wl(f:ft)”} from small to large defined in Eq.

(2)
Wpe,qes -

). a, b and c are three specific parts in the total of I parts from three specific views.

w;It\Q . ). We divide each view’s data {wf,?fl)] .} of total T' length into

The light gray dotted boxes represent the single-view forms from different views. The dark gray dotted box represent the cross-view forms from different
views. And the black dotted box represent the multi-view forms from different views. The single-view, cross-view and multi-view probability functions are

defined in Eq.
the P( 61J =1

s

Eq. (T3) and Eq. (T7) and the consistency constraint is defined in Eq. €I). Then a self-learning probability function is proposed to learn
) from the aspect of consistency in single-view, cross-view and multi-view without any prior knowledge and hyper-parameters. Finally,

a multi-view palrWlse posterior matching probability matrix is generated from the composition of each view’s individual distribution.
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the relationship remains unchanged
across different views

samples in view-1 samples in view-2 f(x): function in view-1

U positive sample pairs with the similarity u g(y): function in view-2

17 negative sample pairs with the similarity v h(x,y): function in multi-view

Fig. 2. Our basic observation and motivation of self-learning probability
function. Given the condition that the original similarity between the sample
pairs in the first view is x4, there are ¢ sample pairs including fixed p positive
sample pairs. Fix these ¢ sample pairs and find the original similarity between
the sample pairs in the second view ({yx|k € {1,...,t}}). Due to the fixed
sample pairs, the probability that the sample pairs belong to the same class in
the first view (f(zq)) and the second view (g(yx)) should be consistent. In
the same way, the probability that the sample pairs belong to the same class in
the first view (f(z4)) and multi-view (h(zq,yx)) should be also consistent.

1) Consistency Motivation and Definition: Firstly, we
introduce the motivation behind the self-learning probability
function. Taking two views as an example, we define the first
view P(e;; = 1|wl(j1 )) as a continuous monotonic function

f(z) as:
f(z) : P(ey; =1|w§;) =1)
st f(x1) < f(z2), 21 < 29,
f(@min) =0, f(Tmaz) =1
min(w(lj)

maz(w; a )) In the same way, we define the second view

(7

where 2z € {w(l)} Tmin ) and Tar =

P(e;; = 1|wfj2)) as a continuous monotonic function g(y)
and ¢(y) has the same constraints as f(x) including range
and monotonicity. And, the multi-view function h(z,y) based
on Eq. (6) is defined as:

f(x)g(y)
f(@)g(y) + (1 — f(x)(1 —g(y))

As illustrated in Fig. f(z,) indicates the probability
that the sample pairs belong to the same class given the
similarity x, in the first view. A subset of pairwise samples
s = {(, j)|w£;) xq} contains all pairs of samples with
similarity z, in the first view and the proportion of pairwise
samples of the same class in the subset s is a fixed value. Then
from the perspective of the second view, {(f(24), 9(yx))|yx =
wl(f), (i,j) € s} contains the probability that the sample pairs
belong to the same class in the subset s from the first view and
second view. Due to the fixed number of positive sample pairs
in the subset s, the probability that the sample pairs belong to
the same class in the first view and the second view should
be consistent. Thus, we present the cross-view consistency as
follows.

Definition 1: The cross-view consistency from the first
view (f(z)) to the second view (g(y)) can be mathematically
expressed as:

h(z,y) = ®)

) wydy)
S p(z,y)dy

where D is the distance function and p(z,y) is the similarity

distribution between the first view and second view.
Definition 2: The cross-view consistency from the second

view (g(y)) to the first view (f(z)) can be expressed as:

Lf—g = D(f (), ©)

_ J f(@)p(z,y)dx
Lg- —D(Q(y)aW) (10
Furthermore, {(f(za), h(za,y0))lyr = wi), (i,j) € s}

contains the probability that the sample pairs belong to the
same class in the subset s from the perspective of multi-view.
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As illustrated in Fig. [2] the probability that the sample pairs
belong to the same class in single-view and multi-view should
be also consistent. Thus, we present the multi-view consistency
as follows.

Definition 3: The multi-view consistency from the single-
view (f(x) and g(y)) to multi-view (h(z,y)) can be mathe-
matically expressed as:

fhx
fp

d
L= ) p z y) y)
fh )dx (in

)

Finally, based on Definition 1-3, we present the consistency
constraint as follows.

Definition 4: To constraint the function f(x) and g¢(y),
consistency constraint can be mathematically expressed as:

Lconsistency = Lf—g + Lgff + Lffh + Lg,h

f, g = arg min Lconsistency
19

12)

where Ly_, and L,_; are the cross-view constraints, Ly_j,
and Ly_j, are the multi-view constraints.

2) Definitions of Probability Functions: Next, we present
definitions of multiple probability functions that need to be
used in the above consistency definition. As mentioned in
Section given a multi-view dataset of N samples with
M views S = {VO v@ vy KNNM) ¢ RN*K
can be generated on the similarity matrix W (™) ¢ RN*N
of the m-th view. Then K NN construct the training data
including total T pairwise samples (p;, ¢;) and the correspond-
ing similarity values (wz(,?qt,wpf?qt, - wz(,]t\?q)t), t=1,2,..,T.
Due to the complexity of solution in Eq. (9), Eq. and Eq.
(11), we simply use monotonic increasing piecewise function
f(™)(z) instead of continuous monotonic function defined in
Eq. for approximate solution and the function f(™)(z) is
designed as below:

f(m)(x): ( o ’f(m))
s.t. mgm) < xé "<l < x(lm),

A< i1, (13)

fl(m) — 0 f(m)

|28™)| = length(r “”)) =T/I
where T - {wpt7(I’f ( m) A E:)) < wgtﬂgt < (.Z‘E:) +
A”(-ZL)), = 1,2,..,T} is the similarity set of the 4,,-th
segment in the m-th view {L‘(-n/l) = mean(rgff)), mgf) +
A = 2™ AT +1,m6 (1,2, ..., M), iy € [1,2, ..., 1],

I is the total segments of piecewise function and we divide the
data {wl(,:'fgt of total 7" length into I equal parts in the order
of {wz(:fc)h} from small to large. With the above definitions, we

propose three types of functions including single-view function

Fsingle'™ (z) : (x; (m) Fsingle! @), cross-view function
Feross™(z) : () (m) Fcross( )) and multi-view function
Fmulti"™ (z) : (z; (m) qultz("f)) where i, € [1,2,...,I].

Definition 5: The single-view function is designed as:
Fsingle]™ = f{™ = {2

where i, € [1,2,..,I] and m € [1,2, ..., M].

Definition 6: The cross-view function is designed as below
to measure the similarity distribution of another cross view
(m-th view’s cross view b):

(14)

m)— 1
Fcrossgm) ®) _ — Z f(b)(xz(,i’)\x)
|2, i (™ 2 p(m =)
1 b
Z fi(b)
| zm aer(™ o er(m =
(15)
where r(m) = {wpf qt|( l::) Algf)) < w(m) < (x Em) +
A”(.m ),t = 1,2,....,T} is the similarity set of the i,,-th

segment in the m-th view, r(m) ®) = xl(-f:)|(xl(-m) —Azl(-:)) <
wlf, < @0+ A0, GO - A0 <o, < G0
A”(.l:)),t = 172, ..., T} is the segment set to which the pair-
wise samples in the zm—th segment in the m-th view belongs
in the b-th view, |z \ = length(r, (m )) im,tp € [1,2,...,1]
and m,b € [1,2,..., M]

As designed in Eq. (6), given the pairwise similarity
(x(l) 22 a:(M)) of M views, the joint probability is

11 7 T g
defined as:
Fjoint(x 511), 522),. ,xgj))
Hlf(”“( )
i (m) M (m)
H F (@) + T (1= fm(2))
1 m m=1 m (16)
l]\—/[[ f(m)
_ m=1" "
M
I A+ I =)
m=1 m=1

Definition 7: The multi-view function is designed as below
to measure the similarity distribution of multiple views:

(m) _ (1) (2) (M)
Fmulti; = - (m)‘ Z()Fjomt i Ty e Ty |T) an
where ™ = {wl"), [(z™ — A™M) < Wi, < (@™ +
A”(.:)),t = 1,2,..,T} is the similarity set of the im—th
segment in the m-th view, scgf) € r( m)=(b) _ b)|(

A < uff) < G AL GO ) % wé’z?"qt <
(x; (b + A, (b)),b #* m,t = 1,2,...,T} is the segment set
to Wthh the pairwise samples in the %,,-th segment in the
m-th view belongs in the b-th view, |zz(m)| = length(rgf)),
imyip € [1,2,...,I] and m,b € [1,2, ..., M].

3) Objective Function: With the above definitions of con-
sistency and multiple probability functions, we propose the
following objective function to learn each view’s individual
distribution:

L= /\Lconsistency + Lconstraint (18)
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where Lconsistency 1 consistency loss and Leconstraint 1S
constraint loss. The parameter A\ is the balanced factor on

Lconsist.ency and Lconstraint- . .
Consistency Loss. The consistency loss aims to learn the

consistency from multiple views between Fsingle(»),

Fcrossl(-:j)*(b) and qultil(-:f) Based on Eq. (12),
Lconsistency is defined as:
Leonsistency = i z Z D(Fsingle; " qultz )
19)

+ M Z(} Z Z D(Fsinglez(-:), Fcrossi-:)_(b)))

im b#m

where i, € [1,2,.,I] and m € [1,2,..., M]. Due to the
difficulty of consistency loss in Eq. in which F'single
needs to be constrained by both F'mult: and Feross, the mix

function is designed as below for fusion and learning instead
of directly learning the consistency between Fsinglez(»:'),

(m)—(b) (m).

Fcross and Fmults

szx(m) \/qultz(m) (Fsmgle( m 4 Z Fcross(m) )
b#m

(20)

[1,2,..,I] and m € [1,2, ..., M]. The mix func-
is used to constrain the value of Fsmgle(

where 1, €
tion F'miz,

and Fcross? m)=(®) . Lastly, the consistency loss is mathemat-
ically demgned as:

MZ ZD Fsmgle ™) szx(m)))

im

i Z Z Z D Fcross("f) ®) szxE::)))

im b#m

Lconsistencyl -

Lconsistency? =

1

Lconsistency - M(Lconsistencyl + Lconsistency2)

@n

where D is the distance function and we use D(z,y) =
(r — y)? in our experiments. The detailed experiments on
consistency loss with Eq. (I9) and Eq. (ZI) are listed in Table

Constraint Loss. As defined in Eq. (T3), the value range of
the probability function is O to 1 and the constraint loss aims to
limit the range of the functions, including single-view function

Fsingle(™ (z) (x; (m) Fsmgle( )), cross-view function
Feross'™ (z) : (x;” (m y Fcross( )) and multi-view function

Frmulti™ (x) ( ( ) qultz( )) Mathematically, the
constraint loss is de51gned as below to limit the values of
functions at the beginning and the end:

Lconstraint = Z( Z

mo im €Ty
+ 2
Jm€Er;
+ Z D(Fsinglel(-::),o)
im €T
+ Z D(Fsingle§:>,1)
JmEr;

2.2 0D

b#EM i €74

+Z Z D(Fcrossgz)f(b),l))

b#Am jm €rj

D(Fmulti{™ ., 0)

D(Fmulti{™, 1)

(22)

Fcross(m) ® 0)

where 7; = [1,2,..,indi] and r; = [I —indj, ..., —1,I]. indi
and indj+1 are the limit width and the detailed parameters are
listed in Table [lIl Specially, there is a monotonic constraint in
Eq. (@) which is not included in L onstraint. FOr monotonic
constraint, we use mandatory constraint to ensure that the
functions satisfy monotonicity in the process of iteration.

C. Graph-context-aware Refinement

jj-— \ aﬂ/ N
NN A
K Path Propagation

Co-neighbor Propagatiory

Fig. 3. Tllustration of the proposed graph-context-aware refinement including
path propagation and co-neighbor propagation. As shown in path propagation,
taken probability consistency information into consideration, i sets up the
probability path between 7 and j and the probability between ¢ and j can
be enhanced by finding the path with the maximum probability. Besides,
in co-neighbor propagation, b and c¢ are the noise in k-nearest-neighbors
of a. Based on the number of common neighbours and the proportion of
the common probabilities, co-neighbor propagation refinement adjusts the
probability between a and b and the probability between a and c to a small
value and the small value indicates that they are not linked. The probability
between a and d can be further adjusted and enhanced.

The probability estimation in Eq. (6) is calculated based
on the aspect of sample relationship, overlooking the aspect
of graph context which contains rich information. Thus, we
perform graph-context-aware refinement with path propagation
and co-neighbor propagation to further alleviate the impact of
noise and outliers.

Due to the data perturbation of each view, there exists a few
outliers in dataset which may affect the clustering performance
in the final step. The probability estimation of outliers can not
be calculated accurately by using Eq. (6), we therefore try to
fine-tune them with path propagation. Inspired by the message
passing, where the information among nodes is transmissible,
the proposed path propagation passes probabilities between
samples like follows:

P(i,j) = max (P(i,j), P(i,h) x P(h,j))

where j € knn;, h € knn,;, knn;, = {Uknn]"}, knn; =
{Uknn*}, knn;; = {knn; N knn;} and knn" € R* is the
k-nearest-neighbors of sample i in m-th view. Fig. [3] shows
an intuitive path propagation case, in which sample & sets up
the path between sample ¢ and sample j and the probability
between sample 7 and sample j can be enhanced by finding
the path with the maximum probability. From the aspect of
probability, given three samples (sample ¢, j, h) and let a =
P(i,j), b = P(i,h),c = P(j,h) for short, the probability
that sample ¢ and sample j belong to one class is defined as
¢ = ¢p/qa, where g, = abc+a(1—-b)(1—c), g, = abc+a(1—
b)(1—c)+(1—a)(1-b)(1—c)+(1—a)(1—b)c+(1—a)b(1—c).

(23)
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In the formula, g, denotes the sum of all possibilities and g,
denotes the sum of all possibilities that sample ¢ and sample
Jj belong to one class. Simply given P(i,j) = 0.5 for a fuzzy
probability, it’s natural to prove:
o be+ $(1—b—c) b
Ga %chrlf%bf%c_

(24)

where 0 < b,c < 1. Using path propagation, the probability
consistency information between the outliers and their neigh-
bors is taken into consideration, in which the outliers can be
detected and the pairwise probabilities between the outliers
and their neighbors can be enhanced.

Besides, the probability estimation is calculated in Eu-
clidean space while the visual features usually lie in low-
dimensional manifolds [42]. Only using the information in
Euclidean space, overlooking the graph context, may result
in inaccuracy of the actual pairwise posterior probabilities
between samples. To take advantage of the graph context, the
co-neighbor propagation is defined as:

P(Z ]) o Zheknn” (P(Zv h) + P(]» h))
7 Zhieknm P(i7 hL) + ZhjEknnj P(-]’ hj)

where knn; € RF is the k-nearest-neighbors of sample i
calculated by P(i,j) and knn;; = {knn; N knn;}. Fig.
shows an intuitive co-neighbor propagation case, in which the
local graph is constructed by the k-nearest-neighbors of two
samples. We take both the number of common neighbours and
the proportion of the common probabilities into consideration
to further refine the probability based on the local graph.
As shown in Eq. (23)), the available graph-based probability
information can be mined to dig out as much manifold-
like distribution information as possible. Using co-neighbor
propagation, the noise in k-nearest-neighbors can be detected
and the outliers can be further enhanced in an efficient way.

(25)

D. Probabilistic Clustering

Fig. 4. Tllustration of the proposed probabilistic clustering. Each sample is
assigned to its own clustering set at the beginning and each sample is moved
to the neighbour clustering set in random sequential order by maximizing
joint probability iteratively. Finally, a good clustering result can be generated
in a convergent way.

Given the estimated self-learning probability function, we
can utilize Eq. () to calculate the multi-view pairwise poste-
rior matching probability P(i,j) and we can utilize graph-
context-aware refinement to further refine the probability
P(, 7). Finally, to cluster samples in an unsupervised manner,
the probabilistic clustering algorithm is introduced to generate
clustering result without any prior knowledge based on the
probability P(i,7). Given N samples with the clustering set

7w @ [21,29,...,2n], the optimization goal of probabilistic
clustering can be mathematically expressed as:
P(X
Topt = argmaxP(X|m) = argmax ](3(’;)
T T ™
P Eijzl Zi. 2 (26)
Hi,j(ﬁ)é( © J)P(eij =0)

st. P(X,7m) = q

where ¢ is the Kronecker function and € is the normalization
parameter. Besides, there exists an easy-to-understand formula
for probabilistic clustering and P (X, 7) can be mathematically
expressed as:

Hi)j P(eij = 1)5(21‘,2,7')P(eij — 0)1—5(2i7zj)

P(X,m) )

27)

The basic idea of probabilistic clustering is to maximize
the intra-cluster similarities and minimize the inter-cluster
similarities among the samples and Eq. (26) and Eq. are
equivalent. With the above definitions, the objective optimiza-

tion function L = —logP(X|r) can be expressed as:
L= Z((S(ZZ‘, z;)(logP(e;j = 0)—logP(e;; =1)))+c (28)
0,J
where ¢ = =37, (logP(e;; = 0)) — logP(m) — logQ is

a constant. Only the probabilities within the class need to
be calculated in Eq. (28), which reduces the computational
complexity. The whole probabilistic clustering optimization
procedure is outlined in Algorithm [T] and Fig. [ shows an in-
tuitive clustering process. In the first step, k-nearest-neighbors
is constructed using refined multi-view pairwise posterior
matching probability. In the second step, each sample is
assigned to its own clustering set. Then, in random sequential
order, each sample is moved to the neighbour clustering set
that results in the minimum value using Eq. (28). The moving
procedure is repeated for every sample until no moving steps.
With this algorithm, a good clustering result can be generated
in a convergent way.

E. Summary of SLS-MPC

In this section, we summarize the whole framework of SLS-
MPC. Firstly, SLS-MPC proposes a self-learning probability
function to learn P(e;; = 1|wl(Jm)) using Eq. , Eq. and
Eq. (22). Then the pairwise posterior probability P(e;; = 0/1)
of sample 4 and j is estimated using the proposed symmetric
multi-view probability estimation formula in Eq. (6). Next
SLS-MPC uses Eq. and Eq. to further refine the
pairwise probability based on the the aspect of graph context.
Finally, the refined pairwise probability P(e;; = 0/1) is used
as input to the probabilistic clustering optimization procedure
to generate clustering results.

IV. EXPERIMENTS
A. Experimental Settings

Datasets. The experimental comparisons are experimentally
evaluated on several multi-view datasets. (1) Handwritten
[43]] contains 2000 samples of 10 digits (i.e., digits '0-9’),
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Algorithm 1: Probabilistic Clustering Optimization
Procedure

Input: P(e;; = 1) and P(e;; = 0);
Construct KNN nbrs € R™** by P(e;; = 1);
Initialization: listn = [1,2,...,n], it =0,

maxiter = 20, z = (21, 22, ..., z2n] = [1,2,..,n];
while it < maxiter do
count =0

random shuffle listn
for ¢ in listn do
find zf,q in z[nbrs[t]] with minimum
objective value denoted by Eq.
if z; | = zfinq then
update z; = Zfing

count = count + 1
end

end

if count == 0 then
| break

end
it=1a1t+1

end
Output: z;

Algorithm 2: Summary of SLS-MPC

Input: a multi-view dataset of N samples with M
views S = {V(D) v yODL
Solution:

1. Construct K NN(™ ¢ RN*K based on the
similarity matrix wm) ¢ RN*N of the m-th view;
Construct the training data including total 7" pairwise
samples (py, ¢;) and the corresponding similarity

(1) (2) (M) N,
values (wpmqt y Wpyiiqes s Wpy,qe )7

2. Using Eq. (I8), Eq. and Eq. to learn
probability function P(e;; = 1|w5;”));

3. Using Eq. () to estimate the pairwise posterior
probability P(e;; = 0/1) of sample ¢ and j;

4. Using Eq. (23) and Eq. (25) to further refine the
pairwise probability P(e;; = 0/1);

5. Using Algorithm [I] to perform probabilistic
clustering based on the refined pairwise probability
P(e;; = 0/1) and generate clustering results z;

Output: z;

TABLE I
SUMMARY OF THE DATASETS. {M, C, N, d(m)} DENOTES THE NUMBER
OF {VIEWS, CLUSTERS, SAMPLES, FEATURES } IN EACH VIEW,
RESPECTIVELY.

Datasets M C N dm(m=1,..., M)
Handwritten 4 10 2000 240,76,47,64
100Leaves 2 100 1600 64,64
Humbi240 2 240 13440 256,256
BUAA 2 150 1350 100,100
BBCSport 2 5 544 3181,3202

TABLE II
THE DETAILED SETTINGS OF [, indi, indj AND .

Datasets I indi indj + 1 A
Handwritten view1-4 | 1000 10 4 80
Handwritten view1-2 | 1000 10 4 20
100Leaves 200 10 2 2
Humbi240 1000 10 4 20
BUAA 200 10 4 20
BBCSport 200 10 4 20

covering four kinds of features, which are average pixels
features, Fourier coefficient features, Zernike moments fea-
tures and Karhunen-Love coefficient features. (2) 100Leaves
[44] contains 1600 samples from 100 plant species. For each
sample, a shape descriptor and texture histogram are given. (3)
Humbi240, a subset of Humbi [45]] dataset, contains 13440
samples of 240 persons covering face features extracted by
face recognition mode and body features extracted by person
relD mode (4) BUAA-visnir face dataset (BUAA) [46]
contains 1350 visual images and 1350 near infrared images of
the 150 volunteers. (5) BBCSporﬂ contains 544 samples of
5 categories. The feature dimensions of the two views used in
experiments are 3181 and 3202 respectively. The datasets are
summarized in Table[l] To evaluate the clustering performance
on incomplete data, we select ¢% (¢ = 90, 70, 50, 30) samples
as the paired samples that have full views. For the remaining
samples, half of them miss the first view, while the second
view of the other half is removed. The missing rate is defined
asn=1-—c

Evaluation Metrics. In the experiments, several widely-
used clustering metrics including BCubed Fmeasure, Pairwise
Fmeasure [47], Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) are used as the evaluation metrics.
A higher value of these metrics indicates a better clustering
performance.

Implementation Details. We implement our SLS-MPC in Py-
Torch 1.2 [48]] and perform all evaluations on a standard Linux
OS with 16 2.50GHz Intel Xeon Platinum 8163 CPUs. The
self-learning probability function of each view is initialized as
a uniform line from O to 1 and the self-learning probability
function is trained by SGD with a learning rate of 0.001, a
momentum of 0.9 and a weight decay of 0.00005. The detailed
settings of I, indi, indj and X are listed in Table[ll] The setting
of I takes into account the size of training data 7.

B. Compared Methods

We compare our method with SOTA multi-view clustering
algorithms. SMSC [6], GMC [9]], MCDCF [27] and SFMC
[30] could only handle complete multi-view data and thus we
fill the missing data with the mean values of the same view
following previous work [28]] for incomplete clustering cases.
PIC [11]], OSLF [25]], EEIMC [7], UEAF [10], IMCCP [28]
and MPC [36] are six compared methods for complete and
incomplete clustering cases. For all methods, we download

Uhttps://github.com/XiaohangZhan/face_recognition_framework
Zhttps://github.com/layumi/Person_reID_baseline_pytorch
3http://mlg.ucd.ie/datasets/segment.html
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TABLE III
THE CLUSTERING PERFORMANCE COMPARISONS ON THREE DATASETS. MV C INDICATES COMPLETE MULTI-VIEW CLUSTERING; IMVC INDICATES
INCOMPLETE MULTI-VIEW CLUSTERING WITH 0.5 MISSING RATE.

Handwritten 100Leaves Humbi240
Type Methods Fp Fp NMI  ARI Fp Fp NMI  ARI Fp Fg NMI  ARI
MCDCEF |[27] 54.92 59.32 64.90 49.45 51.04 58.14 82.20 50.52 53.16 67.99 88.91 52.91
SMSC [6] 67.48 69.20 72.54 63.83 25.88 42.12 72.59 24.77 26.59 44.37 74.09 26.13
SFMC [30] 72.70 73.72 77.35 69.66 29.97 61.31 80.97 28.94 51.78 91.19 95.47 51.50
IMCCP [28] 76.56 80.96 83.86 73.73 2291 36.20 69.94 21.78 49.68 58.43 88.42 49.37
GMC (9] 74.84 80.47 82.20 71.75 36.40 78.98 88.75 35.47 87.99 96.05 98.57 87.94
MVC OSLF [25] 78.24 78.55 79.32 75.82 65.55 69.59 87.68 65.20 90.35 93.62 98.20 90.31
EEIMC [7] 78.86 79.13 80.80 76.51 74.10 77.53 91.18 73.84 91.45 94.45 98.54 91.41
UEAF [10] 80.61 80.92 81.43 78.46 64.54 72.81 89.18 64.16 86.36 90.36 97.11 86.30
PIC [11] 76.61 77.88 80.23 73.94 78.04 81.49 92.76 77.82 94.34 96.29 98.95 94.32
MPC [36] 84.57 84.45 85.60 83.04 84.18 85.65 94.40 84.04 95.49 97.03 99.07 95.47
SLS-MPC 87.03 86.51 87.62 85.73 85.46 86.39 95.03 85.34 98.12 98.77 99.62 98.11
MCDCEF [27] 20.84 22.99 25.38 11.38 23.84 30.61 68.36 23.06 29.91 41.78 71.44 29.53
SMSC [6] 62.83 63.26 65.65 58.65 17.51 30.59 63.26 16.27 18.69 31.59 64.42 18.17
SFMC [30] 54.81 67.30 71.99 47.53 22.67 51.94 73.81 21.50 7.61 71.73 81.66 6.88
IMCCP [28] 58.52 71.10 72.68 52.71 17.08 24.75 60.84 15.99 37.20 42.66 80.93 36.84
GMC [9] 53.56 73.19 73.56 46.05 3.55 47.35 56.76 1.76 2.55 52.86 65.28 1.75
IMVC OSLF [25] 53.86 54.06 58.51 48.73 33.86 39.04 71.84 33.19 70.72 73.40 89.41 70.59
EEIMC [7] 68.80 69.48 70.26 65.33 52.65 56.74 81.11 52.18 80.94 86.24 94.84 80.86
UEAF [10] 68.94 69.48 72.55 65.48 38.47 45.87 75.62 37.82 86.04 89.96 96.81 85.98
PIC [11] 75.65 76.03 76.67 72.95 50.79 55.61 80.72 50.30 83.30 85.74 94.64 83.23
MPC [36] 77.44 77.65 78.52 75.13 58.31 61.19 83.39 57.94 90.10 91.56 96.53 90.06
SLS-MPC 77.80 78.65 79.62 75.46 59.91 62.87 84.16 59.56 92.69 94.02 97.55 92.66
X — 80
1 \\.\ g == /\ 757“*?/‘\\\\
O o o 75
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Fig. 5. The clustering performance comparisons on Handwritten and 100Leaves with different missing rates. Three comparisons in the first row are experiments
on Handwritten. Three comparisons in the second row are experiments on 100Leaves.

their released codes and tune the hyper-parameters by grid
search to generate the best possible results on each dataset.

Performance Comparison with Two Views. Table lists
the experimental results of different methods on Handwritten,
100Leaves and Humbi240. In the complete cases, our proposed
SLS-MPC achieves the best performance and surpasses the
best baseline by 2.69% on Handwritten, 1.30% on 100Leaves
and 2.64% on Humbi240 in terms of ARI. Moreover, in the
incomplete cases, SLS-MPC surpasses the SOTA by 0.33% on
Handwritten, 1.62% on 100Leaves and 2.60% on Humbi240 in
terms of ARI. Table[V]lists the experimental results of different

methods on BUAA and BBCSport and our method surpasses
almost all tested baselines in terms of BCubed Precision
and Fscore. Furthermore, the incomplete multi-view clustering
performance with different missing rates on Handwritten and
100Leaves are shown in Fig. 5] From these experimental
results, we can observe the following points: (1) our proposed
SLS-MPC outperforms all the tested baselines with different
missing rates, which demonstrates SLS-MPC’s adaptability
to different missing rates; (2) SLS-MPC achieves the best
precision with almost different missing rates, which further
proves the accuracy of self-learning probability function and
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TABLE IV
THE CLUSTERING PERFORMANCE COMPARISONS ON HANDWRITTEN WITH 4 VIEWS. VIEW 1 AND VIEW 2 ARE COMPLETE AND VIEW 3 AND VIEW 4 ARE
50% MISSING IN THE INCOMPLETE CASES.

Pairwise Fmeasure BCubed Fmeasure
Type Methods Precision  Recall ~ Fscore Precision ~ Recall ~ Fscore NMI ARI
OSLF [25] 76.23 76.58 76.40 76.28 76.70 76.49 76.51 73.79
EEIMC [7] 75.33 76.39 75.86 76.53 76.51 76.52 78.28 73.17
PIC [11] 80.76 80.91 80.84 81.28 81.01 81.14 83.26 78.72
MVC UEAF [10] 81.59 82.25 81.92 82.57 82.34 82.45 83.00 79.91
IMCCP [28] - - - - - - - -
MPC [36] 95.85 85.12 90.17 94.89 85.19 89.78 89.77 89.15
SLS-MPC 96.51 90.25 93.28 95.85 90.30 92.99 92.13 92.56
OSLF [25] 62.25 67.05 64.56 64.61 67.21 65.88 69.75 60.48
EEIMC [7] 73.93 78.60 78.26 78.88 78.71 78.79 79.53 75.85
PIC [11] 77.24 79.72 78.46 78.83 79.82 79.32 81.34 76.04
IMVC UEAF [10] 81.31 81.77 81.54 81.90 81.86 81.88 82.39 79.49
IMCCP [28] - - - - - - - -
MPC [36] 95.42 83.84 89.26 94.09 83.93 88.72 88.70 88.16
SLS-MPC 96.77 87.18 91.73 96.00 87.25 91.42 90.92 90.86
symmetric multi-view probability estimation in our proposed in this case:
method. o n @ 3
Fjoint(x 51),x§2),x§3))
f<1)f<2)f<3)f<4)
T ) £(2) £(3) p4 1 2 3 1
fi(l)fi(Q)fi(:j)fC( )_,'_( _fi(l))(l_fi(g))(l_fi(a))(l_fc( ))
TABLE V (29)
THE CLUSTERING PERFORMANCE OF BCUBED PRECISION Preg AND
FSCORE F'g COMPARISONS ON BUAA AND BBCSPORT. MV C INDICATES .- 1) .(2) (4
Fjoint(x;’, z;,’ 2;,”)
COMPLETE MULTI-VIEW CLUSTERING; IMVC INDICATES INCOMPLETE Tiy i2
MULTI-VIEW CLUSTERING WITH 0.5 MISSING RATE. f(l)f(Q)f(3)f(4)
_ i iq
T (1) £(2) £(3) p(4 1 2 3 4
BUAA BBCSpor FOFDIP D + = A= £ = 1A = 1)
Type Methods Precision  Fscore | Precision  Fscore (30)
IMCCP [28] 39.29 39.74 28.67 35.42 F Olnt( (1) (2))
OSLF [25] 23.39 24.75 86.04 86.01 J Tiy Ty
EEIMC [7] 34.09 34.49 76.87 7371 f<1)f<2)f<3)f<4)
MVC UEAF [10] 28.46 29.59 82.69 83.88
PIC [11] 4425 4365 | 9041 9039 f(l)f(z)f@fﬁ“) + (A=A O - 1)
MPC [36] 58.36 44.52 95.52 93.84 31
SLS-MPC 79.22 49.50 95.04 94.68
IMCCP [28] | 3250 3294 | 2513 3420 where f¥ = \/ Fcross )Fcross( )=G) and f¥
OSLF [25] 30.55 31.08 66.00 63.75 T
E%%I:C”[g} ;383 gégg ;gg? ;‘;gg \/Fcrossgl) (4 )Fcross§2) ( ) are the completion views con-
IMVC . . . . . . . .
PIC [11] 35.02 35.46 36.80 86.96 s.tructed frf)m cross-view fupctlons. The detallf.:d view ~conl[?le-
MPC [36] 4056 3684 | 8845 8834 tion experiments are listed in Table Equipped with view
SLS-MPC 44.88 39.25 91.01 90.44 completion, the clustering performance has been improved

Performance Comparison with Four Views. For the Hand-
written dataset, additional incomplete case is constructed in
which all samples have two complete views (the first view and
the second view) and half of them miss the third view, while
the other half of the samples remove the fourth view. As shown
in Table SLS-MPC significantly outperforms these state-
of-the-art methods and SLS-MPC surpasses the best baseline
by 3.41% and 2.70% in terms of ARI in complete case and
incomplete case, respectively. The encouraging performance
demonstrates SLS-MPC’s capacity of extending to multiple
views and self-learning capacity of probability function in
multi-view information excavation. IMCCP can only handle
two views, so the result of IMCCP is not listed in Table
[Vl Specially in this case, view completion is introduced
to handle data missing F'joint(x 51) :vg)) with only two
views, Fjoint(z; 1) 23 Z(g)) and Fjoint(z; ( ) 2{? (4))
with only three v1ews 2[‘he pairwise probablhty is de%ined as

by about 0.6%-0.8%, proving the effectiveness of consistency
learning and view completion.

C. Ablation Studies And Parameter Analysis

In this section, we conduct some studies on several datasets
in the following.
Ablation on Probability Estimation. In the probability esti-
mation, we use Eq. () to fuse the probability information of
each view. In Table we compare the formula with different
aggregation functions on Handwritten with two views and four
views. And the aggregation function is expressed as: P(i,j) =
Aggregation(P(e;; = 1wM), P(e;; = Hw®@),..., P(e;; =
l\w(M ))), where aggregation functions include mean, max,
min and multiply. The mean function treats multiple views as
equally important and cannot generate good clustering result.
Compared with the naive max function, SLS-MPC using the
formula in Eq. (6) can significantly boost the ARI from 78.25
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Fig. 6. Ablation study of our method. Comparison on probability estimation between MPC, MPC w/ Eq. @) and SLS-MPC.

to 92.56 on handwritten with four views. It further proves
that Eq. (6) can adaptively estimate the posterior matching
probability from multiple views. From the perspective of
multi-view probability estimation, we compare our method
with MPC and MPC using Eq. () in Fig. [} The performance
of MPC using Eq. (6) is about 0.80% higher than that of MPC
on Handwritten with four views in terms of BCubed Fscore.
And the performance of SLS-MPC is about 2.41% higher than
that of MPC using Eq. (6) on Handwritten with four views
in terms of BCubed Fscore. These experimental results prove
that our formula proposed in Eq. (6) can adaptively fuse multi-
view probability information in an efficient way, which plays
a major role in performance improvement.

TABLE VI
ABLATION STUDY OF OUR METHOD. COMPARISON BETWEEN THE
FORMULA AND THE DIFFERENT AGGREGATION FUNCTIONS ON HUMBI1240
AND HANDWRITTEN.

Datasets Methods FP FB NMI ARI
max 87.67 89.67 9639 87.62

mean | 92.14 9346 9771 92.11

Humbi240 min 972 98.04 9937 97.19
multiply | 97.26 98.03 99.35  97.25

formula | 98.12 9877 99.62 98.11

max 73.86 7433 80.18 7145

. mean 806 8035 8352 78.79
Handwritten min 83.83 8299 8442 8224
view 1-2 | myliiply | 84.16 8345 8501  82.61
formula 87.03 86.51 87.62 85.73

max 80.15 79.76  83.56 7825

. mean 88.96 88.53 8846 87.83
Handwritten min 87.21 86.64 86.80 85.90
view 1-4 | myliply | 9075 9023  89.69  89.78
formula | 93.28 9299 92.13  92.56

Ablation on Similarity Measures. To keep consistent with
previous works MPC [36], PIC and UEAF [10], we use
cosine metric to estimate the similarity matrix. As listed in Ta-
ble[VII|and Table[VIII] we report the clustering performance in
complete cases and incomplete cases obtained using similarity
metric L, where Ly(z;,z;) = (3, |33§l) - x§l)|1))%,xi =
(xz(-l), ,xE”)) Overall, SLS-MPC is robust to the choice of
metric and the performance using cosine metric is more stable
than that of L,,.

Ablation on Consistency Loss. As described in Section Self-
Learning Probability Function, consistency loss Eq. (I9) and
Eq. I) are introduced in self-learning to learn probability

TABLE VII
ABLATION STUDY OF OUR METHOD. COMPARISON BETWEEN DIFFERENT
SIMILARITY MEASURES IN THE COMPLETE CASES.

Datasets Methods FP FB NMI ARI
Ly 89.65 90.60 9649  89.56
Lo 8435 8570  94.83  84.22
100Leaves Ls 7935  80.64 9296  79.18
Cosine | 8546 8639 9503 8534
Ly 96.94  98.09 99.44  96.93
_ Lo 97.75  98.60 99.59  97.74
Humbi240 Ls 97.79  98.63 99.60 97.78
Cosine | 98.12 9877 99.62  98.11
L 86.08 8555  87.04  84.69
Handwritten Lo 8691 8644 8747  85.59
view 1-2 Ls 87.07 8669 87.66  85.76
Cosine 87.03 86.51 87.62 85.73
L1 9332  93.03 9215  92.60
Handwritten Lo 9232 9206 9135 9151
view 1-4 Ls 91.76 9149  91.18  90.89
Cosine | 9328 9299  92.13  92.56

TABLE VIII

ABLATION STUDY OF OUR METHOD. COMPARISON BETWEEN DIFFERENT
SIMILARITY MEASURES IN THE INCOMPLETE CASES. VP INDICATES VIEW
COMPLETION PROPOSED IN EQ. (2Z9), EQ. (30) AND EQ. (3T).

Datasets Methods FP FB NMI ARI
Ly 89.06 88.97 89.06 87.94
Handwritten Lo 88.17 88.18 88.36 8697
view 1-4 L3 89.47 89.15 89.04 88.39
Cosine 91.73 9142 9092 90.86
L1 90.04 8995 89.83 89.01
Handwritten Lo 89.51 8945 89.29 88.44
view 1-4 VP L3 90.32  90.04 89.81 89.33
Cosine 9248 9218 9156 91.69
TABLE IX
ABLATION STUDY OF OUR METHOD. COMPARISON ON CONSISTENCY
Loss.
Dataset Consistency Loss FP FB NMI ARI
Handwritten w/ Eq. (19 77.82 7795 82.64 75.66
view 1-2 w/ Eq. (1] 87.03 8651 87.62 85.73
Handwritten w/ Eq. (19 80.43 80.34 8241 78.71
view 1-4 w/ Eq. (211 93.28 9299 9213 92.56
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TABLE X
ABLATION STUDY OF OUR METHOD. COMPARISON ON LOSS COMPONENT.
Dataset Component FP FB NMI ARI
W/0 Leonsistencyl | 83.63  83.00  84.60  82.03
Handwritten | W/0 Leonsistency2 | 86.15 8595  87.39 8477
view 12 Wl Leonstraint | 80.81 8041 8397  79.06
SLS-MPC 87.03 86.51 87.62 85.73
w/0 Leonsistencyt | 90.13  89.74  89.63  89.12
Handwritten | W/0 Leonsistency2 | 85.61 8544  86.17  84.25
view 1-4 W/o Leonstraint 83.50 83.44 8475 8198
SLS-MPC 9328 9299 9213 92.56
1.0 1.0
w/ Eq. (19) wi/ Eq. (19)
w/o Lconstraint w/o Leonstraint
0.8-| |— SLS-MPC 0.8— | — SLS-MPC
£ 06 £ 06
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Fig. 7. The visualization of self-learning probability function in Handwritten
with four views.

function. As shown in Table using Eq. (I9) results in poor
clustering performance, which demonstrates that F'single is
confused by F'multi and Fcross in the consistency learning
process and the successful introduction of Eq. enables the
learning of a better probability function. Moreover, as shown
in Fig. [7] using Eq. (I9) causes the probability function to
shift to the right. The probability function is relatively steep
and the value of the probability function is low and inaccurate.
Specifically, in the fourth view, the value of the probability
function reaches 1.0 only when the similarity arrives at about
0.92. And, the value of the probability function varies greatly
when the similarity fluctuates around 0.9.

Ablation on Loss Component. As described in Eq. @
consistency loss and constraint loss are introduced in self-
learning to learn probability function. As shown in Table [X]
all loss terms play indispensable roles in SLS-MPC. Moreover,
as shown in Fig. [/| optimizing without L.y straint makes the
range of the probability function unconstrained. The maximum
value of the probability function is about 0.7 and 0.9 in the
second view and the third view respectively. It should be
pointed out that optimizing without L o, strqint T€SUlLS in poor
clustering performance, which demonstrates the importance of
range constraint.

Analysis of Convergence. In this sub-section, we analyze the

89
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Fig. 8. The clustering performance of SLS-MPC with increasing epoch on
Handwritten. The x-axis denotes the epoch in iteration, the left and right y-axis
denote the clustering performance and corresponding loss value, respectively.

98—

=0~ Precision NMI
Recall ARI
Fscore

94 ir—°—°—_°/°\°_—_°.\v/‘

92—

96—

90—

88—

86

84|

Clustering Performance

82—

80—

T T T T T T T
10 20 30 40 50 60 70 80

Lambda

Fig. 9. The analysis of parameter A on Handwritten.

convergence of SLS-MPC by reporting the loss value and the
corresponding clustering performance with increasing epochs.
As shown in Fig. [ the loss value remarkably decreases in
the first 300 epochs, and meanwhile NMI, Fscore, and ARI
continuously increase. And then the clustering performance
keeps stable in the last moving epochs.

Analysis of Parameter \. According to Eq. (I8), objective
function contains a balanced factor A on Lconsistency and
Leonstraint- We choose nine values from 5 to 80 to study
how it affects the clustering performance on Handwritten with
two views. As shown in Fig. [0} the clustering performance
is robust when the factor A changes and precision is stable
when the factor A is around 20, which is the value we used
for reporting performance in the above results on Handwritten
with two views. The detailed factor A used in our experiments
is listed in Table [

Analysis of Multi-view Probability. We use multi-view prob-
ability generated from MPC and our proposed SLS-MPC to
replace the kernel matrix in EEIMC [7]] and the similarity
matrix in PIC [11]]. The clustering results are listed in Table
Compared with origin kernel matrix and similarity matrix, the
performance of EEIMC and PIC using multi-view probability
are improved which further demonstrates that the accuracy of
multi-view probability is better than that of origin similarity
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TABLE XI
THE CLUSTERING PERFORMANCE OF EEIMC AND PIC wWiTH MPC AND
SLS-MPC.
Methods Handwritten 100Leaves ~ Humbi240

EEIMC [7] 76.51 73.84 91.41

EEIMC w/ MPC +9.69 +11.63 -0.70

EEIMC w/ SLS-MPC +10.81 +14.73 +0.48

PIC [11] 73.94 77.82 94.32

PIC w/ MPC +14.87 +8.78 +1.62

PIC w/ SLS-MPC +17.24 +12.66 +2.62

and using SLS-MPC works better which demonstrates the
effectiveness of symmetry and self-learning in SLS-MPC.

V. CONCLUSION

In this paper, we propose self-learning symmetric multi-
view probabilistic clustering (SLS-MPC) to tackle the chal-
lenges: i) lack of unified framework for incomplete and
complete MVC, ii) lack of emphasis on noise and outliers
and iii) dependence on category information and complex
hyper-parameters. SLS-MPC proposes a novel self-learning
probability function to effectively learn each view’s individual
distribution without any prior knowledge and hyper-parameters
from the aspect of consistency in single-view, cross-view and
multi-view and a novel method to adaptively estimate the
posterior matching probability from multiple views without
complicated hyper-parameters fine-tuning, which tolerates in-
complete views. Besides, equipped with graph-context-aware
probability refinement, SLS-MPC takes noise and outliers
into consideration. Moreover, SLS-MPC proposes a novel
probabilistic clustering algorithm, which has no optimization
parameters and generates clustering results in an unsupervised
manner and an efficient way without category information.
Extensive experiments on multiple benchmarks for incomplete
and complete MVC show that our proposed SLS-MPC per-
forms markedly better than SOTA methods.
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