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1 Introduction

Problems of expected utility maximization go back at least to the seminal articles of Samuelson &
Merton (1969), Merton (1971), and have been studied extensively in recent years, for instance by
Pliska (1986), Karatzas, Lehoczky & Shreve [KLS] (1987) and Cox & Huang (1989). Most of this
literature shares the common setting of an agent who receives a deterministic initial capital, which
he must then invest in a market (complete or incomplete) so as to maximize the expected utility
of his wealth and/or consumption, up to a prespecified terminal time.

In this paper we consider a variant of these problems by allowing the agent freely to stop
before or at a prespecified final time, in order to maximize the expected utility of his wealth and/or
consumption up to the stopping time. The assets available to the agent can be traded continuously,
without restrictions, frictions or transaction costs; they consist of a locally riskless money-market,
and m risky stocks. (One can think, for example, of an investor or mutual fund manager, who tries
to invest/consume as skilfully as possible, before “retiring” from the stock market and putting all his
holdings in the money-market.) The stock-prices are driven by m independent Brownian motions;
these represent the sources of uncertainty in the market model, which is assumed to be complete
in the sense of Harrison & Pliska (1981). The market coëfficients, i.e., the money-market rate,
the stock–appreciation rates, and the matrix of stock-volatilities, are bounded random processes
adapted to the driving m-dimensional Brownian motion.

The utility maximization problem studied here involves aspects of both optimal stopping and
stochastic control. Such problems also arise in situations like pricing American Contingent Claims
under constraints, selecting trading strategies in the presence of transaction costs with an American
option held in the portfolio, target-tracking followed by a decision (to engage the target, or not),
etc.; see Karatzas & Kou (1998), Davis & Zariphopoulou (1995), Davis & Zervos (1994), as well as
Karatzas & Sudderth (1999) for such problems in different contexts. The free–boundary problem
approach, based on an associated Hamilton–Jacobi–Bellman (HJB) equation of dynamic program-
ming, is inadequate for the analysis of the general version of our model, which is not Markovian.
Instead, duality theory plays an important role, and leads to a family of pure optimal stopping
problems which is even more amenable to analysis. Duality approaches have been used with success
in treating portfolio optimization problems for financial markets which are incomplete or impose
constraints on portfolio choice, as in Karatzas, Lehoczky, Shreve & Xu [KLSX] (1991), Shreve &
Xu (1992) and Cvitanić & Karatzas (1992).

The model and the utility maximization problem are described in Sections 2–5. We present a
solution in Section 6 using a duality approach. However, this solution is not quite satisfactory, in
the sense that it leads to computationally tractable results only in very special cases and does not
shed much light on the general question of existence of optimal strategies. We then introduce and
analyze a family of pure optimal stopping problems in Sections 7–8. In terms of these, we are able
to provide conditions which guarantee the existence of optimal strategies. In Section 9, several
examples are presented, one of which demonstrates that optimal strategies need not always exist.
For completeness, we treat in the Appendix (Section 10) an example which can be solved explicitly
using a free–boundary problem for the associated HJB equation. In a second Appendix (Section
11) we formulate an open problem, suggested by the referee, where consumption continues past the
time of retirement from the stock-market.

It is hoped that the analysis in this paper will serve as a step towards establishing a general
theory for stochastic control problems with discretionary stopping in continuous time, possibly

2



along the lines of the Dubins–Savage (1965) theory for discrete–time “leavable gambling problems”
developed in Chapter 3 of Maitra & Sudderth (1996).

Remark 1.1: We denote by “standing assumption” those conditions that are always in force through-
out the paper; they will not be cited in theorems. And “assumption” stands for those conditions
which are in force only when theorems specifically cite them.

2 The market model

We adopt a model consisting of a money-market, with price P0(·) given by

(2.1) dP0(t) = P0(t)r(t) dt, P0(0) = 1

and of m stocks with prices-per-share Pi(·) satisfying the equations

(2.2) dPi(t) = Pi(t)


bi(t) dt +

m∑

j=1

σij(t)dWj(t)


 , i = 1, · · · ,m.

Here W (·) = (W1(·), · · · ,Wm(·))∗ is an m-dimensional Brownian motion on a complete probability
space (Ω, IF, IP). We shall denote by IF = {Ft}0≤t≤T the IP−augmentation of the filtration gen-
erated by W (·). The coëfficients of the model, that is, the scalar interest rate process r(·), the
vector process b(·) = (b1(·), · · · , bm(·))∗ of appreciation rates, and the matrix-valued volatility pro-
cess σ(·) = (σij(·))1≤i,j≤m, are assumed to be bounded, and progressively measurable with respect
to IF. All processes encountered throughout Sections 2–9 of the paper will be defined on the fixed,
finite horizon [0, T ].

Standing Assumption 2.1: We assume that ‖ b(t) ‖ ≤ L, |r(t)| ≤ L, ∀ 0 ≤ t ≤ T hold
almost surely, for some given real constant L > 0.

Standing Assumption 2.2: The process σ(·) satisfies the strong non-degeneracy condition

ξ∗σ(t)σ∗(t)ξ ≥ ε ‖ ξ ‖2, ∀ (t, ξ) ∈ [0, T ]× IRm

almost surely, for some given real constant ε > 0.

From Standing Assumption 2.2 the matrices σ(t), σ∗(t) are invertible, and the norms of (σ(t))−1

and (σ∗(t))−1 are bounded from above and below by δ and δ−1, respectively, for some δ ∈ (1,∞);
cf. Karatzas & Shreve (1991), page 372. We also define the “relative risk” process

(2.3) θ(t)
4
= σ−1(t)[b(t)− r(t)1m]

where 1m = (1, · · · , 1)∗, the discount process

(2.4) γ(t)
4
=

1
P0(t)

= exp
{
−

∫ t

0
r(s) ds

}
,
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the exponential martingale (or likelihood ratio process)

(2.5) Z0(t)
4
= exp

{
−

∫ t

0
θ∗(s) dW (s)− 1

2

∫ t

0
‖ θ(s) ‖2 ds

}
,

and the state-price-density process

(2.6) H(t)
4
= γ(t)Z0(t).

3 Portfolio and wealth processes

A portfolio process π(·) = (π1(·), · · · , πm(·))∗ is IRm–valued, and a consumption process c(·) takes
values in [0,∞); these are both IF−progressively measurable, and satisfy

∫ T

0
c(t) dt +

∫ T

0
‖ π(t) ‖2 dt < ∞

almost surely. We regard πi(t) as the proportion of an agent’s wealth invested in stock i at time
t; the remaining proportion 1− π∗(t)1m = 1−∑m

i=1 πi(t) is invested in the money-market. These
proportions are not constrained to take values in the interval [0, 1]; in other words, we allow both
short-selling of stocks, and borrowing at the interest rate of the bond. For a given, nonrandom,
initial capital x > 0, let X(·) ≡ Xx,π,c(·) denote the wealth-process corresponding to a portfo-
lio/consumption process pair

(
π(·), c(·)) as above. This wealth-process is defined by the initial

condition Xx,π,c(0) = x and the equation

dX(t) =
m∑

i=1

πi(t)X(t)



bi(t) dt +

m∑

j=1

σij(t)dWj(t)



 +

{
1−

m∑

i=1

πi(t)

}
X(t)r(t) dt− c(t) dt

= r(t)X(t)dt + X(t)π∗(t)σ(t)dW0(t)− c(t) dt, X(0) = x > 0,(3.1)

where we have set

(3.2) W0(t)
4
= W (t) +

∫ t

0
θ(s) ds, 0 ≤ t ≤ T.

In other words,

(3.3) d (γ(t)Xx,π,c(t)) = γ(t)Xx,π,c(t)π∗(t)σ(t) dW0(t)− γ(t)c(t) dt, 0 ≤ t ≤ T.

The process W0(·) of (3.2) is Brownian motion under the equivalent martingale measure

(3.4) IP0(A)
4
= IE

[
Z0(T )1A

]
, A ∈ FT ,

by the Girsanov theorem (section 3.5 in Karatzas & Shreve (1991)). We shall say that a port-
folio/consumption process pair (π, c) is available at initial capital x > 0, if the corresponding
wealth-process Xx,π,c(·) of (3.3) is strictly positive on [0, T ], almost surely.

An application of Itô’s rule to the product of the processes Z0(·) and γ(·)Xx,π,c(·) leads to

(3.5) H(t)Xx,π,c(t) +
∫ t

0
H(s)c(s) ds = x +

∫ t

0
H(s)Xx,π,c(s)(σ∗(s)π(s)− θ(s))∗ dW (s).
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This shows, in particular, that for any pair (π, c) available at initial capital x > 0, the process
H(·)Xx,π,c(·) +

∫ ·
0 H(s)c(s) ds is a continuous, positive local martingale, hence a supermartingale,

under IP. Consequently, the optional sampling theorem gives

(3.6) IE
[
H(τ)Xx,π,c(τ) +

∫ τ

0
H(s)c(s) ds

]
≤ x ; ∀ τ ∈ S.

Here and in the sequel, we denote by Ss,t the class of IF−stopping times τ : Ω −→ [s, t] for
0 ≤ s ≤ t ≤ T , and let S ≡ S0,T .

4 Utility function

A function U : (0,∞) −→ IR will be called utility function, if it is strictly increasing, strictly
concave, continuously differentiable, and satisfies

(4.1) U ′(0+)
4
= lim

x↓0
U ′(x) = ∞, U ′(∞)

4
= lim

x↑∞
U ′(x) = 0.

We shall denote by I(·) the (continuous, strictly decreasing) inverse of the marginal-utility function
U ′(·); this function maps (0,∞) onto itself, and satisfies I(0+) = ∞, I(∞) = 0. We also introduce
the Legendre-Fenchel transform

(4.2) Ũ(y)
4
= max

x>0
[U(x)− xy] = U(I(y))− yI(y), 0 < y < ∞

of −U(−x); this function Ũ(·) is strictly decreasing and strictly convex, and satisfies

Ũ ′(y) = −I(y), 0 < y < ∞,(4.3)
U(x) = min

y>0
[Ũ(y) + xy] = Ũ(U ′(x)) + xU ′(x), 0 < x < ∞.(4.4)

The inequality

(4.5) U(I(y)) ≥ U(x) + y[I(y)− x], ∀ x > 0, y > 0

is a direct consequence of (4.2).

5 The optimization problem

The agent in our model has time-dependent utility of the form
∫ t
0 e−βsU1

(
c(s)

)
ds + e−βtU2(x),

with β ≥ 0 a real constant. The utility functions U1(·), U2(·) measure his utility from consumption
and wealth, respectively, whereas β stands for a discount factor. If the agent uses the portfo-
lio/consumption strategy (π, c) available at initial capital x > 0, and the stopping rule τ ∈ S, his
expected discounted utility is

(5.1) J(x;π, c, τ)
4
= IE

[∫ τ

0
e−βtU1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
.
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The optimization problem considered in this paper is the following: to maximize the expected
discounted utility in (11.5), over the class A(x) of triples (π, c, τ) as above, for which the expectation
in (5.1) is well-defined, i.e.,

(5.2) IE
[∫ τ

0
e−βtU−

1

(
c(t)

)
dt + e−βτU−

2 (Xx,π,c(τ))
]

< ∞.

[Here and in the sequel, x− denotes the negative part of the real number x, namely x− =
max(−x, 0).] The value-function of this problem will be denoted by

(5.3) V (x)
4
= sup

(π,c,τ)∈A(x)
J(x; π, c, τ), x ∈ (0,∞).

We say that the value V (x) is “attainable”, if we can find a triple (π̂, ĉ, τ̂) ∈ A(x) with V (x) =
J(x, π̂, ĉ, τ̂); such a triple is then called “optimal” for the problem of (11.7). To ensure that this
problem is meaningful, we impose the following assumption throughout.

Standing Assumption 5.1: V (x) < ∞, for all x ∈ (0,∞).

It is fairly straightforward that the function V (·) is increasing on (0,∞). However, it is not clear
at this stage whether V (·) is concave or not. We shall discuss this issue in Section 8.
Remark 5.1: A sufficient condition for Standing Assumption 5.1 is that

(5.4) max{U1(x), U2(x)} ≤ k1 + k2x
δ, ∀ x ∈ (0,∞)

holds, for some k1 > 0, k2 > 0, δ ∈ (0, 1); cf. Remark 3.6.8 in Karatzas & Shreve (1998).

6 Duality Approach

For any fixed stopping time τ ∈ S, we denote by Πτ (x) the set of portfolio/consumption process
pairs (π, c) for which (π, c, τ) ∈ A(x). The solution of the utility maximization problem

(6.1) Vτ (x)
4
= sup

(π,c)∈Πτ (x)
J(x; π, c, τ)

can be derived as in KLS (1987). We review briefly the results in this Section. For any triple
(π, c, τ) ∈ A(x) and any real number λ > 0, it follows from (4.2), (3.6) that

J(x; π, c, τ) = IE
[∫ τ

0
e−βtU1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]

≤ IE
[∫ τ

0
e−βtŨ1(λeβtH(t)) dt + e−βτ Ũ2(λeβτH(τ))

]
+ λ · IE

[
H(τ)Xx,π,c(τ) +

∫ τ

0
H(t)c(t) dt

]

≤ IE
[∫ τ

0
e−βtŨ1(λeβtH(t)) dt + e−βτ Ũ2(λeβτH(τ))

]
+ λx,

with equality if and only if

(6.2) Xx,π,c(τ) = I2(λeβτH(τ)), and c(t) = I1

(
λeβtH(t)

)
, ∀ 0 ≤ t ≤ τ a.s.
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(6.3) IE
[
H(τ)Xx,π,c(τ) +

∫ τ

0
H(t)c(t) dt

]
= x

hold. It develops that we have Vτ (x) ≤ infλ>0

[
J̃(λ; τ) + λx

]
for all τ ∈ S, as well as

(6.4) V (x) = sup
τ∈S

Vτ (x) ≤ sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]

with the notation

(6.5) J̃(λ; τ)
4
= IE

[∫ τ

0
e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2(λeβτH(τ))

]
.

In order to proceed, we shall need the following assumption (see Remark 6.7 for discussion).

Assumption 6.1: IE
[
sup0≤t≤T

(
H(t) · I2(λeβtH(t)

)
+

∫ T
0 H(t)I1

(
λeβtH(t)

)
dt

]
< ∞, for all

λ ∈ (0,∞).

Under this assumption, for any given τ ∈ S, the function Xτ : (0,∞) → (0,∞) defined by

(6.6) Xτ (λ)
4
= IE

[∫ τ

0
H(t)I1

(
λeβtH(t)

)
dt + H(τ) · I2(λeβτH(τ))

]
, 0 < λ < ∞

is a continuous, strictly decreasing mapping of (0,∞) onto itself with Xτ (0+) = ∞, Xτ (∞) = 0;
thus Xτ (·) has a continuous, strictly decreasing inverse Yτ (·) from (0,∞) onto itself. We define

(6.7) ξx(τ)
4
= I2

(Yτ (x)eβτH(τ)
)

and ηx(t)
4
= I1

(Yτ (x)eβtH(t)
)
, 0 ≤ t ≤ T

so that, in particular,

(6.8) IE
[
H(τ)ξx(τ) +

∫ τ

0
H(t)ηx(t) dt

]
= x.

LEMMA 6.2: For any τ ∈ S, the random variables of (6.7) satisfy

(6.9) IE
[
e−βτU−

2

(
ξx(τ)

)
+

∫ τ

0
e−βtU−

1

(
ηx(t)

)
dt

]
< ∞,

and for every portfolio/consumption pair (π, c) ∈ Πτ (x) we have

(6.10) IE
[∫ τ

0
U1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
≤ IE

[∫ τ

0
U1

(
ηx(t)

)
dt + e−βτU2(ξx(τ)

]
.

Lemma 6.2 can be proved by arguments similar to those used in the proof of Theorem 3.6.3
in Karatzas & Shreve (1998). We conclude from it that, if there exists a portfolio π̂τ (·) such that

(π̂τ , ĉτ ) is available at initial capital x > 0, where ĉτ (·) 4= ηx(·)1[[0,τ [[(·), and if

(6.11) Xx,π̂τ ,ĉτ (τ) = ξx(τ),
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holds almost surely, then the pair (π̂τ , ĉτ ) belongs to Πτ (x) and is optimal for the utility max-
imization problem (6.1). The existence of such a portfolio will need the assumption of market
completeness, as we shall see in the next lemma.

LEMMA 6.3: For any τ ∈ S, any Fτ–measurable random variable B with IP[B > 0] = 1,
and any progressively measurable process c(·) ≥ 0 that satisfies c(·) ≡ 0 a.e. on [[τ, T ]] as well as
IE

[
H(τ)B +

∫ T
0 H(t)c(t) dt

]
= x, there exists a portfolio process π(·) such that, almost surely:

Xx,π,c(t) > 0, 0 ≤ t ≤ T and Xx,π,c(τ) = B.

Proof: We begin with the strictly positive, continuous process X(·) defined by

X(t)
4
=

1
γ(t)

· IE0

[
γ(τ)B +

∫ τ

t∧τ
γ(s)c(s) ds

∣∣∣∣Ft

]
; 0 ≤ t ≤ T.

This process satisfies

X(0) = IE0

[
γ(τ)B +

∫ τ

0
γ(s)c(s) ds

]
= IE

[
H(τ)B +

∫ τ

0
H(s)c(s) ds

]
= x, and X(τ) = B a.s.

On the other hand, the IP0–martingale M(·) 4= γ(·)X(·)+∫ ·
0 γ(s)c(s) ds = IE0

[
γ(τ)B +

∫ τ
0 γ(s)c(s) ds|F·

]
admits the stochastic integral representation

M(t) = x +
∫ t

0
ψ∗(s) dW0(s), 0 ≤ t ≤ T

for some IF–adapted process ψ(·) that satisfies
∫ T
0 ‖ ψ(s) ‖2 ds < ∞ almost surely (e.g. Karatzas

& Shreve (1998), Lemma 1.6.7). Define π(t)
4
= (σ∗(t))−1ψ(t)/M(t), 0 ≤ t ≤ T and check from

(3.3) that X(·) = Xx,π,c(·), almost everywhere on [0, T ]× Ω. ♦
Remark 6.4: Note that the martingale M(·) is constant, and thus we have ψ(·) ≡ 0, π(·) ≡ 0, a.e.

on the stochastic interval [[τ, T ]]; in particular, Xx,π,c(t, ω) = B(ω)e
∫ t

τ(ω) r(u,ω) du, a.e. on [[τ, T ]]. In
other words, at the stopping time τ all investment in the stock-market ceases, and all proceeds are
invested in the money-market from then on.

We have proved the following result.

PROPOSITION 6.5: Under Assumption 6.1, for any τ ∈ S we have

(6.12) Vτ (x) = inf
λ>0

[
J̃(λ; τ) + λx

]
= J̃(Yτ (x); τ) + xYτ (x),

and the supremum in (6.1) is attained by the consumption strategy ĉτ (t) = I1

(Yτ (x)eβtH(t)
)
1[0,τ)(t)

and some portfolio π̂τ (·) that satisfies (6.11). Moreover,

(6.13) V (x) = sup
τ∈S

Vτ (x) = sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
= sup

τ∈S

[
J̃(Yτ (x); τ) + xYτ (x)

]
.
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Example 6.6 (Logarithmic utility functions): U1(x) = δ log x, U2(x) = log x for x > 0 and
some δ ∈ [0, 1]. In this case the Assumption 6.1 is satisfied, and we have I1(y) = δ/y, Ũ1(y) =
δ log δ − δ[1 + log y] and I2(y) = 1/y, Ũ2(y) = −1− log y. Hence, with

Q(t)
4
=

∫ t

0
θ∗(s) dW (s) +

∫ t

0

(
r(s) +

‖θ(s)‖2

2
− β

)
ds

and with the convention δ log δ ≡ 0 for δ = 0, we have

J̃(λ; τ) = IE
[
e−βτ (Q(τ)− (1 + log λ))

]
+ δ · IE

∫ τ

0
e−βt

(
Q(t)− (1+ log λ)

)
dt+ δ log δ · IE

∫ τ

0
e−βt dt

for any stopping time τ . It develops that Xτ (λ) = Kτ/λ and thus Yτ (x) = Kτ/x, where

Kτ
4
= IE

[
e−βτ + δ

∫ τ

0
e−βt dt

]
.

From Proposition 6.4, the value function of the problem (11.7) is given by

V (x) = sup
τ∈S

IE
[
e−βτ

{
log

(
x/Kτ

)
+ Q(τ)

}
+ δ ·

∫ τ

0
e−βt

{
log

(
x/Kτ

)
+ Q(t)

}
dt

]
,

a quantity that is, in general, very difficult to compute. It is not even clear whether the supremum
in this expression is attained (see Example 9.3 in this regard). However, in the special case β = 0
and δ = 0, the above expression can be reduced significantly to

V (x) = log x + sup
τ∈S

IE
∫ τ

0

[
r(u) +

1
2
‖ θ(u) ‖2

]
du,

and amounts to solving a standard optimal stopping problem. This latter has the trivial solution
τ∗ ≡ T for r(·) ≥ 0.

Remark 6.7: A sufficient condition for Assumption 6.1 is that

(6.14) I1(y) + I2(y) ≤ k1 + k2y
−α, ∀ y ∈ (0,∞)

holds for some constants k1 > 0, k2 > 0 and α > 0. Indeed, under (6.14) we have

IE

[
sup

0≤s≤T

(
H(s) · Ij(λeβsH(s))

)]
≤ k1IE

[
sup

0≤s≤T
(H(s))

]
+ k2λ

−αIE

[
sup

0≤s≤T
(H(s))1−α

]
< ∞

for j = 1, 2, as is easy to check using Hölder’s inequality, Doob’s maximal inequality, and the
boundedness of market coefficients. This is because, for any ρ ∈ R, there exist positive constants
C1, C2 such that

IE

[
sup

0≤t≤T

(
H(t)

)ρ

]
= E

[
sup

0≤t≤T

(
γ(t)Z0(t)

)ρ

]
≤ C1 · IE

[
sup

0≤t≤T
(Z0(t))

ρ

]

≤ C1 · IE
[

sup
0≤t≤T

(
e−ρ

∫ t
0 θ∗(s) dW (s)− ρ2

2

∫ t
0 ‖θ(s)‖2 ds

)
· sup
0≤t≤T

(
e

ρ(ρ−1)
2

∫ t
0 ‖θ(s)‖2 ds

)]

≤ C2 · IE
[

sup
0≤t≤T

(
e−ρ

∫ t
0 θ∗(s) dW (s)− ρ2

2

∫ t
0 ‖θ(s)‖2 ds

)]
< ∞.
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7 Pure Optimal Stopping Problems

The representation (6.13) for the solution of the utility maximization problem in Section 5 is not
entirely satisfactory. It is not clear how the quantities Yτ (x) are related to each other for different
stopping times τ ∈ S, except in some very special cases. Furthermore, it is not easy to compute
the last supremum in (6.13), or even to decide whether it is attained or not. All these points are
illustrated in the Example 6.6 of a logarithmic utility function. In this section, we shall try to
convert the original problem into a family of pure optimal stopping problems, for which we can
obtain a better understanding. To this end, we define, for every λ ∈ (0,∞), the following dual
optimization problem

(7.1) Ṽ (λ)
4
= sup

τ∈S
J̃(λ; τ) = sup

τ∈S
IE

[∫ τ

0
e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2

(
λeβτH(τ)

)]

of pure optimal stopping type, in the notation of (6.5), (4.2), (2.6). To ensure that the problem of
(7.1) is meaningful, we impose the following assumption throughout.

Standing Assumption 7.1: For any λ ∈ (0,∞) we have Ṽ (λ) < ∞, and there exists some
stopping time τ̂λ which is optimal in (7.1), i.e., such that Ṽ (λ) = J̃(λ; τ̂λ).

Here and in the sequel, we denote by Ŝλ the set of stopping times that attain the supremum in
(6.5), for every given λ > 0. It follows from (6.4) that we have, in the notation of (7.1):

(7.2) V (x) ≤ sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
≤ inf

λ>0

[
sup
τ∈S

J̃(λ; τ) + λx

]
= inf

λ>0

[
Ṽ (λ) + λx

]
.

We wish that the inequalities in (7.2) would always hold as equalities. Unfortunately, it turns out
that the second inequality in (7.2) might be strict, depending on the coëfficients of the model and
on the initial capital x. We shall see this more clearly in the following sections.

Remark 7.2: Standing Assumption 7.1 holds if condition (5.4) is satisfied. This is because the

continuous process Y λ(t)
4
=

∫ t
0 e−βsŨ1

(
λeβsH(s)

)
+ e−βtŨ2(λeβtH(t)), 0 ≤ t ≤ T satisfies in

this case IE[sup0≤t≤T |Y λ(t)|] < ∞ . Indeed, it is easy to check that (5.4) implies

(7.3) max{Ũ1(y), Ũ2(y)} ≤ k1 + k3y
−α, ∀ 0 < λ < ∞

with α = δ/(1 − δ), k3 = (1 − δ)(k2δ
δ)1/(1−δ) (cf. KLSX (1991)), and it follows from Remark 6.7

that Ṽ (λ) ≤ IE
[
sup0≤t≤T |Y λ(t)|] ≤ k4 + k5λ

−α · IE
[
sup0≤t≤T

(
H(t)

)−α
]

< ∞. Standard results
in the theory of optimal stopping (e.g. Theorem D.12 in Karatzas & Shreve (1998)) guarantee then
the existence of an optimal stopping time.

8 Analysis of the Optimal Stopping Problem

In this section we shall derive our main results for the optimization problem of (11.7), by first
establishing several properties of the “dual” value function Ṽ (·) defined in (7.1). It is not a trivial
matter, to decide whether the value function V (·) of our “primal” problem (11.7) inherits the
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concavity of U(·). Indeed, even the continuity of V (·) is not quite clear a priori. However, properties
of convexity and monotonicity are relatively straightforward for the dual value function Ṽ (·) of (7.1).

LEMMA 8.1: The function Ṽ (·) of (7.1) is strictly convex, strictly decreasing. In particular, it
is continuous and almost everywhere differentiable.
Proof: For any 0 < λ1 < λ2 < ∞, 0 < s < 1, and λ0

4
= sλ1+(1−s)λ2, we have Ṽ (λ2) = J̃(λ2; τ̂2) <

J̃(λ1; τ̂2) ≤ Ṽ (λ1) from the Standing Assumption 7.1, where τ̂i ∈ Ŝλi
, i = 0, 1, 2 are optimal

stopping times, and Ṽ (λ0) = J̃(λ0; τ̂0) < sJ̃(λ1; τ̂0)+ (1− s)J̃(λ2; τ̂0) ≤ sṼ (λ1)+ (1− s)Ṽ (λ2). ♦
It follows from Lemma 8.1 that the right– and left– derivatives

(8.1) 4±Ṽ (λ)
4
= lim

h→0±
1
h

[Ṽ (λ + h)− Ṽ (λ)]

of the convex function Ṽ (·) exist, and are finite for every λ ∈ (0,∞). Furthermore, the strict
convexity of Ṽ (·) implies

(8.2) 4+Ṽ (λ1) < 4−Ṽ (λ2) ≤ 4+Ṽ (λ2) ≤ 0, ∀ 0 < λ1 < λ2 < ∞,

and 4+Ṽ (·) (respectively, 4−Ṽ (·)) is right– (respectively, left–) continuous.

LEMMA 8.2: For every λ ∈ (0,∞) and any optimal stopping time τ̂λ ∈ Ŝλ, we have

(8.3) 4−Ṽ (λ) ≤ −Xτ̂λ
(λ) ≤ 4+Ṽ (λ).

Proof: The convexity of Ũj(·), j = 1, 2 gives

(8.4) Ũ
′
j(y)(x− y) ≤ Ũj(x)− Ũj(y) ≤ Ũ

′
j(x)(x− y), ∀ 0 < x, y < ∞,

and for any real number h with |h| < λ we obtain

Ṽ (λ + h)− Ṽ (λ) = Ṽ (λ + h)− J̃(λ; τ̂λ) ≥ J̃(λ + h; τ̂λ)− J̃(λ; τ̂λ)

≥ h · IE
[∫ τ̂λ

0
H(t)Ũ

′
1

(
λeβtH(t)

)
dt + H(τ̂λ)Ũ

′
2(λeβτ̂λH(τ̂λ))

]
= −hXτ̂λ

(λ).

The last equality follows from (4.3) and the definition (6.6) of Xτ̂ (·). Letting h → 0, we deduce for
arbitrary λ ∈ (0,∞):

4+Ṽ (λ) = lim
h→0+

1
h

[Ṽ (λ + h)− Ṽ (λ)] ≥ −Xτ̂λ
(λ) ≥ lim

h→0−
1
h

[Ṽ (λ + h)− Ṽ (λ)] = 4−Ṽ (λ).

COROLLARY 8.3: If Ṽ (·) is differentiable at λ > 0, then Ṽ ′(λ) = −Xτ̂λ
(λ).

LEMMA 8.4: We have limλ↓04±Ṽ (λ) = −∞. Moreover, we also have limλ↑∞4±Ṽ (λ) = 0 if
Assumption 6.1 holds.

Proof: From the decrease of the function I(·), the Monotone Convergence Theorem, and I(0+) =
∞, it follows that limλ↓0Xτ̂λ

(λ) ≥ limλ↓0 IE
[
inf0≤s≤T

(
H(s) · I2

(
λeβT sup0≤s≤T H(s)

))]
= ∞, so
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by Lemma 8.2 and the inequality (8.2) we obtain limλ↓04±Ṽ (λ) = −∞. Now suppose that
Assumption 6.1 holds; we have then

0 ≤ lim
λ↑∞

Xτ̂λ
(λ) ≤ lim

λ↑∞
IE

[
sup

0≤s≤T

(
H(s) · I2

(
λeβsH(s)

))
+

∫ T

0
H(s) · I1

(
λeβsH(s)

)
ds

]
= 0

from the decrease of the functions Ij(·), the Dominated Convergence Theorem, and Ij(∞) = 0, j =
1, 2. It follows again from Lemma 8.2 and (8.2) that limλ↑∞4±Ṽ (λ) = 0. ♦

We shall define, for each given λ > 0, the following subset

(8.5) Gλ
4
=

{
Xτ̂λ

(λ)
/

τ̂λ is optimal in (7.1), i.e., τ̂λ ∈ Ŝλ

}

of IR+. It follows from (8.2) and (8.3) that the sets {Gλ}λ>0 satisfy the following properties:
(i) Gλ is non-empty for every λ > 0,
(ii) Gλ ∩ Gν = ∅, if λ 6= ν,
(iii) for any 0 < ν < λ < ∞ and x ∈ Gλ, y ∈ Gν , we have x < y.

Let us also introduce the set

(8.6) G 4
=

⋃

λ>0

Gλ.

We can state now the main result of the paper. This explains, in particular, when we can expect
to find an optimal triple in (11.7), and to have equality in (7.2).

THEOREM 8.5: For any x ∈ G, the value V (x) of (11.7) is attainable and we have

(8.7) V (x) = inf
λ>0

[
Ṽ (λ) + λx

]
.

Conversely, for any x ∈ (0,∞) that satisfies (8.7) and for which the value V (x) of (5.3) is attain-
able, we have x ∈ G, provided that Assumption 6.1 holds.

Proof: Suppose x ∈ Gν for some ν > 0, and x = Xτ̂ν (ν) for some stopping time τ̂ν ∈ Ŝν which is
optimal in (7.1) with λ = ν, i.e. with

(8.8) Ṽ (ν) = J̃(ν; τ̂ν) = IE
[ ∫ τ̂ν

0
e−βtŨ1

(
νeβtH(t)

)
dt + e−βτ̂ν Ũ2

(
νeβτ̂νH(τ̂ν)

)]
.

Then we claim

(8.9) V (x) = Ṽ (ν) + νx = inf
λ>0

[Ṽ (λ) + λx].

Indeed, by Lemma 8.2, we have −x ∈ [4−Ṽ (ν),4+Ṽ (ν)], so that Ṽ (λ)− Ṽ (ν) ≥ (−x) · (λ− ν)
or equivalently Ṽ (λ) + λx ≥ Ṽ (ν) + νx, ∀λ > 0.

Since x = Xτ̂ν (ν) = IE
[
H(τ̂ν)I2(νeβτ̂νH(τ̂ν)) +

∫ τ̂ν

0 H(t)I1

(
νeβtH(t)

)
dt

]
, it follows from Lemma

6.3 and Lemma 6.2 that there exists a portfolio process π̂(·) with Xx,π̂,ĉ(τ̂ν) = I2(νeβτ̂νH(τ̂ν)),
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where ĉ(t)
4
= I1

(
νeβtH(t)

)
1[0,τ)(t). The expected utility J(x; π̂, ĉ, τ̂ν), under the portfolio/consumption

strategy (π̂, ĉ) and the stopping time τ̂ν , is thus

V (x) ≥ J(x; π̂, ĉ, τ̂ν) = IE
[∫ τ̂ν

0
e−βtU1

(
I1(νeβtH(t))

)
dt + e−βτ̂νU2(I2(νeβτ̂νH(τ̂ν)))

]

= IE
[∫ τ̂ν

0
e−βtŨ1

(
νeβtH(t)

)
+ e−βτ̂ν Ũ2(νeβτ̂νH(τ̂ν))

]
+ ν · IE

[
H(τ̂ν)Xx,π̂,ĉ(τ̂ν) +

∫ τ̂ν

0
H(t)ĉ(t) dt

]

= Ṽ (ν) + νx = inf
λ>0

[Ṽ (λ) + λx],

and (8.9) follows then from (7.2). In particular, the triple (π̂, ĉ, τ̂ν) in A(x) is optimal for the
original optimization problem of (5.3).

Conversely, suppose that (8.7) holds for some positive real number x, for which the value V (x)
of (5.3) is attained by some optimal triple (π∗, c∗, τ∗) ∈ A(x). In other words,

(8.10) V (x) = inf
λ>0

[ Ṽ (λ) + λx ] = J(x;π∗, c∗, τ∗) ≤ Vτ∗(x)

in the notation of (6.1). Suppose also that Assumption 6.1 holds. By Lemma 8.1 the function
λ 7−→ Ṽ (λ) + λx =: G(λ) is strictly convex, with G(0+) = Ṽ (0+) and G(∞) = ∞. Thus, either
there exists a unique ν > 0 such that

(8.11) Ṽ (ν) + νx = inf
λ>0

[ Ṽ (λ) + λx ],

or else we have Ṽ (0+) ≤ Ṽ (λ) + λx, ∀λ > 0. This latter possibility can be ruled out easily; it
cannot hold if Ṽ (0+) = ∞, whereas with Ṽ (0+) < ∞ it leads to limλ↓0

(−4+Ṽ (λ)
) ≤ x which is

impossible, by Lemma 8.4. Therefore, (8.11) holds for a unique ν > 0 and leads, with (8.10) and
Proposition 6.4, to

(8.12) V (x) = Ṽ (ν) + νx ≥ J̃(ν; τ∗) + νx ≥ inf
λ>0

[J̃(λ; τ∗) + λx] = Vτ∗(x) ≥ V (x).

We obtain Ṽ (ν) = J̃(ν; τ∗), as well as J̃(ν; τ∗)+ νx = infλ>0 [J̃(λ; τ∗)+λx] from (8.10), (8.12),
or equivalently, τ∗ ∈ Ŝν and ν = Yτ∗(x). Thus x = Xτ∗(ν) ∈ Gν , which concludes the proof. ♦

COROLLARY 8.6: Under Assumption 6.1, for any x 6∈ G ≡ ⋃
λ>0 Gλ, we have the strict in-

equality (“duality gap”): V (x) < infλ>0 [Ṽ (λ) + λx].

COROLLARY 8.7: Under Assumption 6.1, and if Ṽ (·) is differentiable everywhere, the value
V (x) of (5.3) is attainable and (8.7) holds for every x ∈ (0,∞).

Proof: Since every differentiable convex function is continuously differentiable (cf. Rockafellar
(1970), Corollary 25.5.1), Ṽ

′
(·) is continuous. By Lemma 8.4, the range of Ṽ ′(·) is (−∞, 0). It

follows from Corollary 8.3 that G = (0,∞), and Theorem 8.5 applies. ♦

COROLLARY 8.8: Under Assumption 6.1, suppose that for any λ ∈ (0,∞) there exist two
sequences {λ(±)

n } with λ
(+)
n ↓ λ, λ

(−)
n ↑ λ, as well as stopping times τ̂ ∈ Ŝλ, τ̂

(±)
n ∈ Ŝ

λ
(±)
n

such that
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τ̂
(±)
n → τ̂ a.s.; then the value V (x) of (11.7) is attainable and (8.7) holds for every x > 0.

Proof: By Corollary 8.7, we need only show that Ṽ (·) is differentiable everywhere. From (8.4)
and (4.3) we have

Ṽ (λ(±)
n )− Ṽ (λ) ≤ J̃(λ(±)

n ; τ̂ (±)
n )− J̃(λ; τ̂ (±)

n )

≤ −(λ(±)
n − λ) · IE

[∫ τ̂±n

0
H(t)I1

(
λ(±)

n eβtH(t)
)
dt + H(τ̂ (±)

n )I2(λ(±)
n eβτ̂

(±)
n H(τ̂ (±)

n ))

]

= −(λ(±)
n − λ) · X

τ̂
(±)
n

(λ(±)
n ),

which implies

4+Ṽ (λ) = lim
λ
(+)
n ↓λ

Ṽ (λ(+)
n )− Ṽ (λ)

λ
(+)
n − λ

≤ lim sup
λ
(+)
n ↓λ

(
−X

τ̂
(+)
n

(λ(+)
n )

)
= −Xτ̂ (λ)

4−Ṽ (λ) = lim
λ
(−)
n ↑λ

Ṽ (λ(−)
n )− Ṽ (λ)

λ
(−)
n − λ

≥ lim inf
λ
(−)
n ↓λ

(
−X

τ̂
(−)
n

(λ(−)
n )

)
= −Xτ̂ (λ)

by the Dominated Convergence Theorem. From (8.2), Ṽ
′
(λ) = 4+Ṽ (λ) = 4−Ṽ (λ) = −Xτ̂ (λ). ♦

Corollaries 8.7 and 8.8 provide simple sufficient (but not necessary) conditions, under which
there is no “duality gap” in (7.2) – i.e., its leftmost and rightmost members are equal. The follow-
ing proposition will characterize this kind of interchangeability of “inf” and “sup” operations from
another point of view, namely, the concavity of the “primal” value function V (·).

PROPOSITION 8.9: Under Assumption 6.1, the following two statements are equivalent:
(A) V (·) is concave on (0,+∞),
(B) V (x) = infλ>0 [Ṽ (λ) + λx] holds for every x ∈ (0,∞).

Proof of (B) =⇒ (A) : Under condition (B), the number −V (x) is the pointwise supremum of
the affine functions g(λ) = −λx− µ such that (x, µ) belongs to the epigraph of Ṽ (·). Hence −V (·)
is a convex function (Rockafellar (1970), Theorem 12.1), or equivalently V (·) is concave.

Proof of (A) =⇒ (B) : By Lemma 8.4 and (8.2), it is sufficient to show that for any (ν, x) ∈
(0,∞)× (0,∞) such that −4+Ṽ (ν) ≤ x ≤ −4−Ṽ (ν), we have V (x) = Ṽ (ν) + νx.

Let x0
4
= −4+Ṽ (ν), x1

4
= −4−Ṽ (ν). Since Ṽ (·) is strictly convex and differentiable except on

a countable set, we can find a sequence of positive real numbers {λn}, such that λn ↓ ν as n →∞,

and Ṽ (·) is differentiable at each λn. Define yn
4
= −Ṽ

′
(λn). It follows from the right–continuity of

4+Ṽ (·) that −yn = 4+Ṽ (λn) ↓ 4+Ṽ (ν) = −x0. However, Theorem 8.5 and Corollary 8.3 assert
that

(8.13) V (yn) = inf
λ>0

[Ṽ (λ) + λyn] = Ṽ (λn) + λnyn.

Letting n →∞ we obtain

(8.14) V (x0) = Ṽ (ν) + νx0,

14



thanks to the continuity of V (·) (which is concave, by assumption (A)) and of Ṽ (·) (which is
convex, by Lemma 8.1). Furthermore, we claim that 4−V (x0) ≤ ν. Indeed, it follows from (8.13)
and (8.14) that

V (yn)− V (x0) = Ṽ (λn) + λnyn − Ṽ (ν)− νx0 ≥ 4+Ṽ (ν)(λn − ν) + λnyn − νx0 = λn(yn − x0),

hence

(8.15) 4−V (x0) = lim
n→∞

V (yn)− V (x0)
yn − x0

≤ lim
n→∞λn = ν.

Similarly, we obtain

(8.16) V (x1) = Ṽ (ν) + νx1 and 4+V (x1) ≥ ν.

However, 4−V (x0) ≥ 4+V (x1) holds from the concavity of V (·). It follows from (8.15) and (8.16)
that 4−V (x0) = ν = 4+V (x1), or equivalently, 4−V (x) = 4+V (x) = V

′
(x) = ν, ∀ x0 ≤ x ≤ x1.

It is clear now that V (x) = Ṽ (ν) + νx = infλ>0 [Ṽ (λ) + λx] holds for any x0 ≤ x ≤ x1.

9 Examples

Using the technique developed in the preceding section, we study here several examples, including
one which shows that optimal strategies need not always exist (see Example 9.3). The first of
these examples can also be treated using the methods of Section 6, but for the second and third
examples the methodology of Section 8 is indispensable. The reader of this section should not fail
to notice the rarity of a setting, where utility functions of power-type are much easier to handle
than logarithmic ones.

EXAMPLE 9.1 (Utility functions of power-type): Uj(x) = xα/α where 0 < α < 1, j = 1, 2.
In this case the condition (5.4) is satisfied and we have Ij(y) = y−1/(1−α) and Ũj(y) = y−γ/γ with
γ = α/(1 − α), j = 1, 2, so that Assumption 6.1 is also satisfied (see Remark 6.7) and implies
K < ∞ in (9.2) below. We obtain easily

(9.1) Ṽ (λ) = sup
τ∈S

IE
[∫ τ

0
e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2(λeβτH(τ))

]
=

K

γ
λ−γ ,

with

(9.2) K
4
= sup

τ∈S
Kτ , where Kτ

4
= IE

[∫ τ

0
e−(1+γ)βt

(
H(t)

)−γ
dt + e−(1+γ)βτ

(
H(τ)

)−γ
]

.

Clearly Ṽ (·) is differentiable everywhere, and it follows from Corollary 8.7 that V (x) = infλ>0 [Ṽ (λ)+
λx] = K1−α xα/α. In other words, with utility functions of power-type, the original optimization
problem is reduced to the pure optimal stopping problem (9.2). We can arrive at this conclusion also
using Proposition 6.4, since we have Xτ (λ) = Kτλ

−1/(1−α), Yτ (x) = (Kτ/x)1−α, J̃(λ; τ) = Kτ
γ λ−γ ,

and thus V (x) = xα

α K1−α from (6.12), (6.13).
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The optimal stopping time τ̂ for the original problem is also optimal for the problem of (9.2),
the corresponding optimal consumption ĉ(·) and wealth–level Xx,π̂,ĉ(τ̂) ≡ ξx(τ̂) are given as

ĉ(t) =
x

K
e−

βt
1−α

(
H(t)

)− 1
1−α , 0 ≤ t ≤ τ̂ , ξx(τ̂) =

x

K
e−

βτ̂
1−α (H(τ̂))−

1
1−α

by (6.11), and the optimal portfolio process π̂(·) can then be obtained from Lemma 6.3.
It is straightfoward to check that τ̂ ≡ 0, K = 1 if

β ≥ γ

[
r(t)

1 + γ
+

1
2
‖ θ(t) ‖2

]
, ∀ 0 ≤ t ≤ T

holds almost surely, and that τ̂ ≡ T, K = KT if

β ≤ γ

[
r(t)

1 + γ
+

1
2
‖ θ(t) ‖2

]
, ∀ 0 ≤ t ≤ T

holds almost surely. This observation provides a complete solution to the optimal stopping prob-
lem of (9.2) in the case of constant interest-rate r(t) ≡ r ∈ IR and relative risk θ(t) ≡ θ ∈ IRm; in
particular, if β = γ

(
r

1+γ + ‖θ‖2
2

)
, every stopping time τ ∈ S0,T is optimal in (9.2) and K = Kτ = 1.

EXAMPLE 9.2 (Logarithmic utility function from terminal wealth only, with β > 0): U2(x) =
log x for x > 0 and U1(·) ≡ 0. This is the setting of Example 6.6 with δ = 0; Assumption 6.1 is
now satisfied trivially.

(i) b(·) ≡ r(·)1m. Since we have θ(·) ≡ 0 in this case, it follows that J̃(λ; τ) = −IE[e−βτ (1 +
log λ + A(τ))], where

A(t, ω)
4
= βt−

∫ t

0
r(s, ω) d s, ∀ 0 ≤ t ≤ T.

We claim that

if dA(t,ω)
dt − βA(t, ω) is strictly increasing for almost every ω ∈ Ω

(e.g., if r(t) ≡ r > β), then (8.7) holds.

In order to check this, let τ̂λ
4
= inf

{
t ≥ 0

/
dA(t)

dt − βA(t) ≥ β(1 + log λ)
}
∧T. It is not difficult

to see that τ̂λ ∈ Ŝλ, since −e−βτ̂λ(ω)(1 + log λ + A(τ̂λ(ω), ω)) is then the minimum of the path
e−βt(1 + log λ + A(t, ω)), 0 ≤ t ≤ T . Moreover, the condition of Corollary 8.8 is satisfied, and
τ̂λn → τ̂λ if λn → λ. It follows that

V (x) = inf
λ>0

[J̃(λ; τ̂λ) + λx].

The optimal stopping time for the original optimization problem is τ̂ ≡ τ̂λ̂, where λ̂ > 0 attains
the infimum in the above expression. The corresponding optimal level of wealth Xx,π̂,0(τ̂) ≡ ξx(τ̂)
is given by (6.11) as

ξx(τ̂) =
x

IE (e−βτ̂ )
e
∫ τ̂
0 r(s) ds−βτ̂ ,

and the optimal portfolio process π̂(·) can be derived from Lemma 6.3.
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(ii) A general result for the logarithmic utility function seems difficult to obtain, as we saw
already in Example 6.6. Nevertheless, using the theory of Section 8 we shall establish the following
property:

(9.3)





V (x) is attainable and (8.7) holds for every x > 0, if there exists a unique
optimal stopping time solving the optimization problem (7.2) for every λ > 0.





The rest of this paragraph is dedicated to the proof of the statement (9.3). Consider the continuous
process

Y λ(t)
4
= e−βtŨ(λeβtH(t)) = −e−βt(1 + log λ + βt + log H(t))

and its Snell envelope, given as an RCLL modification of the supermartingale

Zλ(t)
4
= esssupτ∈St,T

IE[Y λ(τ)|Ft], 0 ≤ t ≤ T

with Zλ(0) = supτ∈S0,T
IEY λ(τ) = Ṽ (λ). We claim that Zλ(·) is actually continuous. Indeed,

since the random variable sup0≤t≤T Y λ(t) is integrable by Remark 7.3, the Snell envelope Zλ(·)
admits the Doob–Meyer decomposition Zλ(·) = Zλ(0)+Mλ(·)−Aλ(·) (Karatzas & Shreve (1998),
Theorem D.13) where Mλ(·) is an RCLL martingale and Aλ(·) is continuous and nondecreas-
ing. But any RCLL martingale of the Brownian filtration is continuous (Karatzas & Shreve
(1991), Problem 3.4.16), hence Mλ(·) is continuous, and thus so is Zλ(·). The stopping time

τ∗λ
4
= inf

{
t ∈ [0, T )

/
Zλ(t) = Y λ(t)

} ∧ T is the smallest optimal stopping time in Ŝλ, whereas

the stopping time ρ∗λ
4
= inf

{
t ∈ [0, T )

/
Aλ(t) > 0

} ∧ T is the largest optimal stopping time in
Ŝλ (Karatzas & Shreve (1998), Theorems D.12 and D.9; El Karoui (1981)). In particular, the
uniqueness property (9.3) amounts to the statement: IP[τ∗λ = ρ∗λ] = 1, for all 0 < λ < ∞.

Moreover, λ 7→ τ∗λ is increasing, that is, for any λ ≥ ν we have τ∗λ ≥ τ∗ν almost surely. To see
this, observe that Y λ(t)− Y ν(t) = −e−βt log(λ/ν) and obtain

Zλ(t)− Zν(t) = esssupτ∈St,T
IE[Y λ(τ)|Ft]− esssupτ∈St,T

IE[Y λ(τ) + e−βτ log(λ/ν)|Ft]

≥ esssupτ∈St,T
IE[Y λ(τ)|Ft]−

{
esssupτ∈St,T

IE[Y λ(τ)|Ft] + e−βt log(λ/ν)
}

= Y λ(t)− Y ν(t)

almost surely, for any given 0 ≤ t ≤ T . By the continuity of Z(·) and Y (·), it follows that

IP
[
Zλ(t)− Y λ(t) ≥ Zν(t)− Y ν(t), for all 0 ≤ t ≤ T

]
= 1,

which implies that τ∗λ ≥ τ∗ν almostly surely, since Z(·) always dominates Y (·). It is not difficult to see

that τ±λ
4
= limn→∞ τ∗

λ± 1
n

are stopping times, thanks to the continuity of the filtration IF. Moreover,

they both belong to Ŝλ, which is an easy exercise on the Dominated Convergence Theorem (we
omit the details).

Now we can prove our assertion (9.3). Clearly it must hold that τ∗λ = τ+
λ = τ−λ by uniqueness

of optimal stopping time. It follows from Corollary 8.8 that V (x) is attainable and (8.7) holds for
every x > 0.
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EXAMPLE 9.3 (A case where NO optimal strategy exists): We present now an example which
shows that optimal strategies need not always exist for every initial capital x ∈ (0,∞).

Consider the logarithmic utility functions as in Example 6.6 with δ = 0, i.e. U1(·) ≡ 0 and
U2(x) = log x, discount factor β = 1, and model parameters m = 1, r(·) ≡ 0, b(·) ≡ 0, σ(·) ≡ 1 in
(2.1), (2.2). In this case we may take c(·) ≡ 0 since there is no utility from consumption, and for a
given initial capital x > 0 the wealth process Xx,π(·) ≡ Xx,π,0(·) corresponding to a portfolio π(·)
satisfies

(9.4) dXx,π(t) = Xx,π(t)π(t) dW (t), Xx,π(0) = x.

It is not difficult to check that

(9.5) Ṽ (λ) = sup
τ∈S

J̃(λ; τ) = sup
τ∈S

IE
[−e−τ (1 + log λ + τ)

]
= max

0≤t≤T
F (λ; t),

where F (λ; t)
4
= −e−t(1 + log λ + t), λ > 0, t > 0. Note that the function t 7→ F (λ; t) at-

tains its maximum on the interval [0, T ] at one of its endpoints, that is, max0≤t≤T F (λ; t) =
max{F (λ; 0), F (λ; T )}, since et dF

dt (λ; t) = log λ + t is increasing. It follows then from (9.5) that

(9.6) Ṽ (λ) =
{ −(1 + log λ) ; 0 < λ ≤ λ∗(T )
−e−T (1 + log λ + T ) ; λ∗(T ) ≤ λ < ∞

}
,

where λ∗(s) 4= exp
{(

s/(es − 1)
)− 1

} ∈ (0, 1) is determined by the equation

(9.7) 1 + log λ∗(s) = e−s(1 + log λ∗(s) + s).

Clearly, Ṽ (·) is not differentiable at λ = λ∗(T ). Moreover, it is easy to verify that Gλ = {1/λ}
for 0 < λ < λ∗(T ) and that Gλ =

{
e−T /λ

}
for λ > λ∗(T ), thus

(9.8) G =
⋃

λ>0

Gλ =
(
0, x0(T )

] ∪ [
x1(T ),∞)

with x0(s)
4
= e−s

λ∗(s) ∈ (0, 1) and x1(s)
4
= 1

λ∗(s) ∈ (1,∞); we omit the details of these computations.
It should be noted that x1(·) is increasing with x1(0+) = 1, x1(∞) = e, whereas x0(·) is decreasing
with x0(0+) = 1, x0(∞) = 0.

Now with V0(x)
4
= e−T log x and V1(x)

4
= log x, let us consider the concave function

G(x)
4
= inf

λ>0
[Ṽ (λ) + λx]

=





V0(x) ; 0 < x ≤ x0(T )
V0(x0(T )) x1(T )−x

x1(T )−x0(T ) + V1(x1(T )) x−x0(T )
x1(T )−x0(T ) ; x0(T ) < x < x1(T )

V1(x) ; x1(T ) ≤ x < ∞





;

see Remark 9.4 for discussion. We have V (x) = G(x) for x ∈ G from Theorem 8.5, or

(9.9) V (x) =
{

V0(x) ; 0 < x ≤ x0(T )
V1(x) ; x1(T ) ≤ x < ∞

}
.
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In particular, the optimal strategy is to keep all the wealth in the money-market (i.e., π(·) ≡ 0)
and to wait until the terminal time T , if the initial capital x is in (0, x0(T )], whereas the optimal
strategy for x ≥ x1(T ) is to stop immediately.

But how about an initial capital x ∈ (x0(T ), x1(T ) )? From Theorem 8.5 and Proposition 8.9
we know that, either V (x) < G(x) for some x ∈ ( x0(T ), x1(T ) ) (which will give us a nonconcave
value function V (·)), or else V (x) ≡ G(x) for all x ∈ ( x0(T ), x1(T ) ) (in which case no optimal
strategy exists).

We claim that the latter is the case. In other words, V (x) ≡ G(x) for all x ∈ R+, but no optimal
strategy exists for x ∈ ( x0(T ), x1(T ) ). Actually, for every x ∈ ( x0(T ), x1(T ) ), a maximizing
sequence of strategy pairs {(πn, τn)}∞n=1 can be constructed so that J(x; πn, τn) → G(x) as n →∞;
this proves, in particular, that V (·) ≡ G(·) on

(
x0(T ), x1(T )

)
. Indeed, consider the wealth process

dXx,n(t) = nXx,n(t) dW (t), Xx,n(0) = x, and let

Tn
0

4
= inf

{
t ≥ 0

/
Xx,n(t) ≤ x0(T − t)

} ∧ T,(9.10)

Tn
1

4
= inf

{
t ≥ 0

/
Xx,n(t) ≥ x1(T − t)

} ∧ T.(9.11)

Recall x0(0+) = x1(0+) = 1, so that Tn
0 ∧ Tn

1 < T holds almost surely. We define the portfolio /
stopping time pair (πn, τn) by

(9.12) πn(t)
4
= n · 1{t<T n

1 ∧T n
0 }, 0 ≤ t ≤ T and τn

4
= Tn

1 · 1{T n
1 <T n

0 } + T · 1{T n
1 ≥T n

0 }.

This means: if the wealth reaches the curve x1(T − ·) before reaching the curve x0(T − ·), stop
immediately when this happens; if the wealth reaches the curve x0(T −·) before reaching the curve
x1(T − ·), then put all the money in the bank account and wait until the terminal time T ; and
up until the first time that one of these curves is reached, keep an amount of n dollars invested in
stock. Clearly,

(9.13) Xx,πn(τn) = x0(T − Tn
0 ) · 1{T n

0 <T n
1 } + x1(T − Tn

1 ) · 1{T n
1 <T n

0 }.

Moreover, since πn(·) is bounded, the wealth process Xx,πn(·) is a martingale, and the optional
sampling theorem gives

(9.14) x = IE [Xx,πn(τn)] .

Because Tn
0 = inf

{
t ≥ 0

/
W (t) ≤ 1

2nt + 1
n log

(
x0(T−t)

x

)}
∧ T −→ 0 almost surely as n →∞, it

follows from (9.13) and (9.14) that x0(T )pn +x1(T )(1− pn) −→ x as n →∞, where pn
4
= IP(Tn

0 <
Tn

1 ) = 1− IP(Tn
1 < Tn

0 ), or equivalently

(9.15) pn → x1(T )− x

x1(T )− x0(T )
as n →∞.

On the other hand, the expected discounted utility corresponding to (πn, τn) of (9.12) is

J(x; πn, τn) = IE
[
e−T log (x0(T − Tn

0 )) · 1{T n
0 <T n

1 } + log
(
e−T n

1 x1(T − Tn
1 )

) · 1{T n
1 <T n

0 }
]
.

19



We conclude the proof by noting from (9.15) and the Dominated Convergence Theorem, that

lim
n→∞J(x;πn, τn) = e−T log x0(T ) · x1(T )− x

x1(T )− x0(T )
+ log x1(T ) · x− x0(T )

x1(T )− x0(T )
= G(x).

Remark 9.4: The tangent to the graph of V0(·) at x = x0
4
= x0(T ), and the tangent to the graph

of V1(·) at x = x1
4
= x1(T ), coincide. Indeed, V ′

1(x) = 1
x so that the tangent f1(·) to the graph of

V1(·), at the point x = x1, is given by

f1(x) =
x− x1

x1
+ f1(x1) =

(
x

x1
− 1

)
+ log x1 = λ∗(T )x− (1 + log λ∗(T )).

On the other hand, V ′
0(x) = 1

xe−T so that the tangent f0(·) to the graph of V0(·), at the point
x = x0, is given by

f0(x) =
x− x0

x0
e−T + f0(x0) = e−T

(
xλ∗(T )eT − 1

)
+ e−T log x0

= λ∗(T )x− e−T (1 + log λ∗(T ) + T ).

Thanks to (9.7), these two expressions are the same.

10 Appendix A

In this section we provide an example which illustrates briefly, in a Markovian setting and with
logarithmic utility from wealth (we set c(·) ≡ 0 and write Xx,π(·) ≡ Xx,π,0(·) throughout), how the
optimization problem of (5.3) can be cast in the form of a free–boundary problem for a suitable
Hamilton–Jacobi–Bellman (HJB) equation, which can then be solved explicitly.

In order to obtain such an explicit solution, we place ourselves on an infinite time–horizon so
that all stopping times τ ∈ S0,∞ are admissible, and denote the corresponding value function by

(10.0) V∞(x) = sup
(π,τ)∈A(x)

IE
[
e−βτ log Xx,π(τ) · 1{τ<∞}

]

with β > 0, for a given initial capital x > 0 in the notation of (9.4). Furthermore, we assume that
the coëfficients of the model r(·) ≡ r > 0, b(·) ≡ b, σ(·) ≡ σ > 0 are all constant, and impose the
assumption b 6= r1m, or equivalently θ(·) ≡ θ 6= 0. For the measure–theoretic subtleties associated
with working on an infinite time–horizon, we refer the reader to Section 1.7 in Karatzas & Shreve
(1998).

Consider the following differential operator

Lu (x)
4
= −βu(x) + rxu′(x) + max

π∈IRm

(
xu′(x)π∗σθ +

1
2
x2u′′(x) ‖ π∗σ ‖2

)
(10.1)

= −βu(x) + rxu′(x)− (u′(x))2Θ2

2u′′(x)
,

acting on functions u : (0,∞) → IR, which are twice continuously differentiable with u′′(·) < 0; here

Θ
4
= ‖ (σ∗)−1θ ‖= ‖ (σσ∗)−1(b − r1m) ‖> 0. By analogy with Section 2.7 in Karatzas & Shreve
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(1998), we cast the original optimization problem of (10.0) as a variational inequality, relying on
the familar “principle of smooth–fit”.

VARIATIONAL INEQUALITY A.1: Find a number b ∈ (1,∞) and an increasing function g(·)
in the space C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞) \ {b}), such that :

Lg (x) = 0 ; 0 < x < b(10.2)
Lg (x) < 0 ; x > b(10.3)

g(x) > log x ; 0 < x < b(10.4)
g(x) = log x ; x ≥ b(10.5)

g(x) > 0 ; x > 0(10.6)
g′′(x) < 0 ; x ∈ (0,∞) \ {b}.(10.7)

THEOREM A.2: Suppose that the pair (b, g(·)) solves the Variational Inequality A.1, that the
ratio |g′(x)/(xg′′(x))| is bounded away from both zero and infinity on (0,∞), and that the stochastic
differential equation

(10.8) dX̂(t) = X̂(t)

[
r dt− g′(X̂(t))

X̂(t)g′′(X̂(t))
θ∗ dW0(t)

]
, X̂(0) = x > 0

has a pathwise unique, strictly positive strong solution X̂(·). In terms of this process, define

(10.9) π̂(·) 4= −(
σ∗

)−1
θ

g′(ξ)
ξg′′(ξ)

∣∣∣∣
ξ=X̂(·)

, τ̂
4
= inf

{
t ≥ 0

/
X̂(t) ≥ b

}
.

Then the function g(·) coincides with the optimal expected utility V∞(·) of (10.0), the pair
(
π̂(·), τ̂

)

attains the supremum in (10.0), and we have X̂x,π̂(·) ≡ X̂(·).

Proof: Fix x ∈ (0,∞). For any available portfolio process π(·), an application of Itô’s rule to

Gx,π(t)
4
= e−βtg(Xx,π(t)), 0 ≤ t < ∞ yields, in conjuction with (3.1), (10.2) and (10.3):

e−βtg(Xx,π(t))− g(x)−
∫ t

0
e−βsπ∗σ · ξg′(ξ)

∣∣∣
ξ=Xx,π(s)

dW (s) =(10.10)

=
∫ t

0
e−βs

(
(π∗σθ + r) · ξg′(ξ) +

1
2
g′′(ξ)ξ2 ‖ π∗σ ‖2 −βg(ξ)

)∣∣∣∣
ξ=Xx,π(s)

ds

≤
∫ t

0
e−βsLg(Xx,π(s)) ds ≤ 0.

It follows that the process Gx,π(t) = e−βtg(Xx,π(t)), 0 ≤ t < ∞ is a local supermartingale

under P, hence also a true supermartingale because it is positive. In particular, Gx,π(∞)
4
=

lim supt→∞ Gx,π(t) ≥ 0 exists almost surely, and {Gx,π(t), 0 ≤ t ≤ ∞} is a P−supermartingale.
Thus

(10.11) IE[e−βτ log Xx,π(τ) · 1{τ<∞}] ≤ IE[e−βτg
(
Xx,π(τ)

) · 1{τ<∞}] ≤ IE[Gx,π(τ))] ≤ g(x)
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holds for any stopping time τ ∈ S0,∞, by the optional sampling theorem and (10.4)–(10.5); in other
words, V∞(x) ≤ g(x). We complete the proof upon noticing that, thanks to (10.2) and (10.5), all
the inequalities in (10.10) and (10.11) hold as equalities for the choice

(10.12) π̂(t)
4
= − g′(X̂(t))

X̂(t)g′′(X̂(t))
(σ∗)−1θ, τ̂b

4
= inf

{
t ≥ 0

/
X̂(t) ≥ b

}
,

since we have 0 < g(X̂(τ̂b)) ≤ log b and e−βτ̂b g(X̂(τ̂b)) = 0 on the event {τ̂b = ∞}. ♦
We have now to construct the solution of the Variational Inequality A.1, and to verify the

properties for the equation (10.8) assumed in Theorem A.2.

PROPOSITION A.3: Let α be the unique solution of the quadratic equation

(10.13) α2 −
(

1 +
Θ2

2r
+

β

r

)
α +

β

r
= 0

in the interval (0, 1), set b
4
= e1/α and consider the function

(10.14) g(x)
4
=

{
xα

/
eα ; 0 ≤ x < b

log x ; b ≤ x < ∞
}

.

Then the pair (b, g(·)) solves the Variational Inequality A.1; and the stochastic differential equation
(10.8) has a pathwise unique, strictly positive strong solution X̂(·).

Proof: Note that the function

(10.15) F (u)
4
= u2 −

(
1 +

Θ2

2 + β

r

)
u +

β

r
, 0 ≤ u < ∞

is convex with F (0) = β/r > 0, F (1) = −Θ2/2r < 0. Thus F (·) has exactly one root in the interval
(0, 1). It is clear now that (10.5)–(10.7) are satisfied since b > 1. Furthermore, notice from (10.14)
that

(10.16) g′(x) =
{

xα−1/e ; 0 < x < b
1/x ; b < x < ∞

}

is continuous across x = b (principle of smooth-fit), which implies that the function g(·) belongs to
the space of functions C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞)\{b}). It is fairly straightforward to check
that (10.2) holds for 0 < x < b, and that |g′(x)/(xg′′(x))| is bounded away from both zero and
infinity on (0,∞) (cf. (10.18) below). As for (10.3), we need to prove that −β log x + r + Θ2/2 <

0, ∀x > b. Since log b = 1/α and β > 0, it is sufficient to verify α < α∗ 4= β/(r + Θ2

2 ). Indeed

F (α∗) = α∗
(

α∗ −
Θ2

2 + β

r
− 1

)
+

β

r
< α∗

(
β

r
−

Θ2

2 + β

r
− 1

)
+

β

r
= α∗

(
−

Θ2

2 + r

r

)
+

β

r
= 0,

which yields α < α∗. Finally, (10.4) follows readily from

g′(x)− (log x)′ =
1
x

(
1
e
xα − 1

)
<

1
x

(
1
e
bα − 1

)
= 0, 0 < x < b.
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It is now clear that the pair (b, g(·)) solves the Variational Inequality A.1.
For the function g(·) of (10.14), the optimal wealth-process X̂(·) of Theorem A.2 satisfies the

stochastic differential equation (10.8), namely

(10.17) dX̂(t) = X̂(t)
[
r dt + ν

(
X̂(t)

)
θ∗ dW0(t)

]
, X̂(0) = x > 0

where

(10.18) ν(x)
4
= − g′(x)

xg′′(x)
=

{
1

/
(1− α) ; 0 < x < b
1 ; b ≤ x < ∞

}
.

Equivalently, the process Ŷ (·) 4= log X̂(·) solves the stochastic differential equation

(10.19) dŶ (t) =
[
r − ||θ||2

2
· ν2

(
eŶ (t)

)]
dt + ν

(
eŶ (t)

)
θ∗ dW0(t), Ŷ (0) = log x,

which has a pathwise unique, strong solution (cf. Nakao (1972)). This, in turn, means that the
equation (10.14) for X̂(·) ≡ eŶ (·) also has a strictly positive, pathwise unique strong solution, as
postulated in Theorem A.2. ♦

Remark A.4: For x ≥ b, we have τ̂ ≡ 0; on the other hand, for 0 < x < b, we can write the
stopping time τ̂

4
= inf

{
t ≥ 0

/
X̂(t) ≥ x

}
= inf

{
t ≥ 0

/
Ŷ (t) ≥ log b

}
in the form of the time

τ̂ = inf
{

t ≥ 0
/(

r +
||θ||2

2
1− 2α

(1− α)2

)
t +

θ∗

1− α
W (t) ≥ log

( b

x

)}

of first–passage to a positive level by a Brownian motion with drift. Clearly, we have P[τ̂ < ∞] =
1 if and only if (1 − α)2 + ||θ||2(1 − 2α)/2r ≥ 0, and in light of the equation (10.13) this last
condition is equivalent to

(10.20)
(

β − r − ||θ||2 +
Θ2

2

)
· α ≥

(
β − r − ||θ||2

2

)
.

In particular, if σ = Im, the condition (10.20) amounts to

(10.21) β ≤ r + ||b− r1m||2.

Remark A.5: From (10.12), the optimal portfolio process is actually given as

(10.22) π̂(t) ≡ (σ∗)−1

1− α
θ =

(σσ∗)−1

1− α
[b− r1m], 0 ≤ t < τ̂ ;

this means that the optimal strategy is to invest a fixed proportion of total wealth in every stock,
given by (10.2), up to the optimal stopping time τ̂ .

Remark A.6: The assumption θ 6= 0 is crucial for solving the Variational Inequality A.1. When
θ = 0, we can have situations, as in Example 9.3, for which no optimal strategy exists. Actually,
for θ = 0 and β > r, it is easy to show that the Variational Inequality A.1 has no solution (see
Example 9.2 for discussion of the case θ = 0, β < r).
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11 Appendix B

As the referee points out, it would be very interesting to study optimization over a consumption
stream that extends beyond the stopping time τ . Consider, for instance, the situation of an investor
who remains in the stock-market up until a “retirement” time τ of his choice. At that point he
consumes a lump-sum amount ξ ≥ 0 of his choice (say, to buy a new house, or to finance some
other, “retirement-related”, activity); and from then on keeps his holdings in the money-market,
making withdrawals for consumption at some rate, up until t = T .

We can capture such a situation by changing the wealth-equation of (3.1), to read

(11.1) dX(t) = r(t)X(t)dt + X(t)π∗(t)σ(t)dW0(t)− dC(t), X(0) = x > 0.

Here

(11.2) C(t) =
∫ t

0
c(u) du + ξ · 1[τ,T ](t), 0 ≤ t ≤ T

is the “cumulative consumption up to time t”. This process consists of a stopping time τ ∈ S, a
consumption-rate process c(·) as before, and an Fτ−measurable random variable ξ : Ω → [0,∞)
representing lump-sum consumption at time τ . We say that a portfolio / cumulative-consumption
process pair (π,C) is “available” to an investor with initial capital x, if the portfolio process π(·)
and the wealth-process X(·) ≡ Xx,π,C(·) of (11.1) satisfy

(11.3) π(t) = 0, τ ≤ t ≤ T

(11.4) Xx,π,C(t) > 0, ∀ 0 ≤ t < T and Xx,π,C(T ) ≥ 0 ,

almost surely. For any such pair (π,C), the investor’s expected discounted utility is given as

(11.5) J∗(x; π, C)
4
= IE

[
α

∫ τ

0
e−βtU1

(
c(t)

)
dt + e−βτU2(ξ) + γ

∫ T

τ
e−βtU1

(
c(t)

)
dt

]

for some given constants α ≥ 0, γ ≥ 0 and utility functions U1(·), U2(·). With α = 1, γ = 0 we
recover the problem of Section 5. With α = 0, γ = 1, the expression of (11.5) tries to capture the
situation of an investor who consumes nothing up until retirement, consumes a lump-sum amount
ξ at that time, and afterwards keeps all holdings in the money-market while consuming at some
rate c(·). The objective now, is to maximize the expression of (11.5), over the class A∗(x) of pairs
(π, C) that satisfy the analogue

(11.6) IE
[
α

∫ τ

0
e−βtU−

1

(
c(t)

)
dt + e−βτU−

2 (ξ) + γ

∫ T

τ
e−βtU−

1

(
c(t)

)
dt

]
< ∞

of (5.2), and to see whether the value-function

(11.7) V ∗(x)
4
= sup

(π,C)∈A∗(x)
J∗(x; π, C), x ∈ (0,∞)

is attained by some optimal (π̂, Ĉ) ∈ A∗(x). We have not yet been able to obtain a satisfactory
answer to these questions, and would like to suggest their resolution as an interesting open problem.
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