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ABSTRACT
Features play an important role in the prediction tasks of e-commerce
recommendations. To guarantee the consistency of off-line training
and on-line serving, we usually utilize the same features that are
both available. However, the consistency in turn neglects some dis-
criminative features. For example, when estimating the conversion
rate (CVR), i.e., the probability that a user would purchase the item
if she clicked it, features like dwell time on the item detailed page
are informative. However, CVR prediction should be conducted for
on-line ranking before the click happens. Thus we cannot get such
post-event features during serving.

We define the features that are discriminative but only available
during training as the privileged features. Inspired by the distillation
techniques which bridge the gap between training and inference,
in this work, we propose privileged features distillation (PFD). We
train twomodels, i.e., a studentmodel that is the same as the original
one and a teacher model that additionally utilizes the privileged
features. Knowledge distilled from the more accurate teacher is
transferred to the student, which helps to improve its prediction
accuracy. During serving, only the student part is extracted and
it relies on no privileged features. We conduct experiments on
two fundamental prediction tasks at Taobao recommendations,
i.e., click-through rate (CTR) at coarse-grained ranking and CVR
at fine-grained ranking. By distilling the interacted features that
are prohibited during serving for CTR and the post-event features
for CVR, we achieve significant improvements over their strong
baselines. During the on-line A/B tests, the click metric is improved
by +5.0% in the CTR task. And the conversion metric is improved
by +2.3% in the CVR task. Besides, by addressing several issues of
training PFD, we obtain comparable training speed as the baselines
without any distillation.
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1 INTRODUCTION
In recent years, deep neural networks (DNNs) [4, 5, 10, 21, 28, 40]
have achieved very promising results in the prediction tasks of rec-
ommendations. However, most of these works focus on the model
aspect. While there are limited works except [4, 5] paid attention
to the feature aspect in the input, which essentially determine the
upper-bound of the model performance. In this work, we also fo-
cus on the feature aspect, especially the features in e-commerce
recommendations.

To ensure the consistency of off-line training and on-line serv-
ing, we usually use the same features that are both available in
the two environments in real applications. However, a bunch of
discriminative features, which are only available at training time,
are thus ignored. Taking conversion rate (CVR) prediction in e-
commerce recommendations as an example, here we aim to esti-
mate the probability that the user would purchase the item if she
clicked it. Features describing user behaviors in the clicked detail
page, e.g., the dwell time on the whole page, can be rather helpful.
However, these features cannot be utilized for on-line CVR pre-
diction in recommendations, because it has to be done before any
click happens. Although such post-event features can indeed be
recorded for off-line training. In consistent with the learning using
privileged information [34, 35], here we define the features that are
discriminative for prediction tasks but only available at training
time, as the privileged features.

A straightforward way to utilize the privileged features is multi-
task learning [31], i.e., predicting each feature with an additional
task. However, in the multi-task learning, each task does not nec-
essarily satisfy a no-harm guarantee (i.e., privileged features can
harm the learning of the original model). More importantly, the
no-harm guarantee will very likely be violated since estimating
the privileged features might be even more challenging than the
original problem [20]. From the practical point of view, when using
dozens of privileged features at once, it would be a challenge to
tune all the tasks.

Inspired by learning using privileged information (LUPI) [24],
here we propose privileged features distillation (PFD) to take ad-
vantage of such features. We train two models, i.e., a student and a
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Figure 1: Illustration of model distillation (MD) [13] and
privileged features distillation (PFD) proposed in this work.
In MD, the knowledge is distilled from the more complex
model. While in PFD, the knowledge is distilled from both
the privileged and the regular features. PFD also differs
from the original learning using privileged information
(LUPI) [24], where the teacher only processes the privileged
features.

teacher model. The student model is the same as the original one,
which processes the features that are both available for off-line
training and on-line serving. The teacher model processes all fea-
tures, which include the privileged ones. Knowledge distilled from
the teacher, i.e., the soft labels in this work, is then used to supervise
the training of the student in addition to the original hard labels,
i.e., {0, 1}, which additionally improves its performance. During
on-line serving, only the student part is extracted, which relies on
no privileged features as the input and guarantees the consistency
with training. Compared with MTL, PFD mainly has two advan-
tages. On the one hand, the privileged features are combined in a
more appropriate way for the prediction task. Generally, adding
more privileged features will lead to more accurate predictions. On
the other hand, PFD only introduces one extra distillation loss no
matter what the number of privileged features is, which is much
easier to balance.

PFD is different from the commonly used model distillation
(MD) [3, 13]. In MD, both the teacher and the student process the
same inputs. And the teacher uses models with more capacity than
the student. For example, the teachers can use deeper networks
to instruct the shallower students [19, 39]. Whereas in PFD, the

teacher and the student use the same models but differ in the inputs.
PFD is also different from the original LUPI [24], where the teacher
network in PFD additionally processes the regular features. Figure
1 gives an illustration on the differences.

In this work, we apply PFD to Taobao recommendations. We
conduct experiments on two fundamental prediction tasks by uti-
lizing the corresponding privileged features. The contributions of
this paper are four-fold:

• We identify the privileged features existing at Taobao recom-
mendations and propose PFD to leverage them. Compared
with MTL to predict each privileged feature independently,
PFD unifies all of them and provides a one-stop solution.

• Different from the traditional LUPI, the teacher of PFD ad-
ditionally utilizes the regular features, which instructs the
student much better. PFD is in complementary to MD. By
combining both of them, i.e., PFD+MD, we can achieve fur-
ther improvements.

• We train the teacher and the student synchronously by shar-
ing common input components. Compared to training them
asynchronously with independent components as done in
tradition, such training manner achieves even or better per-
formance, while the cost of time is much reduced. Thus the
technique is adoptable in online learning, where real-time
computation is in high demand.

• We conduct experiments on two fundamental prediction
tasks at Taobao recommendations, i.e., CTR prediction at
coarse-grained ranking and CVR prediction at fine-grained
ranking. By distilling the interacted features that are prohib-
ited due to efficiency requirement for CTR at coarse-grained
ranking and the post-event features for CVR as introduced
above, we achieve significant improvements over their strong
baselines. During the on-line A/B tests, the click metric is
improved by +5.0% in the CTR task. And the conversion
metric is improved by +2.3% in the CVR task.

2 RELATED DISTILLATION TECHNIQUES
Before giving detailed description of our PFD, we will firstly intro-
duce the distillation techniques [3, 13]. Overall, the techniques are
aiming to help the non-convex student models to train better. For
model distillation, we can typically write the objective function as
follows:

min
Ws

(1−λ)∗Ls (y, fs (X ;Ws ))+λ∗Ld (ft (X ;Wt ), fs (X ;Ws )) , (1)

where ft and fs are the teacher model and the student model,
respectively. Ls denotes the student pure loss with the known hard
labelsy and Ld denotes its loss with the soft labels produced by the
teacher. λ ∈ [0, 1] is the hyper-parameter to balance the two losses.
Compared with the original function that minimizes Ls alone, we
are expecting that the additional loss Ld in Eq.(1) will help to train
Ws better by distilling the knowledge from the teacher. In the work
of [29], Pereyra et. al. regard the distillation loss as regularization
on the student model. When training fs alone by minimizing Ls , it
is prone to get overconfident predictions, which overfit the training
set [32]. By adding the distillation loss, fs will also approximate
the soft predictions from ft . By softening the outputs, fs is more
likely to achieve better generalization performance.



Privileged Features Distillation at Taobao Recommendations Woodstock ’18, June 03–05, 2018, Woodstock, NY

Typically, the teacher model is more powerful than the student
model. Teachers can be the ensembles of several models [3, 13, 38],
or DNNs with more neurons [33], more layers [19, 39], or even
broader numerical precisions [27] than students. There are also
some exceptions, e.g., in the work of [1], both of the two models
are using the same structure and learned from each other, with
difference only in the initialization and the orders to process the
training data.

As indicated in Eq.(1), the parameterWt of the teacher is fixed
across the minimization. We can generally divide the distillation
technique into two steps: firstly train the teacher with the known
labels y, then train the student by minimizing Eq.(1). In some appli-
cations, the models could take rather long time to converge, thus it
is impractical to wait for the teacher to be ready as Eq.(1). Instead,
some works try to train the teacher and the student synchronously
[1, 38, 39]. Besides distilling from the final output as Eq.(1), it is
possible to distill from the middle layer, e.g., Romero et al. [30]
try to distill the intermediate feature maps, which help to train a
deeper and thinner network.

In addition to distilling knowledge from more complex models,
Lopez-Paz et al. [24] propose to distill knowledge from privileged
information X ∗, which is also known as learning using privileged
information (LUPI). The loss function then becomes:

min
Ws

(1−λ)∗Ls (y, f (X ;Ws ))+λ ∗Ld
(
f (X ∗;Wt ), f (X ;Ws )

)
. (2)

In the work of [37], Wang et al. apply LUPI to image tag recom-
mendation. Besides the teacher and the student, they additionally
learn a discriminator, which ensures the student to learn the true
data distribution at the equilibrium faster. Chen et al. apply LUPI to
review-based recommendation. They also utilize adversarial train-
ing to select informative reviews. Although achieving better per-
formance, both of the works are only validated on relatively small
datasets. It still remains unknown whether these techniques can
reach equilibrium of the min-max game in industry-scale datasets.

3 PRIVILEGED FEATURES AT TAOBAO
RECOMMENDATIONS

To better understand the privileged features exploited in this work,
we firstly give an overview of Taobao recommendations in Figure
2. As usually done in industry recommendations [5, 23], we adopt
the cascaded learning framework. There are overall three stages to
select/rank the items before presenting to the user, i.e., candidate
generation, coarse-grained ranking, and fine-grained ranking. To
make a trade-off between efficiency and accuracy, more complex
and effective model is adopted as the cascaded stage goes forward,
with the expense of higher latency to scoring the items. In the
candidate generation stage, we choose around 105 items that are
most likely to be clicked or purchased by a user from the huge-scale
corpus. Generally, the candidate generation is mixed from several
sources, e.g., collaborative filtering [8], the DNN models [5], etc.
After the candidate generation, we adopt two stages for ranking,
where PFD is applied in this work.

In the coarse-grained ranking stage, we are mainly to esti-
mate the CTRs of all items selected by the candidate generation
stage, which are then used to select the top-k highest ranked items
for the next stage. The inputs of the prediction model mainly consist

Item
Corpus

Candidate
Generation

Coarse-
Grained 
Ranking

Fine-Grained 
Ranking

User Behavior

User Features

Interacted Features

Item Features

~10#$ ~10% ~10& ~10'

(Privileged Features for
Coarse-Grained Ranking)

{User ID, Age, Gender, …}

{Item ID, Category, Brand, …}

{Clicks of the user in the category
during the last 24 hours, Clicks of
the user in the shop during the last 
24 hours, … }

User Behavior {User Clicked/Purchased History}

User Features

Item Features

Interacted Features

Figure 2: Overview of Taobao recommendations. We adopt
a cascaded learning framework to select/rank items. At
coarse-grained ranking, the interacted features, although
being discriminative, are prohibited as they greatly increase
the latency at serving. Some representative features are il-
lustrated in the lower part.

of three parts. The first part consists of the user behavior, which
records the history of her clicked/purchased items. As the user
behavior is in sequential, RNNs [12, 14] or self-attention[18, 36] is
usually adopted to model the user’s long short-term interests. The
second part consists of the user features, e.g., user id, age, gender,
etc. and the third part consists of the item features, e.g., item id,
category, brand, etc. Across this work, all features are transformed
into categorical type and we learn an embedding for each one1.

In the coarse-grained ranking stage, the complexity of the predic-
tion model is strictly restricted, in order to grade tens of thousands
of candidates in milliseconds. Here we utilize the inner product
model [16] to measure the item scores:

f
(
Xu ,X i ;W u ,W i

)
≜

〈
ΦW u

(
Xu ) ,ΦW i

(
X i

)〉
, (3)

where the superscript u and i denote the user and item, respec-
tively.Xu denotes a combination of user behavior and user features.
ΦW (·) represents the non-linear mapping with learned parameter
W . ⟨·, ·⟩ is the inner product operation. As the user side and the
item side are separated in Eq.(3), during serving, we can compute
the mappings ΦW i (·) of all items off-line in advance2. When a
request comes, we only need to execute one forward pass to get the
user mapping ΦW u (Xu ) and compute its inner product with all
candidates, which is extremely efficient. For more details, see the
illustration in Figure 4.
1Numerical features are discretized with pre-defined boundaries.
2In order to capture the real-time user preference, the user mappings cannot be stored.
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Figure 3: Illustrative features describing the user behavior
in the detailed page of the clicked item. Including the dwell
time that is not shown, these features are rather informative
for CVRprediction. However, during serving, we need to use
CVR to rank all candidate items as shown in left sub-figure
before any itembeing clicked.We thus denote these features
as the privileged features for CVR prediction.

As shown in Figure 2, the coarse-grained ranking does not utilize
any interacted features, e.g., clicks of the user in the item category
during the last 24 hours, clicks of the user in the item shop during
the last 24 hours, etc. As verified by the experiments below, adding
these features can largely enhance the prediction performance.
However, it in turn greatly increases the latency during serving,
since the interacted features are depending on the user and the
specific item. In other words, the features vary with different items
or users. If putting them either at the item or the user side of Eq.(3),
the inference of the mappings ΦW (·) need to be executed as many
times as the number of candidates, i.e., 105 here. Generally, the
non-linear mapping ΦW (·) costs several orders more computation
than the simple inner product operation. It is thus unpractical to use
the interacted features during serving. Here we regard them as the
privileged features for CTR prediction at coarse-grained ranking.

In thefine-grained ranking stage, besides estimating the CTR
as done in the coarse-grained ranking, we need to estimate the CVR
for all candidates, i.e., the probability that the user would purchase
the item if she clicked it. In e-commerce recommendations, the
main aim is to maximize the Gross Merchandise Volume (GMV),
which can be decomposed into CTR×CVR× Price. Once estimating
the CTR and CVR for all items, we can rank them by the expected
GMVs to maximize them. Under the definition of CVR, it is obvious
that user behaviors on the detailed page of the clicked item, e.g.,
dwell time, whether viewing the comment or not, whether commu-
nicating with the seller or not, etc., can be rather helpful for the
prediction. However, CVR needs to be estimated for ranking before
any future click happens. Features describing user behaviors on
the detailed page are not available during inference. Here we thus
denote these features as the privileged features for CVR prediction.
To better understand that, we give an illustration in Figure 3.

4 PRIVILEGED FEATURE DISTILLATION

Algorithm 1 Minimizing the student, distillation, and teacher loss
in Eq.(5) synchronously with SGD.
Input: Hyper-parameter λ, swapping step k , and learning rate η
1: Initialize (Ws ,Wt ) and let i = 0.
2: while not converged do
3: Get training data (y,X ,X ∗) .
4: if i < k then
5: Ws =Ws − η∇Ws Ls .
6: else
7: Ws =Ws − η∇Ws {(1 − λ) ∗ Ls + λ ∗ Ld }.
8: end if

Wt =Wt − η∇Wt Lt . //No distillation loss Ld
9: Update i = i + 1
10: end while
Output: (Ws ,Wt )

In the original LUPI as Eq.(2), the teacher relies on the privileged
information X ∗. Although being informative, the privileged fea-
tures in this work only partially describe the user’s preference. The
performance of which using these features can even be inferior to
that of which using regular features. Besides, the predictions based
on privileged features can sometimes be misleading. For example,
it generally takes more time for customers to decide on expensive
items, while the conversion rate of these items is rather low. When
conducting CVR estimation, the teacher of LUPI makes predictions
relying on the privileged features, e.g., dwell-time, but not consid-
ering the regular features, e.g., item price, which may result in false
positive predictions on the expensive items. To alleviate that, we
additionally feed the regular features to the teacher model. The
original function of Eq.(2) is thus modified as follows:

min
Ws

(1 − λ) ∗ Ls (y, f (X ;Ws )) + λ ∗ Ld
(
f (X ,X ∗;Wt ), f (X ;Ws )

)
. (4)

Generally, adding more information, e.g., more features, will lead to
more accurate predictions. The teacher f (X ,X ∗;Wt ) here is thus
expected to be stronger than the student f (X ;Ws ) or the teacher
of LUPI f (X ∗;Wt ). In the above scenario, by taking both the privi-
leged and the regular features into consideration, the dwell time
feature instead can be used to distinguish the extent of preference
on different expensive items. The teacher is thus more knowledge-
able to instruct the student rather than mislead it. As verified by the
experiments below, adding regular features to the teacher is non-
trivial and it greatly improves the performance of LUPI. Thereafter
we denote this technique as PFD to distinguish it from LUPI.

As Eq.(4) indicates, the teacher f (X ,X ∗;Wt ) is trained in ad-
vance. However, it takes a long time to train the teacher model
alone in our applications. It is thus quite unpractical to apply distil-
lation as Eq.(4). A more plausible way is to train the teacher and the
student synchronously as done in [1, 38, 39]. The objective function
is then modified as follows:

min
Ws ,Wt

(1 − λ) ∗ Ls (y, f (X ;Ws )) + λ ∗ Ld
(
f (X ,X ∗;Wt ), f (X ;Ws )

)
+ Lt

(
y, f (X ,X ∗;Wt )

)
.

(5)

Although saving time, synchronous training can be un-stable. In
the early stage when the teacher is not well-trained, the distillation
loss Ld may distract the student and slow the training down. Here



Privileged Features Distillation at Taobao Recommendations Woodstock ’18, June 03–05, 2018, Woodstock, NY

Interaction
!∗

Act.

Act.

Act.

User !# Item !$

Act.

Act.

Act.

Act.

Act.

Act.

%& X

(
Student

Loss

Label

(
Teacher

Loss

Label

Distillation
Loss

Teacher
( Training synchronously 

with the student)

Student

User !) Item !*$

Act.

Act.

Act.

Act.

Act.

Act.

Item !+$

Act.

Act.

Act.

Item !,$

Act.

Act.

Act.

Inner
Product

Top K

Computing Off-line

(a) Training with PFD+MD (b) Serving with the Student

-./(!1) -&3(!$)

…

…

Serving
( Only one forward pass)

Figure 4: Illustration of training the inner-product model with PFD+MD and (b) its deployment during serving. At the training
time, the privileged features, i.e., interactionX ∗ betweenXu andX i , and themore complex DNNmodel together form a strong
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we alleviate it by adopting a warm up scheme. We set λ of Eq.(5)
to 0 in the early stage and fix it to the pre-defined value thereafter,
with the swapping step being a hyper-parameter. In our huge scale
datasets, we find that such simple scheme works well. Different
from mutual learning [38], we only enable the student to learn
from the teacher here. Otherwise the teacher will co-adapt with
the student, which degenerates its performance. When computing
the gradient with respect to the teacher parametersWt , we thus
omit the distillation loss Ld . The update with SGD is illustrated in
Algorithm 1.

Across this work, all models are trained in the parameter sever
systems [7], where all parameters are stored in the servers and
most computation is executed in the workers. The training speed is
mainly depending on the computation load in the workers and the
communication volume between the workers and the servers. As
indicated in Eq.(5), we train the teacher and the student together.
The number of parameters and the computation are roughly dou-
bled. Training using PFD can thus be much slower than training on
the student alone, which is unpractical in industry. Especially for
on-line learning where real-time computation is in high demand,
adopting distillation can add much burden. Here we alleviate that
by sharing all common input components in the teacher and the
student. Since the embeddings of all features occupy most of the
storage in the severs3, the communication volume is almost halved
by sharing. The computation can also be reduced by sharing the
components of processing the user clicked/purchased behavior,
which is known to be costly. As verified by the experiments below,

3For the student model alone, all embeddings take up to 150 Gigabytes.

we can achieve even or better performance by sharing. Besides, we
increase only a little extra time compared to training the student
alone, which makes PFD adoptable for online learning.
Extension: PFD+MD.As illustrated in Figure 1, PFD distills knowl-
edge from the privileged features. In comparison, MD distills knowl-
edge from the more complex teacher model. The two distillation
techniques are complementary. A natural extension is to combine
them by forming a more accurate teacher to instruct the student.

In the CTR prediction at coarse-grained ranking, as Eq.(3) shows,
we use the inner product model to increase the efficiency during
serving. In fact, the inner product model can be regarded as the
generalized matrix factorization [5]. Although we are using non-
linear mapping ΦW (·) to transform the user and item inputs, the
model capacity is intrinsically limited by the bi-linear structure at
the inner product operation. DNNs, with the capacity to approxi-
mate any function [6, 15], are considered as a substitution for the
inner product model in the teacher. In fact, as proved in Theorem
1 of [22], the product operation can be approximated arbitrarily
well by a two-layers neural network with only 4 neurons in the
hidden layer. Thus the performance of using DNN is supposed to
be lower-bounded by that of using the inner-product model.

In PFD+MD, we thus adopt the DNN model as the teacher net-
work. In fact, the teacher model here is the same as the model used
for CTR prediction at fine-grained ranking. PFD+MD in this task
can be regarded as distilling knowledge from the fine-grained rank-
ing to improve the coarse-grained ranking. For better illustration,
we give the whole framework in Figure 4. During serving, we ex-
tract the student part only, which relies on no privileged features.
As the mappings ΦW i

(
X i ) of all items are independent of the
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between the teacher and the student are shared during training.

users, we compute them off-line in advance. When a request comes,
the user mapping ΦW u (Xu ) is firstly computed. After that, we
compute its inner-product with the mappings of all items produced
from the candidate generation stage. The top-k highest scored items
are then chosen and fed to the fine-grained ranking. On the whole,
we only execute one forward pass to derive the user mapping and
conduct efficient inner product operations between the user and all
candidates, which are rather friendly in the aspect of computation.

5 EXPERIMENTS
In this section, we conduct experiments at Taobao recommenda-
tions with the aim of answering the following research questions:

• RQ1:What is the performance of PFD on the tasks of CTR
at coarse-grained ranking and CVR at fine-grained ranking?

• RQ2:Compared to individual PFD, canwe achieve additional
improvements by combining PFD with MD?

• RQ3: Is PFD sensitive to the hype-parameter λ in Eq.(5)?
• RQ4: What is the effect of training the teacher and student
synchronously by sharing common input components?

5.1 Experimental Settings
To better understand the network structure, we give an illustration
of all input components used in this work in Figure 5. As mentioned
earlier, all features are transformed into categorical type and we
learn an embedding for each one. The entities, e.g., user and item,
are then represented by the concatenations of their corresponding

feature embeddings. Here we adopt the self-attention structure
[36] to model the user clicked/purchased history. Let V ∈ Rn×k
denote the input values of the sequence, with n being the com-
bined embedding dimension and k being the sequence length. The
transformed values Ṽ are then derived as weighted combinations
of input V, i.e., Ṽ = Softmax

(
QT K

)
V, where the queries Q and the

keys K are the same as the values V. To improve the effective reso-
lution of combinations, the multi-head structure is adopted, where
Q, K, and V are projected linearly into several subspaces and the
transformations are executed, respectively. Note that we also add
feed-forward network, skip connections [11], layer normalization
[2] to the attention mechanism as done in the original work [36].
For simplicity, we omit the details here. The only difference with the
original self-attention is that we do not adopt position encodings
in the input. We instead insert several extra features describing the
user behavior on the particular item, e.g., the clicked/purchased
time from now, the dwell time on the item, etc. Besides encoding
the relative positions of the items, the extra features also reflect
the importance of the items for future predictions. According to
our experiments, adding these features can greatly improve the
performance.

After deriving Ṽ with one-layer’s self-attention, we adopt the
mean pooling operation over the sequence length k . Here we set
k to 50, the number of heads to 4, and the subspace dimension
to 32. As illustrated in Figure 5, the input components are fed to
the corresponding teacher and student networks, which consists
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Table 1: CTR dataset description at coarse-grained ranking
of Taobao recommendations.

Datasets # Users #Items #Clicks # Impressions

1 Day 9.35 × 107 2.67 × 107 5.03 × 108 1.09 × 1010
10 Days 2.88 × 108 4.45 × 107 4.57 × 109 9.90 × 1010

Table 2: Testing AUC of differentmethods for CTR at coarse-
grained ranking. We do not include MTL as it is too cum-
bersome to predict dozens of privileged features. Due to the
huge training cost, we only compare PFD+MDwith the base-
line in the dataset of 10 days.

Methods Dataset of 1 Day Dataset of 10 Days
Student Teacher Student Teacher

Baseline 0.6625 − 0.7042 −
LUPI [24] 0.6637 0.6687 − −
MD [13] 0.6704 0.6892 − −
PFD 0.6712 0.6921 − −
PFD+MD 0.6745 0.7110 0.7160 0.7411

of several fully-connected layers. We use LeakyReLU [25] as the
activation and insert batch normalization [17] before it. The models
are trained in the parameter servers with the asynchronous Adagrad
optimizer [9]. In the first one million steps, the learning rate is
increased linearly to the pre-defined value 0.01, which is then kept
fixed.We set the batch size to 1024 and the number of epoch to 1. We
train the teacher and student synchronously by sharing common
input components. Unless stated otherwise, λ is set to 0.5 and the
swapping step k in Algorithm 1 is set to 106.

As the labels are in 1 or 0, i.e., whether the users clicked/purchased
the item or not, we use the log-loss for both the teacher and the
student, i.e.,

Lt/s ≜
1
N

N∑
i=1

(
yi log

(
1 + e−ft/s,i

)
+ (1 − yi )log

(
1 + eft/s,i

))
, (6)

where ft/s,i denotes the output of the i-th sample from the teacher
or student model. For the distillation loss Ld , we use the cross
entropy, i.e., by replacingyi in the above equation with 1/(1+e−ft,i ).
Here we measure the performance of models with the widely-used
areas under the curve (AUC) in the next-day held-out data.

5.2 CTR at Coarse-grained Ranking (RQ1-2)
Across this work, we conduct experiments using the traffic logs of
the Guess You Like scenario in the front page of Taobao app. The
dataset description of CTR at coarse-grained ranking is summa-
rized in Table 1. For the inner-product model, the user mapping
ΦW u (·) and the item mapping ΦW i (·) in Eq.(3) are formulated as:
Input->512-> Act.->256->Act.->128->ℓ2-normalize. When execut-
ing inner-product between ΦW u (·) and ΦW i (·), we additionally
multiply it with a scalar, i.e., 5, in compensation for the shrinkage
of value after normalization. In LUPI [24], MD [13], and PFD+MD,
the teacher networks use 3-layers’ MLP, with the number of hidden
neurons being 512, 256, and 128, respectively. In PFD, we use the
inner-product model for both the teacher and the student, where

Table 3: CVR dataset description at fine-grained ranking of
Taobao recommendations

Datasets #Users #Items #Purchases #Clicks

30 Days 2.78 × 108 3.74 × 107 6.97 × 107 1.40 × 1010
60 Days 3.36 × 108 5.27 × 107 1.32 × 108 2.71 × 1010

the privileged features are put at the user side of the teacher. The
teacher and the student of PFD (and PFD+MD) share all common
input components except user id. We do not include MTL as it is
too cumbersome to predict dozens of privileged features.
Off-line and on-line performance. The testing AUC of all com-
pared distillation techniques are shown in the left part of Table 2.
Compared the teacher of PFD with the baseline, we confirm the
effectiveness of the interacted features. By distilling knowledge
from these features, we improve the testing AUC from 0.6625 to
0.6712. Although both utilizing the same privileged features, PFD is
superior to LUPI. This is because that the teacher of PFD addition-
ally processes the regular features, which results in more accurate
predictions to instruct the student than using privileged features
alone as done in LUPI (0.6921 v.s. 0.6687). Similarly, we achieve
further improvements with PFD+MD by forming a more accurate
teacher. In order to validate whether the superiority of PFD+MD
could still holds when training longer with more data. We conduct
experiments on the traffic logs of 10 days. Due to the huge training
cost, we only compare PFD+MD with the baseline. As shown in
the right part of Table 2, the student of PFD+MD surpasses the
baseline AUC with a margin, i.e., +0.0118. We also conduct on-line
A/B tests to validate its effectiveness. Compared with the baseline,
PFD+MD consistently improves the click metric by +5.0%. And we
have fully deployed the technique into production.
Cost of directly utilizing interacted features. As discussed ear-
lier, the interacted features are prohibited for the inner-product
model during inference. With such features, we need to compute
the mappings ΦW (·) as many times as the number of candidates,
i.e., 105. In contrast, without such features, we only need to compute
the mapping once and execute its inner product with all candidates
efficiently. Suppose that the input to ΦW (·) has 1024 dimensions.
Theoretically, we need 1024×512+512×256+256×128 ≈ 6.9×105
fused multiply-add flops to get one mapping. In comparison, execut-
ing one inner product operation needs 128 flops, which is ∼ 5400×
less. We also conduct simulated experiments in the personal com-
puter. We repeat 105 times to simulate the mapping inference and
the inner product operation, which totally costs 89.695s and 0.108s,
respectively. Executing the mapping is ∼ 830× slower than the
inner product operation.

5.3 CVR at fine-grained ranking (RQ1-2)
In the above CTR prediction, we use the traffic logs of all impres-
sions. While in the CVR prediction, we extract the traffic logs of all
clicks. The datasets are summarized in Table 3. We adopt 3-layers’
MLP for the baseline and all of the student networks, with the num-
ber of hidden neurons being 512, 256, and 128, respectively. The
teacher networks of PFD and LUPI also have the same structure
as their students. In MD and PFD+MD, their teacher networks are
expanded to 7-layers’ MLP, with the number of hidden neurons
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Table 4: Testing AUC of different methods for CVR predic-
tion at fine-grained ranking.

Methods Dataset of 30days Dataset of 60days
Student Teacher Student Teacher

Baseline 0.9040 − 0.9082 −
MTL [31] 0.9045 − 0.9077 −
LUPI [24] 0.8965 0.9651 0.9003 0.9659
MD [13] 0.9052 0.9058 0.9093 0.9103
PFD 0.9084 0.9901 0.9135 0.9923
PFD+MD 0.9082 0.9911 0.9138 0.9929

Table 5: Students’ testing AUC of different hyper-
parameters λ in the 1 day’s dataset of CTR. The superscript
+/− indicates the highest/lowest AUC of each method
among all chosen hyper-parameters.

λ 0.1 0.3 0.5 0.7 0.9

LUPI [24] 0.6648+ 0.6640 0.6637 0.6631 0.6624−
MD [13] 0.6695− 0.6697 0.6704 0.6706+ 0.6700
PFD 0.6711 0.6709 0.6712+ 0.6700 0.6696−
PFD+MD 0.6741 0.6740 0.6745 0.6747+ 0.6739−

Table 6: Students’ testing AUC of different hyper-
parameters λ in the 30 days’ dataset of CVR.

λ 0.1 0.3 0.5 0.7 0.9

LUPI [24] 0.9024+ 0.8998 0.8965 0.8876 0.8613−
MD [13] 0.9047− 0.9054+ 0.9052 0.9050 0.9049
PFD 0.9081− 0.9082 0.9084+ 0.9082 0.9082
PFD+MD 0.9081 0.9085+ 0.9082 0.9083 0.9080−

being 8192, 4096, 2048, 1024, 512, 256, and 128, respectively. We
also compare with MTL. Here we adopt the hard parameter sharing
version of MTL [31], where all tasks share first hidden layer and
independently predict each task with 2-layers’ MLP. We adopt the
mean squared error for the auxiliary continuous regression tasks,
e.g., predicting the dwell time, and the log-loss for the auxiliary
binary prediction tasks, e.g., predicting whether viewing the user
comments or not. The hyper-parameters are chosen empirically
from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2} with the principle of keep-
ing all auxiliary losses balanced.
Off-line and on-line performance. The results of all testing
methods are shown in Table 4. Among them, LUPI gets the worst
performance, although the testing AUC of its teacher is rather high.
The reason of the inferiority has been discussed in Section 4. The
experiments also confirm the positive effects of adding regular fea-
tures to the teacher model, where PFD improves the baseline by
+0.0044 AUC in the dataset of 30 days and +0.0053 AUC in the
dataset of 60 days, respectively. Compared with PFD, PFD+MD has
no distinct superiority. This is mainly due to that the improvement
of MD over the baseline is moderately small. In practice, PFD is
thus preferred over PFD+MD as costing much less computation
resources. We conduct on-line A/B tests to validate the effectiveness
of PFD. Compared with the baseline, PFD steadily improves the
conversion metric by +2.3% over a long period of time.

Table 7: Effects of training PFD+MD in different manners
in the 1 day’s dataset of CTR. Ind&Async denotes that the
teacher and the student are trained asynchronously with
independent input components. Share&Sync denotes that
the teacher and the student are trained synchronously with
shared common input components. The superscript ∗ means
that all common input components are shared except user
id. We also record the wall-clock time in hours in the forth
column.

Student Teacher Time Relative

Baseline 0.6625 − 9.24 h 0%
Ind&Async 0.6751 0.7112 18.43 h +99.5%
Ind&Sync 0.6748 0.7112 14.32 h +55.0%
Share&Sync 0.6717 0.7108 9.51 h +2.9%
Share∗&Sync 0.6745 0.7110 10.29 h +11.4%

Table 8: Effects of training PFD+MD in different manners in
the 30 days’ dataset of CVR. The row with superscript † is
the result of PFD.

Student Teacher Time Relative

Baseline 0.9040 − 12.22 h 0%
Ind&Async 0.9067 0.9887 26.85 h +119.7%
Ind&Sync 0.9069 0.9887 20.56 h +67.4%
Share&Sync 0.9082 0.9911 14.97 h +22.5%
Share&Sync† 0.9084 0.9901 12.67 h +3.6%

5.4 Ablation Study (RQ3-4)
Sensitivity of Hyper-parameter. In the above experiments, we
fix the the hyper-parameter λ at 0.5 for all distillation techniques.
Here we test the sensitivity of λ. The results of CTR prediction are
shown in Table 5. Most of the distillation techniques surpass the
baseline, i.e., 0.6625, among all chosen hyper-parameters, except
LUPI with λ = 0.9. MD, PFD, and PFD+MD are all robust to varying
λ. Even their worst results improve the baseline by margins. We
also conduct experiments in the CVR dataset. As shown in Table 6,
LUPI narrows the gap with the baseline, i.e., 0.9040 as λ decreases,
while it is still inferior to the baseline. MD, PFD, and PFD+MD are
again robust to varying λ in this huge-scale dataset.
Effects of TrainingManner. In the above experiments, the teacher
and the student are trained synchronously by sharing common
input components. Here we test the effects of such training man-
ner. The results of CTR prediction are shown in Table 7. Train-
ing the teacher and the student synchronously achieves almost
the same performance as training asynchronously (Ind&Sync v.s.
Ind&Async). When training the two models by sharing all common
input components, the performance of the student degenerates. As
the privileged features, i.e., the interacted features between the
user and her clicked/purchased items, reflect the user’s personal
interests, we allocate an independent user id embedding to the
student, in order to absorb the extra preferences distilled from the
privileged features. The result after such modification is shown
in the row of Share∗&Sync, where the performance degeneration



Privileged Features Distillation at Taobao Recommendations Woodstock ’18, June 03–05, 2018, Woodstock, NY

is much alleviated and only a little extra wall-clock time is intro-
duced. We also test the effects of different training manners in the
CVR dataset. The results are shown in Table 8. As indicated in the
rows of Share&Sync and Ind&Sync, the teacher can be additionally
improved by sharing common input components. Consequently,
the student is improved by distilling knowledge from the more
accurate teacher. In the last row of Table 8, we report the result of
PFD. Compared with the baseline, it adds almost no extra wall-clock
time while achieves similar performance to PFD+MD in the row
of Share&Sync. Overall, by adopting PFD+MD for CTR and PFD
for CVR, we can achieve much better performance while add no
burden to training time. Therefore, the technique is even adoptable
for online learning on the streaming data [26], where real-time
computation is in high demand.

6 CONCLUSION
In this work, we identify the privileged features existing at Taobao
recommendations, i.e., the interacted features for CTR at coarse-
grained ranking and the post-event features for CVR at fine-grained
ranking. And we propose PFD to leverage them. Different from the
traditional LUPI, PFD additionally processes the regular features in
the teacher, which is shown to be the core for its success. We also
propose PFD+MD to utilize the complementary feature and model
capacities to better instruct the student. And it achieves further
improvements. The effectiveness is validated on two fundamental
prediction tasks at Taobao recommendations, where the baselines
are greatly improved by the proposed distillation techniques. Dur-
ing the on-line A/B tests, the click metric is improved by +5.0%
in the CTR task. And the conversion metric is improved by +2.3%
in the CVR task. We also address several issues of training PFD,
which lead to comparable training speed as the baselines without
any distillation.
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