
A Graph-Enhanced Click Model for Web Search
Jianghao Lin1, Weiwen Liu2, Xinyi Dai1, Weinan Zhang1, Shuai Li1

Ruiming Tang2, Xiuqiang He2, Jianye Hao2, Yong Yu1
1Shanghai Jiao Tong University, 2Huawei Noah’s Ark Lab

{chiangel,daixinyi,wnzhang,shuaili8,yyu}@sjtu.edu.cn,{liuweiwen8,tangruiming,hexiuqiang1,haojianye}@huawei.com

ABSTRACT
To better exploit search logs and model users’ behavior patterns,
numerous click models are proposed to extract users’ implicit in-
teraction feedback. Most traditional click models are based on the
probabilistic graphical model (PGM) framework, which requires
manually designed dependencies and may oversimplify user behav-
iors. Recently, methods based on neural networks are proposed to
improve the prediction accuracy of user behaviors by enhancing
the expressive ability and allowing flexible dependencies. How-
ever, they still suffer from the data sparsity and cold-start problems.
In this paper, we propose a novel graph-enhanced click model
(GraphCM) for web search. Firstly, we regard each query or doc-
ument as a vertex, and propose novel homogeneous graph con-
struction methods for queries and documents respectively, to fully
exploit both intra-session and inter-session information for the spar-
sity and cold-start problems. Secondly, following the examination
hypothesis1, we separately model the attractiveness estimator and
examination predictor to output the attractiveness scores and exam-
ination probabilities, where graph neural networks and neighbor
interaction techniques are applied to extract the auxiliary informa-
tion encoded in the pre-constructed homogeneous graphs. Finally,
we apply combination functions to integrate examination proba-
bilities and attractiveness scores into click predictions. Extensive
experiments conducted on three real-world session datasets show
that GraphCM not only outperforms the state-of-art models, but
also achieves superior performance in addressing the data sparsity
and cold-start problems.

CCS CONCEPTS
• Information systems→ Users and interactive retrieval.

KEYWORDS
Click Model, Web Search, User Modeling, Click Prediction
ACM Reference Format:
Jianghao Lin1, Weiwen Liu2, Xinyi Dai1, Weinan Zhang1, Shuai Li1, Ruiming
Tang2, Xiuqiang He2, Jianye Hao2, Yong Yu1. 2021. A Graph-Enhanced Click
Model for Web Search. In Proceedings of the 44th International ACM SIGIR

1Examination hypothesis: a user clicks a document if and only if she examines the
document and is attracted by the document.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462895

Conference on Research and Development in Information Retrieval (SIGIR ’21),
July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3404835.3462895

1 INTRODUCTION
Understanding users’ behavior patterns is key to improving the
performance of an information retrieval system. In web search,
the ability to summarize users’ behavior patterns and precisely
simulate user interactions allows search engines to better fulfill
users’ information needs. To this end, numerous click models have
been proposed to model users’ click behaviors. They serve as click
simulators in cases where no real users are available or we prefer not
to experiment with real users to avoid hurting user experiences [3].
Besides, click models are also used to estimate the relevance scores
for query-document pairs to facilitate document ranking [8, 12, 28].

Earlier click models are based on the probabilistic graphical model
(PGM) framework [20], where user behaviors are represented as a
sequence of observable and hidden states (e.g., clicks, skips, attrac-
tiveness, and examinations) [9, 35]. PGM-based click models often
require manually designed dependencies between each binary vari-
able, which is likely to oversimplify and therefore overlook some
key aspects of user behaviors. To better capture users’ behavior pat-
terns and allow flexible dependencies, Borisov [3] proposed a neural
click model (NCM), which adopts the distributed vector representa-
tion approach for user behavior representations, instead of binary
variables. While NCM only encodes query-level information, the
context-aware click model (CACM) [8] utilizes complex structures
to incorporate interaction effects among different queries within
the same session (i.e., intra-session information) and achieves the
state-of-art performance among existing click models. However,
these click models fail to consider the following two issues.

First, click models generally suffer from the data sparsity prob-
lem, i.e., the lack of useful user interaction feedback on query-
document pairs. Take TianGong-ST dataset2 for example, the inter-
action sparsity ratio is 99.9969%.3 Such sparsity of user interactions
brings difficulty to the training of click models and leads to poor
generalization performance. Although incorporating intra-session
information as in CACM may alleviate the sparsity problem, it
does not fully utilize the user interactions among queries and doc-
uments. In fact, we find that there is rich potential for extracting
users’ behavior patterns from interactions between queries or docu-
ments across different sessions issued by different users (i.e., inter-
session information). As illustrated in Figure 1, User A and User
B launch sessions that consist of different queries towards similar
topics . Then queries from different sessions (𝑞3 and 𝑞5) are likely to
be related if they positively interact with the same document 𝑑2, as

2http://www.thuir.cn/tiangong-st/
3The interaction sparsity ratio is calculated as # missing query-document interactions

possible query-document pairs .

ar
X

iv
:2

20
6.

08
62

1v
2

 [
cs

.I
R

]
 2

2
A

ug
 2

02
2

https://doi.org/10.1145/3404835.3462895
https://doi.org/10.1145/3404835.3462895
http://www.thuir.cn/tiangong-st/

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Jianghao Lin, et al.

q1

q2

q3

Launch

Session A

User A

d1

d2

Doc L ists A

d2

d3

Doc L ists B

q1

q4

q5

Session B

Launch

User B

Click Behavior Intra-session Relation

q1

d1 d3

d2

q3 q5

Query Document Inter-session Relation

Figure 1: Illustration of intra-session and inter-session in-
formation in web search.

they share similar user intents. Likewise, documents from different
sessions (𝑑1 and 𝑑3) are related as they are clicked by the same
query 𝑞1. Therefore, by better extracting both intra-session and
inter-session information, we can achieve superior performance in
mitigating the data sparsity problem.

Second, existing click models are vulnerable in the cold-start
environments. That is, previous click models generally fail to effec-
tively predict user clicks when there are queries or documents in
the test set that never appear in the training set, and thus meeting a
dramatic performance decrease during the test phase. For example,
in Figure 1, suppose the second query 𝑞4 in Session B is a brand-
new query launched by User B during the test phase. Existing click
models cannot make reliable predictions for 𝑞4, since little user
behavior information is available to form the basis for predictions.
Actually, as queries in the same session issued by a user share sim-
ilar intents towards similar topics, adjacent queries can provide
useful reformulation information for the inference and enrich the
user interaction representations. For instance, 𝑞4’s adjacent queries
(𝑞1 and 𝑞5) in Session B can be regarded as reformulations of 𝑞4,
and thereby can be leveraged to predict user behaviors.

To tackle the aforementioned limitations, we propose a novel
graph-enhanced click model (GraphCM) in this paper. Firstly, we
regard each query or document as a vertex and propose novel ho-
mogeneous graph construction methods for queries and documents
respectively, to fully exploit both intra-session and inter-session
information for the sparsity and cold-start problems. Secondly, fol-
lowing the examination hypothesis [24], we separately model the
attractiveness estimator and examination predictor to output the
attractiveness scores and examination probabilities, where graph
neural networks and neighbor interaction techniques are applied
to extract the auxiliary information encoded in the pre-constructed
homogeneous graphs. Finally, we combine attractiveness scores and
examination probabilities through a combination layer to perform
user click prediction. Main contributions of this paper are:
• We propose novel homogeneous graph construction methods
for queries and documents respectively, which can fully extract
both intra-session and inter-session information.

• We propose a graph-enhanced click model (GraphCM) to exploit
structural dependencies among queries and documents accord-
ing to pre-constructed homogeneous graphs. To the best of our
knowledge, this is the first work to apply graph neural networks
and neighbor interaction techniques to the field of click models
to address the data sparsity and cold-start problems.

• The proposed GraphCM achieves significantly better perfor-
mance than existing click models in both click prediction and

relevance estimation tasks. Besides, extensive empirical studies
are conducted to show the ability of GraphCM to tackle the
sparsity and cold-start problems.

2 RELATEDWORK
2.1 Click Models
To model and simulate user behaviors, numerous click models have
been proposed for various application scenarios (e.g., web search,
recommendation) [6, 9, 30, 34]. Traditional click models, which are
based on the probabilistic graphical model (PGM) framework, treat
user behaviors as a sequence of observable and hidden events. They
usually incorporate different assumptions on user behaviors to
specify how documents and clicks at different positions affect each
other. Most PGM-based click models adopt the examination hypoth-
esis [24] where the probability of click are decomposed into the
examination probability and the attractiveness score. Different click
models study the examination probability differently. A simple click
model that follows the examination hypothesis is the position-based
model (PBM) [11], which assumes that the examination probabil-
ity is only related to the displayed positions. The cascade model
(CM) [11] assumes that users scan each document in the list from
top to bottom until the first click. Yet CM can only handle query
sessions with exactly one click. On the basis of CM, user browsing
model (UBM) [13], dynamic Bayesian network (DBN) [5], depen-
dent click model (DCM) [16], and click chain model (CCM) [15]
have been proposed to overcome this limitation.

As the dependencies in traditional PGM-based click models are
designed manually [33], some neural network based approaches
have been proposed to get better expressive power and flexible
dependencies. The neural click model (NCM) [3] is the first at-
tempt to apply neural networks to click models. NCM treats user
behaviors as a sequence of hidden states instead of binary events.
The following NN-based click models also adopt this distributed
representation framework. The click sequence model (CSM) [4]
maintains an encoder-decoder architecture to predict the position
sequence of the clicked documents. The context-aware click model
(CACM) [8] takes the intra-session information into consideration
and separately models the examination probability and the attrac-
tiveness score. Our proposed GraphCM can better extract both
intra-session and inter-session information by applying graph neu-
ral networks and neighbor interaction techniques, resulting in the
state-of-art performance compared to existing click models.

2.2 Graph Representation Learning
Graph representation learning investigates low-dimensional rep-
resentations of graph vertices, while preserving node content and
structural information [23, 27, 32]. Earlier graph representation
learning methods learn node representations from the graph struc-
ture by applying random walks. DeepWalk [21] apply random
walks to generate the node context and learn node embeddings.
Node2vec [14] further exploits a biased random walk strategy to
better capture the local and global structural information. In recent
years, graph neural networks are proposed to aggregate information
from neighbors and encode structural contexts. GCN [19] applies
local graph convolutions for the node classification task. Graph-
Sage [17] performs a non-spectral graph convolution over a fixed

A Graph-Enhanced Click Model for Web Search SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

size of sampled neighbors to integrate neighbor features for learn-
ing accurate node representations. GAT [19] utilizes a multi-head
attention mechanism to increase the model capacity.

GCN, GraphSage and GAT are popular architectures of the gen-
eral graph neural networks, and can be naturally regarded as plug-
in graph representation modules for many supervised tasks [22].
Recently, researchers also deploy graph neural networks in rec-
ommender systems to make full use of structural side information
and tackle the data sparsity and cold-start problems. For example,
PinSage [31] applies graph neural networks to pin-board graph for
recommendation. KGAT [29] incorporates user-item graph with
knowledge graph to generate finer node representations.

Likewise, general graph neural networks are suitable plug-in
modules for click models. To the best of our knowledge, we are
the first to introduce graph neural networks to the field of click
models, which extracts abundant auxiliary information included
in the constructed homogeneous graphs. Therefore, our proposed
GraphCM can achieve better performance in addressing the data
sparsity and cold-start problems.

3 PROBLEM FORMULATION
The user browsing behaviors in web search is regarded as a series
of independent search sessions. A search session S can be formu-
lated as a sequence of queries Q𝑁 = [𝑞1, ..., 𝑞𝑁] submitted by the
user. For each query 𝑞𝑖 , the search engine returns a ranked list of
documents D𝑖 =

[
𝑑𝑖,1, 𝑑𝑖,2, ..., 𝑑𝑖,𝑀

]
. Each document 𝑑𝑖, 𝑗 has three

attributes: the unique URL identifier 𝑢𝑖, 𝑗 , the ranking position 𝑝𝑖, 𝑗

and the vertical type4 𝑣𝑖, 𝑗 . The user browses the ranked lists and
may click several documents in the session. We define the click
variable 𝑐𝑖, 𝑗 for each document, where 𝑐𝑖, 𝑗 = 1 if 𝑑𝑖, 𝑗 is clicked by
the user and 0 if not. Then we can define the problem of click model
tasks as follows:

Given the user’s browsing history Q = [𝑞1, 𝑞2, ..., 𝑞𝑛],D = [𝑑1,1,
𝑑1,2, ..., 𝑑𝑛,𝑚], and C =

[
𝑐1,1, 𝑐1,2, ..., 𝑐𝑛,𝑚−1

]
, for the m-th document

𝑑𝑛,𝑚 in the n-th query 𝑞𝑛 of the session S, we would like to (i)
predict whether the document 𝑑𝑛,𝑚 will be clicked by the user
(i.e., the click variable 𝑐𝑛,𝑚), and (ii) estimate the context-aware
relevance between 𝑞𝑛 and 𝑑𝑛,𝑚 .

4 MODEL FRAMEWORK
In this section, we introduce the framework of graph-enhanced
click model (GraphCM), which is shown in Figure 2.

4.1 Overview of GraphCM
Most click models adopt the examination hypothesis: a user clicks
a document 𝑑𝑛,𝑚 if and only if she examines the document and is
attracted by the document [24], which can be formulated as:

𝑐𝑛,𝑚 = 1 ⇔ 𝑒𝑛,𝑚 = 1 and𝑎𝑛,𝑚 = 1, (1)

where 𝑐𝑛,𝑚 ∈ {0, 1}, 𝑒𝑛,𝑚 ∈ {0, 1}, and 𝑎𝑛,𝑚 ∈ {0, 1} are click,
examination, and attractiveness variables, respectively. In this work,
for each document 𝑑𝑛,𝑚 , we assume that the user examines it with
probability E𝑛,𝑚 , and the attractiveness score isA𝑛,𝑚 . As shown in
Figure 2, GraphCM separately models the attractiveness estimator

4Vertical type means the presentation style of a displayed document (e.g., organic
vertical, the illustrated vertical, the encyclopedia vertical) [8].

and examination predictor, and integrates the attractiveness score
A𝑛,𝑚 and examination probability E𝑛,𝑚 at click predictor module
to output the click probability.

Next, we will first introduce the graph construction methods
and general embedding layers, and then elaborate on the details of
each module (i.e., attractiveness estimator, examination predictor
and click predictor).

4.2 Graph Construction
Thoroughly incorporating intra-session and inter-session informa-
tion into user behavior modeling is essential for alleviating the
data sparsity and cold-start problems. However, it is challenging to
fuse complex user behaviors among queries and documents. More-
over, queries and documents have different semantic meanings and
should be dealt with differently. To this end, we propose to regard
each query or document as a vertex and construct the query ho-
mogeneous graph and document homogeneous graph respectively,
to model dependencies in user behaviors. Figure 3 shows an ex-
ample of these two constructed homogeneous graphs. The query
homogeneous graph consists of two kinds of edges:
• Query Multi-hop Edge. The edges between queries that click
the same document, which denotes the potentially collaborative
information between queries.

• Query-Query Edge. The edges between each pair of two con-
secutive queries in the same session, which denotes the reformu-
lation relationships among queries issued by the user.

It is worth noting that the term reformulation is different from the
traditional IR task query reformulation. Here, reformulation means
that the consecutive queries in the same session issued by a user
should share similar intents towards similar topics. Likewise, the
document homogeneous graph also contains two kinds of edges:
• Doc Multi-hop Edge. The edges between documents that are
clicked by the same query, which denotes the potentially collab-
orative information between documents.

• Doc-Doc Edge. The edges between each pair of two consecu-
tive documents in a ranked list, which denotes the similarity
relationships among documents.
The graph construction methods above can fully exploit the

intra-session and inter-session information (i.e., collaborative, re-
formulation and similarity information), which helps address the
sparsity problem. As for the cold-start problem, a brand-new query
or document vertex cannot have multi-hop edges since it has no
click interactions available in the training set. As shown in Figure 4,
rather than make random guess as in previous click models (no
previous click interactions is available), we can aggregate the re-
formulation or similarity information from the consecutive queries
or documents to assist user click prediction, which mitigates the
cold-start problem.

4.3 Embedding Layer
GraphCM takes query 𝑞, document 𝑑 , click variable 𝑐 , vertical
type 𝑣 and ranked position 𝑝 as inputs. Before the main process
of the model, these original ID features are transformed into a
high-dimensional sparse features via one-hot encoding. Then we
apply embedding layers on the one-hot vectors to map them to

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Jianghao Lin, et al.

Click Predictor

Examination
Predictor

Embedding Layer

P V C

GRU

Output Layer

Examination
Probability

Combination Layer

Click Probability

Embedding Layer

PV CD

Document
Homogeneous

GAT

GRU

Document Encoder Neighbor Interaction Module

Document
Neighbor Sampler

Sampled Documents

Interaction Layer

Attention Layer

Embedding Layer

Q

Query
Homogeneous

GAT

GRU

Query Encoder

P - PositionV - Ver tical TypeC - ClickD - DocumentQ - Query Current QueryCurrent Document Other Document Other QueryVector Concatenation

Current
Query

Output Layer
Attractiveness

Scores

Attractiveness
Estimator

Figure 2: The overall framework of GraphCM. GraphCM consists of an attractiveness estimator and an examination predictor.
The attractiveness estimator contains three components (i.e., query encoder, document encoder, and neighbor interaction
module), which encode the query context, document context, and query-document interactions to estimate the attractiveness
scoreA. The examination predictor utilizes the session context to predict the examination probability E. GraphCM integrates
A and E through a combination layer to predict user click behaviors.

Query Node

Document Node

Query-Query Edge

Doc-Doc Edge

Multi-hop Edge

Click Behavior

Figure 3: Graph construction methods in GraphCM.

New Document

Launch

Session

User

Provide

Query New Query Edge

Search
Engine

Doc L ist

Document Infomation Flow

Figure 4: Graph solution for the cold-start problem.

low-dimensional dense embedding vectors:
v𝑞 = Embq (𝑞) ,v𝑑 = Embd (𝑑) ,

v𝑐 = Embc (𝑐) , v𝑣 = Embv (𝑣) , v𝑝 = Embp (𝑝) ,
(2)

where Emb∗ ∈ R𝑁∗×𝑙∗ , ∗ ∈ {q, d, c, v, p}. 𝑁∗ and 𝑙∗ denote the
input feature size and embedding size. For the ease of presentation,
we omit the subscripts of embeddings when there is no ambiguity.

4.4 Attractiveness Estimator
The attractiveness estimator aims to estimate the attractiveness of
each document 𝑑𝑖, 𝑗 to the user who issues the query 𝑞𝑖 . For the
pre-constructed homogeneous graphs, we propose a query encoder
and a document encoder respectively to extract intra-session and
inter-session information, and generate corresponding query and

document context representations. Moreover, we propose a neigh-
bor interaction module to further exploit the high-order neighbor
information. Next, we will introduce these three components re-
spectively (i.e., query encoder, document encoder and neighbor
interaction module).

4.4.1 Query Encoder. The connectivity in the query homogeneous
graph mentioned in Section 4.2 provides collaborative and refor-
mulation information among queries. Therefore, we first apply
graph attention network [26] (GAT) to aggregate neighbor informa-
tion, and then generate query context representations via a Gated
Recurrent Unit (GRU) [10].

After obtaining query vectors from the embedding layer, we
apply GAT based on the query homogeneous graph to model struc-
tural dependencies among queries. Since the constructed graph is
very large for real-world datasets, it is time consuming and not
tractable to directly perform GAT. Therefore, for each query node
𝑞𝑖 , we sample a fixed number (e.g., K) of neighbors to form its
neighbor setN𝑞𝑖 . It is worth noting that, we add self-loop for every
node to ensure that 𝑞𝑖 itself can be included in its neighbor set
N𝑞𝑖 . Then, we aggregate the information of these neighbors to gen-
erate a new embedding v′𝑞𝑖 for query 𝑞𝑖 via a shared asymmetric
attention mechanism:

𝛼𝑖, 𝑗 = Softmax𝑗 (attquery (v𝑞𝑖 , v𝑞 𝑗
)), 𝑞 𝑗 ∈ N𝑞𝑖 ,

v′𝑞𝑖 =
∑︁

𝑞 𝑗 ∈N𝑞𝑖

𝛼𝑖, 𝑗v𝑞 𝑗
.

(3)

Here attquery denotes a linear layer with a LeakyReLU activa-
tion function, which performs the asymmetric node-level attention.
attquery is shared for all the nodes in the query homogeneous graph
to capture similar connection patterns. Moreover, similar to [25], we
extend the proposed attention mechanism to multi-head attention
to stabilize the learning process of GAT. Specifically, B independent
asymmetric node-level attention mechanisms execute the trans-
formation of Equation 3, and then their features are concatenated,

A Graph-Enhanced Click Model for Web Search SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

resulting in the following output feature representations:

v′𝑞𝑖 =
B
∥

𝑏=1
𝜎

(∑︁
𝑞 𝑗 ∈N𝑞𝑖

𝛼𝑏𝑖,𝑗v𝑞 𝑗

)
, (4)

where ∥ denotes vector concatenation, 𝛼𝑏
𝑖,𝑗

is normalized attention
coefficients computed by the 𝑏-th attention mechanism att𝑏query, 𝜎
is the LeakyReLU function. Following [2], to further exploit multi-
head attention mechanism, we propose another way for output
feature aggregations. Instead of simple concatenation, we employ
averaging aggregation, and delay applying final non-linearity func-
tion on each attention mechanism until averaging is performed:

v′𝑞𝑖 = 𝜎

(1
B

B∑︁
𝑏=1

∑︁
𝑞 𝑗 ∈N𝑞𝑖

𝛼𝑏𝑖,𝑗v𝑞 𝑗

)
. (5)

The number of heads and the selection on these two multi-head
attention aggregation methods are hyperparameters in GraphCM,
and should be fine-tuned according to different tasks. After the GAT
process, we encode the sequence of query embeddings {v′𝑞1 , ..., v

′
𝑞𝑛

}
through a standard Gated Recurrent Unit (GRU) to generate the
query context representations:

h𝑞
𝑖
= GRUquery

(
v′𝑞1 , v

′
𝑞2 , ..., v

′
𝑞𝑖

)
, 𝑖 = 1, ..., 𝑛. (6)

4.4.2 Document Encoder. The document homogeneous graph men-
tioned in Section 4.2, on the other hand, preserves collaborative
and similarity information among documents. Similar to the query
encoder, to extract useful clues for user behaviors from documents,
we first perform neighbor aggregation via GAT, and then apply
GRU to generate document context representations.

The document encoder takes document ID 𝑑 , vertical type 𝑣 , pre-
vious click variable 𝑐 and ranked position 𝑝 as inputs and generates
document context representations. Likewise, we apply the docu-
ment homogeneous GAT on the document vectors after embedding
layers. Neighbor sampling is also performed to form the neighbor
setsN𝑑𝑖,𝑗 for 𝑑𝑖, 𝑗 , which denotes the j-th document in the i-th query
in the current session.

𝛽𝑖, 𝑗,𝑘 = Softmax𝑘 (attdoc (v𝑑𝑖,𝑗 , v𝑑𝑘)), 𝑑𝑘 ∈ N𝑑𝑖,𝑗 ,

v′
𝑑𝑖,𝑗

=
∑︁

𝑑𝑘 ∈N𝑑𝑖,𝑗

𝛽𝑖, 𝑗,𝑘v𝑑𝑘 ,
(7)

where attdoc is an asymmetric node-level linear attention and is
shared for all the nodes in the document homogeneous graph. We
also apply a multi-head attention mechanism with two different
feature aggregation methods to stabilize the learning process of the
graph attention network:

v′
𝑑𝑖,𝑗

=
B
∥

𝑏=1
𝜎

(∑︁
𝑑𝑘 ∈N𝑑𝑖,𝑗

𝛽𝑏
𝑖,𝑗,𝑘

v𝑑𝑘
)
, 𝑜𝑟

v′
𝑑𝑖,𝑗

= 𝜎

(1
B

B∑︁
𝑏=1

∑︁
𝑑𝑘 ∈N𝑑𝑖,𝑗

𝛽𝑏
𝑖,𝑗,𝑘

v𝑑𝑘
)
.

(8)

After obtaining the document representations from GAT, we
concatenate all input embeddings and generate document context
representations through a GRU:

x𝑖, 𝑗 = [v′
𝑑𝑖,𝑗

⊕ v𝑣𝑖,𝑗 ⊕ v𝑐𝑖,𝑗 ⊕ v𝑝𝑖,𝑗],

h𝑑𝑖,𝑗 = GRUdoc
(
x1,1, x1,2, ..., x𝑖, 𝑗

)
.

(9)

Here ⊕ denotes the vector concatenation operation, which shares
the same meaning with the symbol ∥.

4.4.3 Neighbor Interaction Module. It is essential to take interac-
tions between queries and documents into account in the field of
click models. However, the previous two components (i.e., query en-
coder and document encoder) only model the context information
of queries and documents separately. We should further consider
interactions between queries and documents. Moreover, instead
of only considering the interaction between the current query 𝑞𝑖
and document 𝑑𝑖, 𝑗 , we propose a neighbor interaction method to
explicitly incorporate the document’s high-order neighbor informa-
tion, which further enrich the local graph structural information
and alleviate the data sparsity problem. Neighbors of the query are
not considered since the query homogeneous graph is more sparse
than the document homogeneous graph. Therefore, for the current
query 𝑞𝑖 and document 𝑑𝑖, 𝑗 , we first apply neighbor sampling on
homogeneous GATs to generate the document’s neighbor set N𝑑𝑖,𝑗

and adjusted embeddings v′𝑞, v′𝑑 , then we perform an attention-
based feature interaction layer between the current query 𝑞𝑖 and
neighbor documents 𝑑𝑘 in the neighbor set N𝑑𝑖,𝑗 :

x𝑖,𝑘 = v′𝑞𝑖 ⊙ v′
𝑑𝑘
, 𝑑𝑘 ∈ N𝑑𝑖,𝑗 ,

𝛾𝑘 = Softmax𝑘 (attinter (x𝑖,𝑘)), 𝑑𝑘 ∈ N𝑑𝑖,𝑗 ,

h𝑖𝑖, 𝑗 =
∑︁

𝑑𝑘 ∈N𝑑𝑖,𝑗

𝛾𝑘x𝑖,𝑘 , 𝑑𝑘 ∈ N𝑑𝑖,𝑗 ,

(10)

where ⊙ denotes an element-wise product for vectors, and attinter
is a shared asymmetric linear attention layer with a LeakyReLU
activation function. It is worth noting that we do not perform
the multi-head attention mechanism in the neighbor interaction
module. Previous works [22] and our empirical experiments have
shown that the multi-head attention mechanism is not much of
a help for improving the performance, while contributing to the
computational cost.

After generating the query context representation h𝑞
𝑖
, the doc-

ument context representation h𝑑
𝑖,𝑗

and the neighbor interaction
representation h𝑖

𝑖, 𝑗
, we concatenate them together and put them

through a two-layer Multi-Layer Perceptron (MLP) to output the
estimated attractiveness score A𝑖, 𝑗 for the current query 𝑞𝑖 and
document 𝑑𝑖, 𝑗 :

x𝑖, 𝑗 = [h𝑞
𝑖
⊕ h𝑑𝑖,𝑗 ⊕ h𝑖𝑖, 𝑗],

A𝑖, 𝑗 =MLP(x𝑖, 𝑗).
(11)

Here, the activation functions for the first and the second layer
in MLP are both LeakyReLU functions.

4.5 Examination Predictor
While the attractiveness estimator measures the attractiveness
scores of each document to the user, the examination predictor
aims to predict whether the user will continue to examine the doc-
ument 𝑑𝑖, 𝑗 based on her session context. Following [8], we assume
that a user’s examination action is only affected by her actions
on previous documents — the examination probability is not af-
fected by the content of the document (users read the content only
when the examination behavior happens). Therefore, for the cur-
rent document 𝑑𝑛,𝑚 , we apply a session-level GRU to encode the

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Jianghao Lin, et al.

information of ranked position 𝑝 , vertical type 𝑣 and previous click
variables 𝑐 within the same session. Finally, a linear layer followed
by a Sigmoid function is performed on the encoded hidden states
to output the examination probability E:

x𝑖, 𝑗 = [v𝑝𝑖,𝑗 ⊕ v𝑣𝑖,𝑗 ⊕ v𝑐𝑖,𝑗],
h𝑒𝑖, 𝑗 = GRU𝑒𝑥𝑎𝑚

(
x1,1, x1,2, ..., x𝑖, 𝑗

)
,

E𝑖, 𝑗 = Sigmoid
(
Linear

(
h𝑒𝑖, 𝑗

))
.

(12)

4.6 Click Predictor
The click predictor module combines the examination probability
E and attractiveness score A, and outputs the predicted click prob-
ability. We implement four different combination functions, which
are shown in Table 1.

Table 1: Combination functions. E.H. is short for examina-
tion hypothesis. 𝛼 and 𝛽 are learnable parameters.

Function Formula Support E.H.?

mul 𝑐 = E × A Yes
expmul 𝑐 = E𝛼 × A𝛽 Yes
linear 𝑐 = 𝛼E + 𝛽A No

nonlinear 𝑐 = MLP(E,A) No

The mul function simply follows the examination hypothesis
and directly multiply the examination probability E with attrac-
tiveness score A. The expmul function preserves the examination
hypothesis and increases the model capacity by adding learnable
parameters. The linear and nonlinear functions further explore the
relation between E and A beyond the examination hypothesis.

After click prediction, we adopt a binary cross-entropy loss to
ensure an end-to-end training of GraphCM. The objective function
to be minimized during training is:

L(𝜃) = L𝑐 (𝜃) + 𝜆 ∥𝜃 ∥2 (13)

L𝑐 (𝜃) = − 1
𝑁

∑︁
𝑖,𝑗

𝐶𝑖,𝑗 log P𝑖,𝑗 + (1 −𝐶𝑖,𝑗) log(1 − P𝑖,𝑗) (14)

where 𝜃 denotes trainable parameters in GraphCM, 𝜆 denotes the
hyperparameter for regularization, 𝑁 denotes the number of train-
ing batches, 𝐶𝑖,𝑟 and P𝑖, 𝑗 denote the real click signal and the pre-
dicted click probability.

5 EXPERIMENT
In this section, we conduct extensive experiments to answer the
following questions:
RQ1 DoesGraphCMmitigate the data sparsity problem and achieve

the best performance compared with baseline models?
RQ2 Can GraphCM tackle the cold-start problem? How does

GraphCM perform if it meets a brand-new query or doc-
ument during the test phase?

RQ3 Which combination function performs best in integrating
the attractiveness scores and examination probabilities?

RQ4 What is the influence of different components in GraphCM?

5.1 Experimental Setup
5.1.1 Dataset. We choose three real-world public session datasets
in web search collected by different search engine platforms: Yan-
dex5, TREC20146 and TianGong-ST7 [7]. The statistics of the datasets
can be found in Table 2. Due to the memory limitation, we down-
sample the size of Yandex dataset. All datasets are divided into
training, validation, and test sets with proportion 8:1:1. Besides, we
would like to make two statements about the datasets before we
elaborate on the details of the experiments:
(1) TianGong-ST is the only dataset that provides the vertical type

information for each document in the search logs. For other
datasets, we simply assume that all documents are presented in
the same vertical type, and assign the same vector embedding
for all vertical types.

(2) TianGong-ST is the only dataset that provides relevance labels
for query-document pairs. Therefore, we perform the rele-
vance estimation task only on the TianGong-ST dataset, and
perform the click prediction task on all the three datasets.

Table 2: The dataset statistics

Dataset Session Query Search Engine
Yandex 200,000 376,965 Yandex

TREC2014 1,257 5,443 Indri
TianGong-ST 147,155 356,252 Sogou

5.1.2 Baselines. The existing click models can be categorized into
two classes: PGM-based and NN-based methods. In this paper, We
consider CCM [15], DCM [16], DBN [5], SDBN [9], PBM [11] and
UBM [13] as representative PGM-based click models, of which
open-source implementations are available8. For NN-based click
models, we consider NCM [3] and CACM [8] as baselines.

5.1.3 Evaluation Metrics. We compare GraphCM with baseline
models based on the following two tasks: click prediction and rele-
vance estimation, which are both common tasks for click models [9].
For click prediction task, we report the log-likelihood (LL) and per-
plexity (PPL) [3] of each model. The definitions of the log-likelihood
and click perplexity at the rank 𝑟 are as follows:

𝐿𝐿 =
1

𝑀𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑟=1

𝐶𝑖,𝑟 log P𝑖,𝑟 + (1 −𝐶𝑖,𝑗) log(1 − P𝑖,𝑟) (15)

𝑃𝑃𝐿@𝑟 = 2−
1
𝑁

∑𝑁
𝑖=1 𝑐𝑖,𝑟 logP𝑖,𝑟 +(1−𝐶𝑖,𝑟) log(1−P𝑖,𝑟) (16)

where subscript 𝑟 is the ranked position, 𝑁 is the total number of
queries, and𝑀 is the number of documents in each query. 𝐶𝑖,𝑟 and
P𝑖,𝑟 are the real click signal and the predicted click probability of the
𝑟 -th document in the 𝑖-th query. We calculate the total perplexity
by averaging perplexities over all the positions. Lower values of
perplexity and higher values of log-likelihood correspond to better
click prediction performance.

For the relevance estimation task, we use click models to rank the
document list and compute the averaged Normalized Discounted
5https://www.kaggle.com/c/yandex-personalized-web-search-challenge
6https://trec.nist.gov/data/session2014.html
7http://www.thuir.cn/tiangong-st/
8https://github.com/markovi/PyClick

https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://trec.nist.gov/data/session2014.html
http://www.thuir.cn/tiangong-st/
https://github.com/markovi/PyClick

A Graph-Enhanced Click Model for Web Search SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

Table 3: Overall performance of each click model. We only perform relevance estimation task on TianGong-ST, since it is the
only dataset that provides human-annotated relevance labels. The best results are given in bold, while the second best values
are underlined. ∗ indicates statistically significant improvement (measured by t-test) with p-value < 0.001 over all baselines.
Note: LL, the higher, the better; PPL, the lower, the better; NDCG, the higher, the better.

Model
Yandex TREC2014 TianGong-ST

LL PPL LL PPL LL PPL NDCG@1 NDCG@3 NDCG@5 NDCG@10
CCM -0.4171 1.3436 -0.5445 1.3267 -0.2057 1.2238 0.6596 0.6931 0.7175 0.8453
DCM -0.4183 1.3226 -0.5485 1.2998 -0.2109 1.2231 0.6861 0.6818 0.7115 0.8441
DBN -0.4157 1.3397 -0.5451 1.3216 -0.2052 1.2292 0.6883 0.6997 0.7261 0.8501
SDBN -0.4174 1.3399 -0.5491 1.3218 -0.2094 1.2293 0.6814 0.6777 0.7104 0.8421
PBM -0.2429 1.2961 -0.1678 1.1899 -0.1825 1.2183 0.6594 0.6422 0.6703 0.8243
UBM -0.2275 1.2662 -0.1568 1.1901 -0.1751 1.2179 0.6362 0.6354 0.6671 0.8208
NCM -0.2204 1.2666 -0.1549 1.1757 -0.1718 1.2055 0.7081 0.7066 0.7368 0.8621
CACM -0.2199 1.2662 -0.1541 1.1738 -0.1707 1.2027 0.7347 0.7163 0.7405 0.8667

GraphCM -0.2192∗ 1.2652∗ -0.1529∗ 1.1721∗ -0.1629∗ 1.1938∗ 0.7388∗ 0.7189∗ 0.7466∗ 0.8671∗

Table 4: Data sparsity statistics and LL/PPL improvements.
The sparsity is calculated as # missing query-document in-
teractions / # possible query-document pairs. The improve-
ments are absolute LL/PPL gains of GraphCM compared
with the best baseline.

Dataset Sparsity LL Imprv. PPL Imprv.

Yandex 99.8895% 0.32% 0.08%
TREC2014 99.9189% 0.78% 0.14%

TianGong-ST 99.9969% 4.57% 0.74%

Cumulative Gain (NDCG) [18] according to the human-annotated
relevance labels. We report NDCG scores at truncation level 1,
3, 5, and 10. Higher values of NDCG indicates better relevance
estimation performance.

5.1.4 Implementation Details. We train GraphCM with a mini-
batch size of 128 with Adam optimizer. The hidden sizes of all GRUs
are 64. The embedding sizes of query 𝑞, document 𝑑 , vertical type 𝑣 ,
click variable 𝑐 and ranked position 𝑝 are 64, 64, 8, 4, 4 respectively.
The initial learning rate is selected from {10−3, 5 × 10−4, 10−4}. To
avoid overfitting, we choose the coefficient of L2 norm and dropout
rate from {10−4, 10−5} and {0.25, 0.5}. The number of neighbors
to be sampled is tuned from {1, 2, 4, 8, 16, 32}. Finally, we adopt the
model at the iteration with the lowest validation PPL for evaluation
in the test set. To ensure fair comparison, we also fine-tune all
the baseline models to achieve their best performance. Our model
implemented on PyTorch is available 9.

5.2 Performance Comparison (RQ1)
We perform click prediction and relevance estimation tasks on each
click model for performance comparison. It is worth noting that
the relevance estimation task is only performed on TianGong-ST
9https://github.com/CHIANGEL/GraphCM

dataset, as it is the only dataset that provides human-annotated
relevance labels. The results are presented in Table 3, from which
we can obtain the following observations:

(1) All NN-based models show significant improvements over
PGM-based models in click prediction and relevance estima-
tion tasks. NN-based models adopt the distributed vector rep-
resentation approach for representations of queries and docu-
ments, therefore can better capture user behavior patterns.

(2) CACM achieves the best performance among all the baseline
models, followed by NCM and other PGM-based click models.
CACM utilizes complex model structures to take the intra-
session information into consideration and thus better capture
the user behavior patterns, which is consistent with the results
reported in [8].

(3) GraphCM significantly outperforms all the baseline models.
Such improvement validates the effectiveness of applying
graph neural networks and neighbor interaction techniques
to make use of the inter-session and intra-session information,
which enables GraphCM to capture more subtle patterns in
user click behaviors.

Following [22], to study the ability of GraphCM to tackle the
data sparsity problem, we further investigate the data sparsity
statistics and improvements of GraphCM compared to the best
baseline model among different datasets. The results are shown
in Table 4. As the data sparsity ratios increase (Yandex: 99.8895%;
TREC2014: 99.9189%; TianGong-ST: 99.9969%;), the GraphCM grad-
ually achieves better improvements for LL and PPL metrics. This
means that GraphCM exploits intra-session and inter-session infor-
mation from the pre-constructed homogeneous graphs via graph
neural networks and neighbor interaction techniques, thus leading
to better performance in mitigating the data sparsity problem.

5.3 Cold-start Problem (RQ2)
Similar to works in recommender systems, existing click models
suffer from the cold-start problem. Namely, there are brand-new

https://github.com/CHIANGEL/GraphCM

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Jianghao Lin, et al.

Table 5: LL (the higher, the better) and PPL (the lower, the better) performance of click models for the cold-start problems
on different dataset. The best results are given in bold, while the second best values are underlined. ∗ indicates statistically
significant improvement (measured by t-test) with p-value < 0.001 over all baselines.

Metric Model
Yandex TREC2014 TianGong-ST

Cold Q Cold D Cold QD Warm QD Cold Q Cold D Cold QD Warm QD Cold Q Cold D Cold QD Warm QD

LL

UBM -0.2418 -0.2397 -0.2346 -0.1755 -0.3105 -0.2021 -0.1408 -0.1432 -0.2157 -0.2011 -0.2189 -0.1696
NCM -0.2386 -0.1841 -0.2343 -0.1685 -0.3069 -0.1717 -0.1398 -0.1422 -0.1987 -0.2009 -0.2091 -0.1609
CACM -0.2319 -0.1798 -0.2338 -0.1626 -0.3045 -0.1711 -0.1389 -0.1421 -0.1977 -0.1979 -0.2076 -0.1586

GraphCM -0.2316∗ -0.1792∗ -0.2324∗ -0.1624∗ -0.2954∗ -0.1645∗ -0.1379∗ -0.1418∗ -0.1948∗ -0.1977∗ -0.2074∗ -0.1527∗

PPL

UBM 1.3265 1.3174 1.3269 1.2242 1.4008 1.2234 1.1608 1.1688 1.2473 1.2689 1.2679 1.2082
NCM 1.2931 1.2254 1.2847 1.2044 1.3967 1.2153 1.1597 1.1679 1.2363 1.2441 1.2539 1.1919
CACM 1.2829 1.2185 1.2839 1.1957 1.3564 1.2106 1.1581 1.1677 1.2355 1.2392 1.2513 1.1885

GraphCM 1.2823∗ 1.2176∗ 1.2823∗ 1.1956∗ 1.2381∗ 1.2013∗ 1.1578∗ 1.1676∗ 1.2336∗ 1.2389∗ 1.2508∗ 1.1792∗

Full Test Set

Divided Set
Is Cold-query

Session?
Is Cold-Doc

Session?

Cold Q Yes No

Cold D No Yes

Cold QD Yes Yes

Warm QD No No

Division Rules

Figure 5: The full test set division for cold-start problems.

queries or documents during the test phase that never appear in the
training set. To ensure the unambiguity, before we zoom into the de-
tails of experiments, we first define the following concepts. Suppose
we have a session S in the test set, which consists of a sequence
of queries Q = {𝑞1, ..., 𝑞𝑛} and documents D = {𝑑1,1, ..., 𝑑𝑛,𝑚}, we
propose the following definitions:

Definition 5.1. Define a query 𝑞 in the test set as a cold query
if and only if it never appears in the training set.

Definition 5.2. Define a query 𝑞 in the test set as a warm query
if and only if it has appeared in the training set.

Definition 5.3. Define the session S as a cold-query session if
and only if there exists at least one cold query 𝑞𝑖 ∈ Q.

Definition 5.4. Define the session S as a warm-query session
if and only if all the queries 𝑞𝑖 ∈ Q are warm queries.

Note that all the definitions above focus on the query cold-start
problem (i.e., new queries in the test set). We can further propose
the parallel concepts for the document cold-start problem, which
is omitted here due to page limitations. Based on the definitions
above, as illustrated in Figure 5, we can split the full test set into
four mutually exclusive session sets: (i) Cold Q set; (ii) Cold D set;
(iii) Cold QD set; (iv) Warm QD set. The four session sets have
varying degrees on the cold-start problem. Then we measure the
LL and PPL performance of GraphCM, CACM, NCM and UBM on
these session sets respectively for different datasets (NDCG metric
is omitted since it shows similar trends). The results are shown in
Table 5, from which we can obtain the following observations:
(1) Generally, click models achieve much worse performance on

the Cold Q set, Cold D set and Cold QD set compared to
the performance on the Warm QD set, which validates the

fact that click models are quite vulnerable to the cold-start
problems. However, for TREC2014 dataset, we observe that
the performance of click models on Cold QD set is better
than it on Warm QD set. A possible reason is that Cold QD
session dominates the validation set of TREC2014 dataset (up
to 62.91%). The model selection on such a validation set let the
model fit the Cold QD data better.

(2) As a PGM-based model, UBM achieves the worst performance
compared to NN-basedmethods on the four session sets, which
suggests that the distributed vector representation approach
adopted by NN-based methods is better than the traditional
binary random variable representations in cold-start problems.

(3) CACM achieves relatively better performance than NCM on
the four session sets for three datasets. As CACM applies GRU
units to encode the intra-session information during the test
phase, it can somehow implicitly utilize the reformulation in-
formation between queries and similarity information between
documents, which helps cope with the cold-start problems.

(4) GraphCM outperforms all baselines on four session sets for
three datasets. Different from CACM’s implicit utilization of
the reformulation and similarity information, GraphCM di-
rectly model these relations in the homogeneous graphs, and
applies graph neural networks and neighbor interaction tech-
niques to explicitly leverage the auxiliary information as guid-
ance for user behavior modeling and click prediction. The
results demonstrate that GraphCM can better tackle the cold
start problems.

(5) The full test set, as a union of four session sets, is more simi-
lar to real-world application scenarios where cold queries or
documents are likely to show up among the warm ones. As
presented in Table 3, GraphCM achieves the best performance
on the full test set, which implies the effectiveness of GraphCM
to tackle the cold-start problem in real-world applications.

5.4 Combination Function (RQ3)
We study the effectiveness of different combination functions by
comparing their click prediction performance, which is shown in
Figure 6. From Figure 6, we can obtain the following observations:
(1) GraphCMs with the mul and expmul functions outperform

those with the linear and nonlinear functions. This indicates

A Graph-Enhanced Click Model for Web Search SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

Negative LL PPL
Metric

0.180

0.190

0.200

0.210

0.220

0.230

0.240

Ne
ga

tiv
e

LL

1.260

1.270

1.280

1.290

1.300

1.310

1.320

1.330

PP
L

Yandex Dataset
mul
expmul
linear
nonlinear

Negative LL PPL
Metric

0.130

0.140

0.150

0.160

0.170

0.180

Ne
ga

tiv
e

LL

1.170

1.175

1.180

1.185

1.190

1.195

PP
L

TREC2014 Dataset
mul
expmul
linear
nonlinear

Negative LL PPL
Metric

0.150

0.160

0.170

0.180

0.190

Ne
ga

tiv
e

LL

1.190

1.200

1.210

1.220

1.230

1.240

PP
L

TianGong-ST Dataset
mul
expmul
linear
nonlinear

Figure 6: GraphCM’s click prediction performance with different combination functions. Note: Negative LL, the lower, the
better; PPL, the lower, the better.

Table 6: The learnable parameters 𝛼 and 𝛽 for combination
functions 𝑒𝑥𝑝𝑚𝑢𝑙 and 𝑙𝑖𝑛𝑒𝑎𝑟 .

Function Formula
Yandex TREC2014 TianGong-ST

𝛼 𝛽 𝛼 𝛽 𝛼 𝛽

expmul 𝑐 = E𝛼 × A𝛽 1.035 0.991 1.031 1.010 0.952 0.796
linear 𝑐 = 𝛼E + 𝛽A 0.468 0.462 0.463 0.437 0.491 0.401

that combination functions that support the examination hy-
pothesis can properly represent user behavior patterns and
achieve better performance.

(2) GraphCMwith expmul function achieves the best performance
among all combination functions. Although the expmul and
mul functions both support the examination hypothesis, the
mul function is only a special case of the expmul function (i.e.,
𝛼 = 1, 𝛽 = 1). Therefore, the expmul function can model user
behaviors more flexibly with more learnable parameters.

(3) In theory, the nonlinear function, as a two-layer fully con-
nected network, is able to cover the computational formulas
of other combination functions and perform at least as good
as other functions. However, the performance of nonlinear
function shown in Figure 6 is much worse than other func-
tions. We argue that the nonlinear function overfits on the
click signals and fails to learn the multiplication transforma-
tion that supports the examination hypothesis, resulting in
poor performance.

In function expmul and linear, the parameters 𝛼 and 𝛽 are learn-
able, instead of hyperparameters that require manual assignments.
To further investigate their learning mechanism, we check the val-
ues of the learnable parameters in functions expmul and linear. The
results are shown in Table 6. We observe that 𝛼 is always higher
than 𝛽 for different combination functions and datasets. This indi-
cates that GraphCM assigns higher weights to the attractiveness
scores generated by the attractiveness estimator, since the structure
of attractiveness estimator is more complex and is able to encode
more important information for user behavior modeling.

5.5 Ablation Study (RQ4)
In order to investigate the contribution of each component to the
final performance of GraphCM, we conduct several comparison
experiments by removing the proposed query homogeneous GAT,

Table 7: The comparison of LL and PPL w.r.t. homogeneous
GATs and neighbor interaction module. We perform the fol-
lowing operations respectively: i. remove the query homo-
geneous GAT; ii. remove the document homogeneous GAT;
iii. remove the neighbor interaction module. The best re-
sults are given in bold. ∗ indicates statistically significant
improvement (measured by t-test) with p-value < 0.001.

Model
Yandex TREC2014 TianGong-ST

LL PPL LL PPL LL PPL
0. GraphCM -0.2192∗ 1.2652∗ -0.1529∗ 1.1721∗ -0.1629∗ 1.1938∗

i. w/o Q.GAT -0.2201 1.2667 -0.1601 1.1818 -0.1656 1.1968
ii. w/o D.GAT -0.2198 1.2672 -0.1532 1.1738 -0.1637 1.1943
iii. w/o Neigh. -0.2304 1.2755 -0.1608 1.1801 -0.1702 1.2031

Table 8: The comparison of NDCG performance w.r.t. ho-
mogeneous GATs and neighbor interaction module for
TianGong-ST dataset. The performed operations stay the
same as Table 7. The best results are given in bold. ∗ indi-
cates statistically significant improvement (measured by t-
test) with p-value < 0.001.

Model NDCG@1 NDCG@3 NDCG@5 NDCG@10

0. GraphCM 0.7388∗ 0.7189∗ 0.7466∗ 0.8671∗

i. w/o Q.GAT 0.7197 0.7092 0.7351 0.8632
ii. w/o D.GAT 0.6985 0.7045 0.7323 0.8593
iii.w/o Neigh. 0.7209 0.7104 0.7382 0.8642

document homogeneous GAT, and neighbor interaction module
respectively. The results are presented in Table 7 and 8. When we
remove the query or document homogeneous GAT, the performance
degrades on three dataset for both two tasks, which suggests that
graph neural networks can extract the collaborative, reformulation
and similarity information in the pre-constructed homogeneous
graphs to help user behavior prediction. Likewise, the performance
drops for both click prediction and relevance estimation tasks on
three datasets when we remove the neighbor interaction module,
which validates the effectiveness of applying neighbor interactions
to capture local and global structural information [22].

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada Jianghao Lin, et al.

6 CONCLUSION
In this work, we propose a novel graph-enhanced click model
(GraphCM) for web search. We separately model the attractiveness
estimation and examination predictor, and apply graph neural net-
works and neighbor interaction techniques to exploit intra-session
and inter-session information for user behavior prediction. Exten-
sive experiments are conducted on three real-world session datasets,
which validates the effectiveness of our solution in addressing the
data sparsity and cold-start problems. For the future work of re-
search, a promising direction is extending neighbor interactions
to higher-orders. Furthermore, we will utilize GraphCM in the
downstream tasks (e.g., offline evaluation and optimization).

ACKNOWLEDGEMENT
The corresponding author Weinan Zhang is supported by “New
Generation of AI 2030” Major Project (2018AAA0100900) and Na-
tional Natural Science Foundation of China (62076161, 61772333,
61632017). The work is also sponsored by Huawei Innovation Re-
search Program. We thank Student Innovation Center at Shanghai
Jiao Tong University for the provision of GPU computing resources.
We thank MindSpore [1] for the partial support of this work, which
is a new deep learning computing framework.

REFERENCES
[1] 2020. MindSpore. https://www.mindspore.cn/
[2] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[3] Alexey Borisov, Ilya Markov, Maarten De Rijke, and Pavel Serdyukov. 2016.

A neural click model for web search. In Proceedings of the 25th International
Conference on World Wide Web. 531–541.

[4] Alexey Borisov, Martijn Wardenaar, Ilya Markov, and Maarten de Rijke. 2018.
A click sequence model for web search. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. 45–54.

[5] Olivier Chapelle and Ya Zhang. 2009. A Dynamic Bayesian Network Click Model
for Web Search Ranking. In Proceedings of the 18th International Conference on
World Wide Web. 1–10.

[6] Jia Chen. 2020. Beyond Sessions: Exploiting Hybrid Contextual Information for
Web Search. In Proceedings of the 13th International Conference on Web Search
and Data Mining. 915–916.

[7] Jia Chen, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2019. TianGong-
ST: A New Dataset with Large-scale Refined Real-world Web Search Sessions.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2485–2488.

[8] Jia Chen, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. A Context-
Aware Click Model for Web Search. In Proceedings of the 13th International Con-
ference on Web Search and Data Mining. 88–96.

[9] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click models for
web search. Synthesis lectures on information concepts, retrieval, and services 7, 3
(2015), 1–115.

[10] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[11] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-
perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[12] Xinyi Dai, Jianghao Lin, Weinan Zhang, Shuai Li, Weiwen Liu, Ruiming Tang,
Xiuqiang He, Jianye Hao, Jun Wang, and Yong Yu. 2021. An Adversarial Imitation
Click Model for Information Retrieval. In Proceedings of the Web Conference 2021.
1809–1820.

[13] Georges E Dupret and Benjamin Piwowarski. 2008. A user browsing model to
predict search engine click data from past observations.. In Proceedings of the
31st annual international ACM SIGIR conference on Research and development in
information retrieval. 331–338.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[15] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael Taylor, Yi-Min Wang,
and Christos Faloutsos. 2009. Click Chain Model in Web Search. In Proceedings

of the 18th International Conference on World Wide Web. 11–20.
[16] Fan Guo, Chao Liu, and Yi Min Wang. 2009. Efficient Multiple-Click Models in

Web Search. In Proceedings of the Second ACM International Conference on Web
Search and Data Mining. 124–131.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[18] Kalervo Järvelin and Jaana Kekäläinen. 2017. IR Evaluation Methods for Retriev-
ing Highly Relevant Documents. SIGIR Forum (2017), 243–250.

[19] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[20] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles
and techniques. MIT press.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[22] Yanru Qu, Ting Bai, Weinan Zhang, Jianyun Nie, and Jian Tang. 2019. An
end-to-end neighborhood-based interaction model for knowledge-enhanced rec-
ommendation. In Proceedings of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data. 1–9.

[23] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data mining.
385–394.

[24] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. 521–530.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of
International Conference on Learning Representations.

[27] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 1225–1234.

[28] Hongning Wang, ChengXiang Zhai, Anlei Dong, and Yi Chang. 2013. Content-
aware click modeling. In Proceedings of the 22nd international conference on World
Wide Web. 1365–1376.

[29] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 950–958.

[30] Danqing Xu, Yiqun Liu, Min Zhang, Shaoping Ma, and Liyun Ru. 2012. Incor-
porating revisiting behaviors into click models. In Proceedings of the fifth ACM
international conference on Web search and data mining. 303–312.

[31] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[32] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
793–803.

[33] Yuchen Zhang, Weizhu Chen, Dong Wang, and Qiang Yang. 2011. User-click
modeling for understanding and predicting search-behavior. In Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining. 1388–1396.

[34] Feimin Zhong, Dong Wang, Gang Wang, Weizhu Chen, Yuchen Zhang, Zheng
Chen, and Haixun Wang. 2010. Incorporating post-click behaviors into a click
model. In Proceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval. 355–362.

[35] Zeyuan Allen Zhu, Weizhu Chen, Tom Minka, Chenguang Zhu, and Zheng Chen.
2010. A novel click model and its applications to online advertising. In Proceedings
of the third ACM international conference onWeb search and data mining. 321–330.

https://www.mindspore.cn/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Click Models
	2.2 Graph Representation Learning

	3 Problem Formulation
	4 Model Framework
	4.1 Overview of GraphCM
	4.2 Graph Construction
	4.3 Embedding Layer
	4.4 Attractiveness Estimator
	4.5 Examination Predictor
	4.6 Click Predictor

	5 Experiment
	5.1 Experimental Setup
	5.2 Performance Comparison (RQ1)
	5.3 Cold-start Problem (RQ2)
	5.4 Combination Function (RQ3)
	5.5 Ablation Study (RQ4)

	6 Conclusion
	References

