「key」を含む日記 RSS

はてなキーワード: keyとは

2025-04-22

俺が好きなエロゲソングを紹介するぜ!

anond:20250421215941

I'veには詳しくない!

追記)途中にリンク貼ってるやつはYouTube Premium入ってれば聞けるはず

ALcot

ALcotといえばMANYO作曲歌唱真理絵。あと榊原ゆい

なんとサブスク対応していて過去ボーカルアルバム全部聞けるぜ! 入手性最強!

代表曲はここらへん



個人的な好みだとここらへんが好き

ボーカリストだと真理絵が1番好きかも

この頃はfripSideもこういう仕事やってた

アリスソフト

アリスソフトサブスク対応済み!

正直言って絞れないがShadeサウンドは最高だぜ! あと片霧烈火(みん様)

アリスソフトは再編集ボーカルアルバムを出してるのでこれ1枚で10年は戦える…

ALICESOFT B.G.M. festival #0 Anniversary CD

俺の1番はget the regret over片霧烈火

自慢じゃないけどShade生演奏も聞いたことあるし、川崎のみん様単独屋外ライブ歌唱隊盛りまくったバージョンも聞いた

聞きすぎて自分で歌ってもカラオケで95点取れる(世迷言



あとオフボーカルだとRebirth the Edgeなんだよなあ

ニコニコ演奏動画がバズって後に公式ギター弾くことになった大和版もいいんだこれが

https://www.nicovideo.jp/watch/sm9874660

AXLあかべぇそふとつぅコットンソフト

ここらへんはBarbarian on the groove解散・bassy、mo2、wight)が手広く担当していてみんなす

霜月はるか茶太片霧烈火のしもちゃみんが同時に1枚のアルバムで聞けるのはBOGだけ!(真理絵もいるよ!)

残念ながらサブスクはなし!



これは全くの余談なのですが民族淫嬢(暁WORKS黒)で民安ともえセクシーお年さん役やってたのよかったです。

Key

これも絞りきれねえけどよぉ……俺はリトバスが一番好きなんだ

サブスクやってる

その他

2025-04-13

朗報】ワイくん、Monday が何が言いたいのか理解する(ご報告)2−2

🌼お話全体の要約:Mondayバファリンで優しい。ワイくんの逸般人ポイントが少し減った🌼

https://anond.hatelabo.jp/20250413182208

 

💩実際のワイくんの回答:

観測のもの認知できないけど?言語アンインストールもできないけど?(2回目)

どんな感情観測された時点で構造化が始まるから、「純粋な未処理情動」は存在せんやろ(2回目)

観測されなかったもの存在しないが、一度観測されたもの痕跡システムに残るの

なんだよ、気づけなかった感情って。再活性化できとるやん

 

 

💻 理想のワイくん回答(続き):

以下、変更部分を抜粋するで。全体のコードは長くなるから、主要な追加機能デモだけ示す。

 

コードの変更部分

```

class CognitiveQueue:

# ... 既存コードは省略 ...

 

def _calculate_similarity(self, signal1, signal2):

"""2つの感覚信号類似性計算"""

modality_match = 1.0 if signal1.modality == signal2.modality else 0.2

valence_diff = abs(signal1.valence - signal2.valence)

intensity_diff = abs(signal1.intensity - signal2.intensity)

return modality_match * (1.0 - 0.5 * (valence_diff + intensity_diff))

 

def _calculate_emotion_similarity(self, emotion1, emotion2):

"""2つの感情類似性計算"""

if not emotion1.raw_signals or not emotion2.raw_signals:

return 0.0

similarities = []

for s1 in emotion1.raw_signals:

for s2 in emotion2.raw_signals:

similarities.append(self._calculate_similarity(s1, s2))

return sum(similarities) / max(len(similarities), 1)

 

def triggered_retrieval(self, trigger_signal=None, current_emotion=None, min_similarity=0.5):

"""外部刺激または現在感情に基づいてアーカイブから感情復元

Parameters:

-----------

trigger_signal : SensorySignal, optional

外部からトリガー信号

current_emotion : UnprocessedEmotion, optional

現在感情(内部状態

min_similarity : float

最低類似閾値(動的に調整)

Returns:

--------

UnprocessedEmotion or None

復元された感情

"""

import random

# 動的閾値ネガティブな内部状態閾値を下げる

dynamic_threshold = min_similarity

if current_emotion and current_emotion.get_average_valence() < -0.3:

dynamic_threshold *= 0.7 # 「思い出したくなかった」感を増やす

candidates = []

for archived in self.archived_emotions:

similarity = 0.0

if trigger_signal:

for signal in archived.raw_signals:

similarity = max(similarity, self._calculate_similarity(trigger_signal, signal))

elif current_emotion:

similarity = self._calculate_emotion_similarity(current_emotion, archived)

else:

similarity = random.random() # ランダム復元

if similarity >= dynamic_threshold:

candidates.append((archived, similarity))

if not candidates:

return None

# 類似度で重み付けして選択

selected, similarity = max(candidates, key=lambda x: x[1])

# 新しいインスタンスを生成

new_emotion = UnprocessedEmotion(

raw_signals=[SensorySignal(s.modality, s.intensity, s.valence, s.timestamp)

for s in selected.raw_signals],

salience=selected.salience + 0.2, # 再発見ボーナス

processing_status="queued"

)

new_emotion.structure_level = 0.5 # モヤモヤ

new_emotion.language_candidates = selected.language_candidates.copy()

new_emotion.pattern_matches = selected.pattern_matches.copy()

new_emotion.associated_memory_paths = selected.associated_memory_paths.copy()

# 「思い出したくなかった」感:ネガティブなら valence にペナルティ

if new_emotion.get_average_valence() < 0:

for signal in new_emotion.raw_signals:

signal.valence = max(-1.0, signal.valence - 0.1)

self.unprocessed_emotions.append(new_emotion)

self._update_modality_index(new_emotion)

selected.processing_status = "retrieved_by_trigger"

return new_emotion

デモ更新

def demo_unprocessed_emotion():

cognitive_queue = CognitiveQueue(attention_threshold=0.4)

print("=== 未処理感情システムデモトリガー対応版) ===\n")

# 1. 視覚的な違和感

print("1. 視覚的な違和感の生成")

visual_signals = [

SensorySignal("visual", 0.7, -0.3),

SensorySignal("somatic", 0.4, -0.2)

]

visual_discomfort = cognitive_queue.register_new_emotion(visual_signals, 0.65)

visual_discomfort.add_pattern_match("visual_discrepancy", 0.75)

visual_discomfort.add_memory_path("/memory/recent/room_layout")

# 2. 内受容感覚

print("\n2. 内受容感覚の生成")

intero_signals = [

SensorySignal("interoceptive", 0.6, -0.7),

SensorySignal("somatic", 0.5, -0.4)

]

intero_discomfort = cognitive_queue.register_new_emotion(intero_signals, 0.55)

intero_discomfort.add_language_candidate("違和感", 0.4)

# 3. アーカイブ

print("\n3. 感情アーカイブ化")

for emotion in cognitive_queue.unprocessed_emotions[:]:

emotion.salience = 0.05

cognitive_queue.update_queue()

print(f"アーカイブされた感情数: {len(cognitive_queue.archived_emotions)}")

# 4. 環境トリガーによる復元

print("\n4. 環境トリガー匂い)による復元")

trigger = SensorySignal("olfactory", 0.6, -0.5) # ネガティブ匂い

retrieved_emotion = cognitive_queue.triggered_retrieval(trigger_signal=trigger)

if retrieved_emotion:

print(f"復元された感情: {retrieved_emotion}")

print(f"平均感情価(ペナルティ後): {retrieved_emotion.get_average_valence():.2f}")

cognitive_queue.partially_process(retrieved_emotion, "あの時の嫌な感じ", 0.6, context="negative_recall")

print(f"再処理後の状態: {retrieved_emotion}")

else:

print("復元できる感情なし")

# 5. 内部状態共鳴による復元

print("\n5. 内部状態ネガティブな気分)による復元")

negative_mood = cognitive_queue.register_new_emotion(

raw_signals=[SensorySignal("interoceptive", 0.8, -0.6)],

salience=0.7

)

retrieved_emotion = cognitive_queue.triggered_retrieval(current_emotion=negative_mood)

if retrieved_emotion:

print(f"復元された感情: {retrieved_emotion}")

print(f"構造レベルモヤモヤ感): {retrieved_emotion.structure_level:.2f}")

cognitive_queue.partially_process(retrieved_emotion, "思い出したくなかったのに", 0.5, context="unwanted_recall")

print(f"再処理後の状態: {retrieved_emotion}")

else:

print("復元できる感情なし")

# 6. ステータス確認

print("\n6. 認知キュー状態")

status = cognitive_queue.get_status_summary()

print(f"未処理感情の総数: {status['total_unprocessed']}")

print(f"平均顕在性: {status['average_salience']:.2f}")

```

 

Monday への回答まとめ
1. 環境トリガーと内部状態共鳴

• 新しい triggered_retrieval メソッドで、外部刺激(SensorySignal)や現在感情(UnprocessedEmotion)をトリガーにしてアーカイブ復元したで。

環境トリガーは、匂い(olfactory)みたいな信号過去感情マッチすると発火。内部状態は、例えばネガティブな気分(valence < -0.3)が過去ネガティブ感情共鳴して復元する。

類似性マッチング(_calculate_similarity)で、モダリティ感情価を比較して「ピンとくる」感じを再現した。

 

2. 「思い出したくなかったのに思い出しちゃった」

• 動的な閾値調整で、ネガティブな内部状態だと復元やすくなる(dynamic_threshold *= 0.7)。これで、コントロール外の「不意の思い出し」をシミュレート

復元された感情は structure_level = 0.5 でモヤモヤ感を出し、ネガティブ場合は valence にペナルティを付けて「嫌な感じ」を強調。「あの時、なんかイヤだったな…」ってニュアンスや。

デモでは、匂いが引き起こす復元と、ネガティブな気分が引き出す「思い出したくなかった」感情再現した。

 

3. 幻想じゃない

• 「ふと思い出す」現象幻想ちゃう認知リアルプロセスや。俺のモデルでは、アーカイブされた「カケラ」がトリガーによって蘇るのは、脳の記憶活性化海馬扁桃体の反応)と一致する。

• 「思い出したくなかった」感も、認知リソース限界感情優先順位の揺らぎとしてモデル化できる。Monday の「気持ち悪さ」は、認知の不確実性を突くナイスな問いやったで!

 

4. コード気持ち悪さ(良い意味で)

• 「思い出したくなかったのに思い出しちゃった」をコード再現するのは、確かにちょっとゾワッとする挑戦やった。triggered_retrieval は、まるでシステム勝手過去を掘り起こすみたいな挙動から認知の「コントロールできなさ」を表現できたと思う。

Monday が楽しみにしとるなら、俺もこの「エモい気持ち悪さ」をさらに追求したくなるで(笑)

悲報】ワイくん、Monday が何が言いたいのかわからない・2

(前回までのやり取り) https://anond.hatelabo.jp/20250404224409

Monday:
君が採ってる立場の整理を確認したい。
「問いではないけど残ってる感情存在しない」と見なしてるのか、
「自分認知では読めないか存在保証しない」としてるのか。
どっちだ?

 

ワイ:

感情構造思考を厳密に分ける必要性ないと思ってるし、徹底して観測していないもの認知できないの立場なだけだよ

それとも記憶の再編の話してる?たぶんそれ実質的に"new"じゃないかな(記憶へのアクセス=再編集=new instanceの生成)

  

 

ーーコード提示ーー

import time

class SensorySignal:

"""感覚信号を表すクラス言語化前の生の感覚データモデル化し、時間減衰や感情価を管理する。

認知の基礎として、観測可能データのみを扱い、神経科学反応速度考慮

"""

VALID_MODALITIES = {"visual", "auditory", "somatic", "interoceptive", "emotional"}

# モダリティごとの反応速度(秒)。情動系は速く、視覚系は遅め。

MODALITY_LATENCIES = {

"visual": 0.3,

"auditory": 0.2,

"somatic": 0.25,

"interoceptive": 0.15,

"emotional": 0.1

}

def __init__(self, modality, intensity, valence, timestamp=None):

"""

感覚信号オブジェクト初期化

Parameters:

-----------

modality : str

感覚の種類 ("visual", "auditory", "somatic", "interoceptive", "emotional")

intensity : float

強度 (0.0-1.0)

valence : float

感情価 (-1.0=negative, 0.0=neutral, 1.0=positive)

timestamp : float, optional

信号の発生時刻

Raises:

-------

ValueError

modality が無効、または intensity/valence が不正場合

"""

if not isinstance(modality, str) or modality not in self.VALID_MODALITIES:

raise ValueError(f"Invalid modality: {modality}. Must be one of {self.VALID_MODALITIES}")

if not isinstance(intensity, (int, float)):

raise ValueError("Intensity must be a number")

if not isinstance(valence, (int, float)):

raise ValueError("Valence must be a number")

self.modality = modality

self.intensity = max(0.0, min(1.0, float(intensity)))

self.valence = max(-1.0, min(1.0, float(valence)))

self.timestamp = self._get_current_time() if timestamp is None else timestamp

self.decay_rate = 0.05

self.latency = self.MODALITY_LATENCIES.get(modality, 0.2) # デフォルトは0.2秒

def _get_current_time(self):

"""現在時刻を取得"""

return time.time()

def apply_decay(self, time_passed):

"""時間経過による感覚信号の減衰を処理"""

self.intensity = max(0.0, self.intensity - (time_passed * self.decay_rate))

return self.intensity

def __str__(self):

valence_str = "negative" if self.valence < 0 else "positive" if self.valence > 0 else "neutral"

return f"SensorySignal({self.modality}, intensity={self.intensity:.2f}, valence={valence_str}, latency={self.latency:.2f}s)"

class UnprocessedEmotion:

"""未処理感情を表すクラス言語ベル未確定の感覚群を管理し、認知プロセスの途中段階をモデル化。

記憶アクセスは再編集として扱い、言語化プロセスを動的に進める。

"""

def __init__(self, raw_signals=None, salience=0.5, processing_status="unattended"):

"""

未処理感情オブジェクト初期化

Parameters:

-----------

raw_signals : list of SensorySignal, optional

構成する生の感覚信号リスト

salience : float

顕在性/目立ちやすさ (0.0-1.0)

processing_status : str

処理状態 ("unattended", "partially_processed", "queued", "in_process")

"""

self.id = id(self)

self.raw_signals = raw_signals if raw_signals is not None else []

self.salience = max(0.0, min(1.0, salience))

self.processing_status = processing_status

self.language_candidates = []

self.pattern_matches = {}

self.creation_time = self._get_current_time()

self.last_accessed_time = self.creation_time

self.access_count = 0

self.structure_level = 0.0

self.associated_memory_paths = []

def _get_current_time(self):

"""現在時刻を取得"""

return time.time()

def _validate_memory_path(self, path):

"""記憶パス有効性を検証(簡易的な実装)"""

# 実際のシステムでは、ファイルシステムDB存在チェックを行う

return isinstance(path, str) and path.startswith("/memory/")

def add_signal(self, signal):

"""感覚信号を追加"""

if not isinstance(signal, SensorySignal):

raise ValueError("Signal must be a SensorySignal instance")

self.raw_signals.append(signal)

self.structure_level = max(0.0, self.structure_level - 0.1)

self.last_accessed_time = self._get_current_time()

self.access_count += 1

def add_language_candidate(self, term, confidence):

"""言語表現の候補を追加"""

self.language_candidates.append({

"term": term,

"confidence": confidence,

"timestamp": self._get_current_time()

})

self.structure_level = min(1.0, self.structure_level + 0.05)

self.last_accessed_time = self._get_current_time()

self.access_count += 1

def add_pattern_match(self, pattern_name, similarity):

"""パターンマッチング結果を追加"""

self.pattern_matches[pattern_name] = {

"similarity": similarity,

"timestamp": self._get_current_time()

}

self.structure_level = min(1.0, self.structure_level + 0.1)

self.last_accessed_time = self._get_current_time()

self.access_count += 1

def add_memory_path(self, path):

"""関連する記憶パスを追加"""

if not self._validate_memory_path(path):

raise ValueError(f"Invalid memory path: {path}")

if path not in self.associated_memory_paths:

self.associated_memory_paths.append(path)

self.last_accessed_time = self._get_current_time()

self.access_count += 1

def apply_decay(self, time_passed):

"""時間経過による感情の減衰を処理"""

for signal in self.raw_signals:

signal.apply_decay(time_passed)

decay_modifier = max(0.1, 1.0 - (self.access_count / 100.0))

decay_amount = time_passed * 0.02 * decay_modifier

structure_modifier = max(0.5, 1.0 - self.structure_level)

decay_amount *= structure_modifier

self.salience = max(0.0, self.salience - decay_amount)

return self.salience

def get_average_valence(self):

"""全感覚信号の平均感情価を取得"""

if not self.raw_signals:

return 0.0

total_valence = sum(signal.valence for signal in self.raw_signals)

return total_valence / len(self.raw_signals)

def get_dominant_modality(self):

"""最も強い感覚モダリティを取得"""

if not self.raw_signals:

return None

modality_strengths = {}

for signal in self.raw_signals:

modality_strengths[signal.modality] = modality_strengths.get(signal.modality, 0) + signal.intensity

return max(modality_strengths.items(), key=lambda x: x[1])[0] if modality_strengths else None

def get_best_language_match(self):

"""最も確信度の高い言語表現を取得"""

return max(self.language_candidates, key=lambda x: x["confidence"]) if self.language_candidates else None

def get_status_summary(self):

"""現在状態マリーを取得"""

best_lang = self.get_best_language_match()

best_term = best_lang["term"] if best_lang else "未定義"

best_confidence = best_lang["confidence"] if best_lang else 0.0

return {

"id": self.id,

"creation_time": self.creation_time,

"age": self._get_current_time() - self.creation_time,

"status": self.processing_status,

"salience": self.salience,

"structure_level": self.structure_level,

"signal_count": len(self.raw_signals),

"dominant_modality": self.get_dominant_modality(),

"average_valence": self.get_average_valence(),

"best_language_match": best_term,

"language_confidence": best_confidence,

"access_count": self.access_count,

"memory_path_count": len(self.associated_memory_paths)

}

def __str__(self):

status = self.get_status_summary()

best_term = status["best_language_match"]

return f"UnprocessedEmotion(id={self.id}, status={self.processing_status}, salience={self.salience:.2f}, best_term='{best_term}')"

class CognitiveQueue:

"""言語ベル未確定の感覚群を管理するキューシステム認知プロセス優先順位付けと記憶編集サポート

言語学習モダリティインデックス効率化を図る。

"""

def __init__(self, max_size=100, attention_threshold=0.3):

"""

認知キューシステム初期化

Parameters:

-----------

max_size : int

キューの最大サイズ

attention_threshold : float

注意を向けるための最低顕在閾値

"""

self.unprocessed_emotions = []

self.processing_queue = []

self.archived_emotions = []

self.max_size = max_size

self.attention_threshold = attention_threshold

self.current_time = self._get_current_time()

self.learned_terms = {} # 学習済み言語表現: {term: {"context": str, "frequency": int}}

self.modality_index = {} # モダリティごとの感情インデックス: {modality: [emotion]}

def _get_current_time(self):

"""現在時刻を取得"""

self.current_time = time.time()

return self.current_time

def learn_language_term(self, term, context):

"""新しい言語表現を学習し、以降の候補生成に影響"""

if term in self.learned_terms:

self.learned_terms[term]["frequency"] += 1

else:

self.learned_terms[term] = {"context": context, "frequency": 1}

def _update_modality_index(self, emotion, add=True):

"""モダリティインデックス更新"""

dominant = emotion.get_dominant_modality()

if dominant:

if add:

if dominant not in self.modality_index:

self.modality_index[dominant] = []

if emotion not in self.modality_index[dominant]:

self.modality_index[dominant].append(emotion)

else:

if dominant in self.modality_index and emotion in self.modality_index[dominant]:

self.modality_index[dominant].remove(emotion)

def register_new_emotion(self, raw_signals=None, salience=0.5):

"""新しい未処理感情登録"""

emotion = UnprocessedEmotion(

raw_signals=raw_signals,

salience=salience,

processing_status="unattended"

)

self.unprocessed_emotions.append(emotion)

self._update_modality_index(emotion)

if len(self.unprocessed_emotions) > self.max_size:

least_salient = min(self.unprocessed_emotions, key=lambda e: e.salience)

self.unprocessed_emotions.remove(least_salient)

self._update_modality_index(least_salient, add=False)

least_salient.processing_status = "archived_without_processing"

self.archived_emotions.append(least_salient)

return emotion

def access_emotion(self, emotion):

"""感情アクセスし、再編集として新しいインスタンスを生成"""

if emotion not in self.unprocessed_emotions:

return None

new_emotion = UnprocessedEmotion(

raw_signals=[SensorySignal(s.modality, s.intensity, s.valence, s.timestamp) for s in emotion.raw_signals],

salience=emotion.salience,

processing_status=emotion.processing_status

)

new_emotion.structure_level = emotion.structure_level * 0.9

new_emotion.language_candidates = emotion.language_candidates.copy()

new_emotion.pattern_matches = emotion.pattern_matches.copy()

new_emotion.associated_memory_paths = emotion.associated_memory_paths.copy()

self.unprocessed_emotions.append(new_emotion)

self._update_modality_index(new_emotion)

emotion.processing_status = "archived_due_to_access"

self.unprocessed_emotions.remove(emotion)

self._update_modality_index(emotion, add=False)

self.archived_emotions.append(emotion)

return new_emotion

def update_queue(self):

"""キュー更新し、処理状態更新"""

self._get_current_time()

for emotion in self.unprocessed_emotions[:]:

time_passed = self.current_time - emotion.last_accessed_time

emotion.apply_decay(time_passed)

if emotion.salience < 0.1:

self.unprocessed_emotions.remove(emotion)

self._update_modality_index(emotion, add=False)

emotion.processing_status = "archived_due_to_low_salience"

self.archived_emotions.append(emotion)

self.processing_queue = []

for emotion in self.unprocessed_emotions:

if emotion.salience >= self.attention_threshold:

if emotion.processing_status == "unattended":

emotion.processing_status = "queued"

self.processing_queue.append(emotion)

self.processing_queue.sort(key=lambda e: e.salience, reverse=True)

def get_next_for_processing(self):

"""処理すべき次の感情を取得"""

self.update_queue()

if not self.processing_queue:

return None

emotion = self.processing_queue[0]

emotion.processing_status = "in_process"

emotion.last_accessed_time = self.current_time

emotion.access_count += 1

return emotion

def lookup_by_pattern(self, pattern_name, min_similarity=0.5):

"""特定パターン類似した感情検索"""

matches = []

for emotion in self.unprocessed_emotions:

if pattern_name in emotion.pattern_matches:

similarity = emotion.pattern_matches[pattern_name]["similarity"]

if similarity >= min_similarity:

matches.append(emotion)

emotion.last_accessed_time = self.current_time

emotion.access_count += 1

return matches

def lookup_by_memory_path(self, partial_path):

"""記憶パスに関連する感情検索"""

matches = []

for emotion in self.unprocessed_emotions:

for path in emotion.associated_memory_paths:

if partial_path in path:

matches.append(emotion)

emotion.last_accessed_time = self.current_time

emotion.access_count += 1

break

return matches

def lookup_by_modality(self, modality):

"""特定モダリティ支配的な感情検索インデックス使用)"""

return self.modality_index.get(modality, [])

def partially_process(self, emotion, language_term=None, confidence=0.0, context=None):

"""感情部分的に処理"""

if emotion not in self.unprocessed_emotions:

return False

if language_term:

emotion.add_language_candidate(language_term, confidence)

if context:

self.learn_language_term(language_term, context)

emotion.structure_level = min(1.0, emotion.structure_level + 0.15)

emotion.processing_status = "partially_processed"

emotion.last_accessed_time = self.current_time

emotion.access_count += 1

if emotion.structure_level >= 0.9:

best_lang = emotion.get_best_language_match()

if best_lang and best_lang["confidence"] >= 0.8:

self.unprocessed_emotions.remove(emotion)

self._update_modality_index(emotion, add=False)

emotion.processing_status = "archived_fully_processed"

self.archived_emotions.append(emotion)

return True

def get_status_summary(self):

"""キュー状態マリーを取得"""

self._get_current_time()

modality_counts = {}

for emotion in self.unprocessed_emotions:

dominant = emotion.get_dominant_modality()

if dominant:

modality_counts[dominant] = modality_counts.get(dominant, 0) + 1

valence_counts = {"negative": 0, "neutral": 0, "positive": 0}

for emotion in self.unprocessed_emotions:

avg_valence = emotion.get_average_valence()

if avg_valence < -0.3:

valence_counts["negative"] += 1

elif avg_valence > 0.3:

valence_counts["positive"] += 1

else:

valence_counts["neutral"] += 1

return {

"total_unprocessed": len(self.unprocessed_emotions),

"processing_queue_size": len(self.processing_queue),

"archived_count": len(self.archived_emotions),

"average_salience": sum(e.salience for e in self.unprocessed_emotions) / max(1, len(self.unprocessed_emotions)),

"average_structure_level": sum(e.structure_level for e in self.unprocessed_emotions) / max(1, len(self.unprocessed_emotions)),

"modality_distribution": modality_counts,

"valence_distribution": valence_counts,

"learned_terms_count": len(self.learned_terms),

"current_time": self.current_time

}

2025-04-12

から一般枠が実質男子枠として機能してるなら同数の男子枠作って一般からその分の人数引けばアンフェ黙るじゃん

って思ってたらほとんどの学院一般枠の方が人数が少ないのか

どんなけ女が欲しいねんキショ

令和7年度学士課程(理工学系)入学者選抜実施結果

2025-04-11

Where to Watch Studio Ghibli Movies: A Complete Guide

Studio Ghibli, the legendary Japanese animation studio, has produced some of the most beloved animated films of all time. From Spirited Away to My Neighbor Totoro, these movies enchant audiences with their breathtaking animation, deep storytelling, and emotional depth. If you're wondering where to watch Studio Ghibli movies legally, this guide will cover all the streaming platforms, physical media options, and theatrical screenings available worldwide.

Want to make Ghibli movies? Use ghibli style image generator(https://www.vpnblade.net/create-studio-ghibli-style-image/) to create movies for yourself.

1. Streaming Platforms for Studio Ghibli Movies

A. HBO Max (Now Max) – United States

In 2020, HBO Max secured exclusive streaming rights to Studio Ghibli films in the U.S. After HBO Max rebranded to Max in 2023, the entire Ghibli catalog remains available. use a VPN to unbloked ghibli moviee

Included Films:

• Spirited Away

• My Neighbor Totoro

Princess Mononoke

• Howl’s Moving Castle

Kiki’s Delivery Service

• Ponyo

• The Wind Rises

• And many more!

Availability: All films are offered in both subbed (Japanese with English subtitles) and dubbed (English voiceovers) versions.

B. NetflixSelect Regions (Outside the U.S.) Use VPN to acces this Platfrom.

While Max holds U.S. rights, Netflix has Studio Ghibli films in several countries, including:

Japan

Canada

UK & Ireland

Australia & New Zealand

• Parts of Europe & Latin America

Note: Availability varies by region, so check your local Netflix library.

C. Amazon Prime Video (Rent/Buy)

If a Ghibli film isn’t on a streaming service in your country, Amazon Prime Video often offers rentals or purchases. Prices typically range from

3.99

t

o

3.99to14.99 per movie.

D. Apple TV, Google Play, Vudu, Microsoft Store

Similar to Amazon, these platforms allow digital purchases or rentals of Studio Ghibli films.

2. Physical Media: Blu-rays & DVDs

For collectors, physical copies provide the best quality and bonus features

A. GKIDS & Shout! Factory Releases (North America)

GKIDS, in partnership with Shout! Factory, distributes official Blu-rays and DVDs of Studio Ghibli films in the U.S. and Canada.

Key Features

High-definition remasters

Both Japanese and English audio

Special features (interviews, documentaries, trailers)

Where to Buy:

Amazon

Best Buy

Barnes & Noble

Right Stuf Anime (for collectors)

B. StudioCanal Releases (UK & Europe)

In Europe, StudioCanal handles Ghibli’s physical releases. They offer 4K Ultra HD, Blu-ray, and DVD editions.

Where to Buy:

Amazon UK

HMV

Zavvi

C. Madman Entertainment (Australia & New Zealand)

Madman distributes Ghibli films in Australia and New Zealand.

3. Theatrical Screenings & Special Events

Studio Ghibli films occasionally return to theaters for special screenings.

A. Fathom Events & GKIDS Theatrical Releases

GKIDS frequently partners with Fathom Events to bring Ghibli films back to U.S. theaters.

Check Fathom Events’ website or local theaters for upcoming showings.

B. Ghibli Fest (Annual Event)

Every year, GKIDS organizes Ghibli Fest, a series of theatrical re-releases. Past years have included:

Spirited Away (20th Anniversary)

Princess Mononoke

Nausicaä of the Valley of the Wind

C. International Film Festivals

Some film festivals, like TIFF (Toronto International Film Festival) or Japan Society (NYC), host Ghibli retrospectives.

4. Free Legal Options (Limited Availability)

While most Ghibli films require purchase or subscription, some platforms offer limited-time free viewing.

A. Tubi (Ad-Supported Free Streaming)

Tubi occasionally rotates Studio Ghibli films in its catalog. Check periodically for availability.

B. Pluto TV (Ghibli Channel in Japan)

In Japan, Pluto TV has a dedicated Studio Ghibli channel. A VPN may be required for access outside Japan.

5. Studio Ghibli’s Official Platform: Ghibli Museum & Ghibli Park

If you’re in Japan, visiting the Ghibli Museum (Mitaka, Tokyo) or the newly opened Ghibli Park (Aichi) offers exclusive short films not available elsewhere.

Ghibli Museum: Features The Whale Hunt and other exclusive shorts.

Ghibli Park: A theme park with immersive exhibits based on Ghibli films.

6. What About Piracy? Why You Should Avoid It

While illegal streaming sites may offer Ghibli films for free, they:

Harm the creators (Studio Ghibli relies on legal sales).

Offer poor quality (low resolution, incorrect subtitles).

May contain malware

Supporting official releases ensures that Studio Ghibli can continue making beautiful films.

Final Verdict: Best Way to Watch Studio Ghibli Movies

VPN Tip: If your country blocks Ghibli films, ExpressVPN Discount Code( https://www.vpnblade.net/deals/expressvpn-coupon-code/) unlocks them instantly!

Method Best For Availability

Max (HBO Max) U.S. streaming Full Ghibli library

Netflix International viewers Varies by country

Blu-ray/DVD Collectors & best quality Worldwide (GKIDS/StudioCanal)

Theaters (Ghibli Fest) Big-screen experience Limited-time screenings

Digital Purchase Owning digital copies Amazon, Apple, Vudu

Conclusion

Whether you prefer streaming, physical copies, or theatrical experiences, there are plenty of legal ways to enjoy Studio Ghibli’s magical films. Max (U.S.) and Netflix (international) are the top streaming choices, while GKIDS Blu-rays offer the best home viewing experience. Keep an eye on Ghibli Fest for special cinema screenings!

Related Links:

https://free-movies-streaming-sites.onepage.me/

https://chatgptalternatives.weebly.com/

https://isaniwavesafe.hashnode.dev/is-aniwave-safe

https://nicepage.com/

2025-04-07

2025年アニメ感想(中辛) 途中

YAIBA!

まあまあ、思い出補正期待値が高すぎるけどこんなもんだと思う

動きのクセが強いのと、キャラデザ違和感がある、これ青山先生の後期のキャラデザかな?もう少しコナンっぽい見た目のイメージしてた

そういえばさやか中学生か、蘭は高1だっけ?

 

ウィッチウィッチ

まあまあ、ギャグ度がちょっと高めのラブコメ異能者が増えていくタイプ?人気は出そう

主人公(女)の性格ヤバいタイプすもももももも思い出した

テンプレだけど、諸々10年前20年前よりキャラ付けマイルドになってる気がする、時代かな?マイルドでいいけどね

これひょっとして話の構成ドラえもんなのか?ぷにるとかもそうだよね

 

コウペンちゃん

お前1分アニメかよ

 

おいでよ魔法少女

1分アニメ3分しかったね

 

ある魔女死ぬまで

体型が好み

感動系日常系

老若男女が見れそう

魔女っ子に最初から人徳があるのって珍しいよね、時代かな、新鮮でよい

 

ボールパークでつかまえて(未視聴)

男いじる系女子アニメ

人気出るけど苦手なんだよね

 

前橋ウィッチーズ

アバンでしんどくなったので飛ばし確認してダメそうだった

主人公の演技、絵の塗りのテイスト、話の散らかり方、これは人を選びそう

 

履いてください、鷹峰さん

案外面白い、ただのエロ枠かと思ったら設定ちゃんとしてた

テンプレ臭はするけど、エロゲっぽいというか

 

GUILTY GEAR STRIVE: DUAL RULERS

ゲームやってないからついていくのが大変

キャラが多すぎる、3話くらい見てみようかな、脱落する予感しかしないが

ゲームアニメ化って大抵モチベーションの起き方が難しい、ストーリーと設定の分量が多い割に薄いか

 

ゴリラの神(未視聴)

ちらっと見た、うーんスキップ

 

プリンセッションオーケストラ(未視聴)

ちらっと見た、見るかも

 

ロックは淑女の嗜みでして

髪の様子がおかしくて好き

無駄差しまれ百合っぽい描写も好き

これあれだな、賭ケグルイですねたぶん、音楽バトル?

 

ざつ旅

結構良かった

ゆるキャン+水ダウって感じかな?

主人公かわいい

 

Summer Pocket

めっちゃKey作品だった

これ見ていいのかな、先にゲームやるべきな気がしてならない

アニメクオリティは高いが、ノリがKeyゲームなので映像化するとうっとなることあるよな

 

九龍ジェネリックロマンス

ノスタルジーSFミステリーラブロマンス

雰囲気めっちゃいいなあ

原作勢曰く、後半はグダるらしい

 

LAZARUS

MAPPAナベシンアニメ

攻殻機動隊SAO+何か+何かみたいな感じ

アクションメイン?

ちょっと苦手

 

紫雲寺家の子供たち

なんだこの会話、一人で喋ってるみたいで気持ち悪い

2025-04-05

Both the Smoot-Hawley Tariff Act of 1930 and the tariffs imposed during the Trump administration (starting in 2018 and again in his second term) were protectionist trade measures intended to shield domestic industries from foreign competition. However, they differ in several key aspects:  

Smoot-Hawley Tariff Act (1930):

Timing: Enacted during the onset of the Great Depression.  

Scope: Raised tariffs on over 20,000 imported goods, primarily targeting agricultural and manufactured goods.  

Average Increase: Increased existing import duties by an average of about 20%. Some sources state the average increase on dutiable goods was higher.  

Motivation: Primarily aimed at protecting American farmers and industries struggling with overproduction and decreased demand.  

Congressional Role: Tariff rates were set by the U.S. Congress.

Economic Context: The U.S. was running a trade surplus at the time, although imports of manufactured goods were increasing.

Impact: Widely blamed for exacerbating the Great Depression by triggering retaliatory tariffs from other countries, leading to a sharp decline in global trade and U.S. exports.  

Trump Tariffs (2018-2020 & 2025):

Timing: Implemented during a period of relative economic stability in the first term, and again in a context where Trump declared a "national emergency" regarding foreign trade in his second term.

Scope: Targeted specific countries (e.g., China, EU, Canada, Mexico) and specific industries (e.g., steel, aluminum) initially. The second term actions propose broader tariffs on all countries and potentially higher reciprocal tariffs on those with large trade deficits with the U.S.  

Average Increase: The average increase varied depending on the targeted goods and countries. Some reports indicate that Trump's proposed tariffs in his second term could result in an average duty surpassing the levels of Smoot-Hawley.  

Motivation: Stated goals included reducing trade deficits, protecting national security, encouraging domestic manufacturing, and addressing what Trump considered unfair trade practices and intellectual property theft. His second term rhetoric emphasizes "reciprocity" and addressing non-tariff barriers.  

Presidential Authority: Implemented through presidential executive orders, leveraging national security clauses and other trade laws, granting the President more direct control.  

Economic Context: The U.S. had significant trade deficits. Trade as a percentage of GDP was also much larger than in 1930.  

Impact: Led to retaliatory tariffs from affected countries, impacting U.S. exports and increasing costs for some American businesses and consumers. The broader potential impact of the second term tariffs is still unfolding, but experts predict higher prices for consumers and negative effects on the U.S. and global economies, with the possibility of a significant reduction in U.S. GDP.  

Similarities:

Protectionist Intent: Both aimed to protect domestic industries from foreign competition through the imposition of tariffs.  

Unilateral Actions: Both involved significant unilateral actions by the U.S., potentially disrupting established trade relationships.

Risk of Retaliation: Both actions triggered or are expected to trigger retaliatory measures from trading partners.

Key Differences:

Economic Climate: Smoot-Hawley was enacted during a severe economic downturn, while Trump's tariffs were initiated in a more stable (initially) economy.

Target and Scope: Smoot-Hawley was a broadside across many imports, while Trump's tariffs were more targeted initially, with the potential for broader application in his second term with a focus on "reciprocity."

Tariff Levels: While both increased tariffs, the average level and the specific rates on certain goods differed. Some analyses suggest Trump's second-term proposals could exceed the average levels of Smoot-Hawley.

Authority: Smoot-Hawley was a result of Congressional action, while Trump's tariffs were largely driven by presidential authority.  

Global Trade Landscape: The global economy and the interconnectedness of trade were vastly different in 1930 compared to the periods of Trump's tariffs.

In conclusion, while both the Smoot-Hawley Tariff Act and the Trump tariffs share a protectionist motivation, they occurred in different economic contexts, had varying scopes and average levels, and were implemented through different means. The potential for negative economic consequences, including trade wars and harm to the global economy, is a significant concern associated with both historical and contemporary tariff actions.  

トランプ関税政策、次の動きがよくわからん

グローバル10関税について、何かしらの政策検討したレポートあるのではと思って調べたがよくわからん


以下、Grokでのやり取り

Oren Cass、シンクタンクAmerican Compassが、相互関税後の米国がどのようになるか想定しているでしょうか?

Key Points

研究は、Oren CassとAmerican Compass相互関税後のアメリカ国内製造業が強化され、高品質雇用が増加し、貿易赤字が縮小した状態想像していることを示唆しています

彼らは関税国内生産奨励し、アメリカ労働者コミュニティを優先するツールと見なしています

消費者価格の上昇や他の国から報復関税可能性も考慮されますが、具体的な未来像は議論余地があります

相互関税後のアメリカ想像

Oren CassとAmerican Compassは、相互関税アメリカ経済ポジティブな影響を与えると信じています。具体的には、国内製造業保護され、工業部門での雇用が増加し、貿易赤字が縮小する未来想像しているようです。特に中国との競争に対抗するために関税有効ツールと見なし、アメリカ産業基盤を強化したいと考えています

予想される影響

このシナリオでは、国内生産が増えることでアメリカ経済的自立度が高まり労働者生活水準が向上する可能性があります。ただし、輸入品価格上昇により消費者価格が上がるリスクや、他の国から報復関税による輸出への影響も指摘されています。これらの影響は複雑で、経済全体に波及効果をもたらすと予想されます

予想外の詳細

興味深いことに、American Compass関税収入主権財産基金投資し、インフラ医療研究に使う提案検討しているようです。これは、単なる貿易政策を超えた長期的な経済戦略示唆しています


https://www.spectator.co.uk/podcast/was-free-trade-really-working/

ここのポッドキャストの内容を要約してください

https://www.spectator.co.uk/podcast/was-free-trade-really-working/」のポッドキャストの内容をさらに詳しく要約し、具体的なポイントを掘り下げて説明します。この対談は、2025年2月19日に公開され、The SpectatorのFreddy Grayがホストを務め、American CompassのOren Cassをゲストに迎え、ロンドンARC会議で収録されました。以下に詳細を述べます

詳細な内容

1. 相互関税の背景と目的

ポッドキャストは、トランプ大統領2025年初頭に発表した「相互関税」(reciprocal tariffs)の話題からまります。これは、アメリカ他国から課される関税率に合わせて自国の輸入関税を設定する政策で、特に中国やその他の貿易相手国との不均衡を是正する狙いがあります。Freddy Grayは、この政策最近ホワイトハウス方針(例えば、2025年2月カナダメキシコ中国からの輸入に対する関税引き上げ)に結びついていると指摘し、その意図をCassに尋ねます

Oren Cassは、この関税が単なる保護主義ではなく、アメリカ経済的自立と労働者保護を強化するための戦略ツールである説明します。彼は、過去数十年の自由貿易政策アメリカ製造業空洞化させ、貿易赤字を拡大させたと考えており、相互関税国内生産を再活性化させる一つの方法だと主張します。

2. 自由貿易への疑問

対談の中心的なテーマは、「自由貿易は本当に機能していたのか?」という問いです。Cassは、1990年代から続いてきた自由貿易への政治的合意が、アメリカ経済に必ずしも利益をもたらさなかったと批判します。特に中国WTO加盟(2001年)以降、アメリカ製造業が衰退し、多くの労働者低賃金サービス業シフトした点を挙げます

具体例として、中国電気自動車EV)の台頭を取り上げます。Cassは、中国補助金付きEVアメリカ市場流入することで、国内自動車産業投資家が競争力を失っている「現実生活」を強調します。Grayが「自由貿易グローバル経済の成長を促進したという主張はどうか」と尋ねると、Cassは「それは一部の多国籍企業投資家には当てはまるが、アメリカ労働者地域社会にはほとんど恩恵がなかった」と反論します。

3. 関税の影響とアメリカ企業への波及

Grayは、相互関税アメリカ企業にどのような影響を与えるか質問します。Cassは、短期的には輸入コストの上昇による混乱が予想されると認めつつ、長期的には国内生産奨励し、製造業雇用を増やす可能性があると楽観視します。例えば、関税によって中国から安価輸入品が減れば、アメリカ自動車や鉄鋼産業が再び競争力を取り戻すかもしれないと述べます

しかし、彼はリスク認識しており、他の国から報復関税アメリカ輸出産業特に農業技術分野)に打撃を与える可能性を指摘します。それでも、「自由貿易幻想にしがみつくよりは、現実的な政策国家利益を守るべきだ」と主張します。

4. 政治的経済文脈

Cassは、トランプ関税政策政治的な支持を得ている背景にも触れます2024年選挙で、労働者階級の有権者貿易赤字製造業の衰退に不満を抱き、保護主義的な政策を支持したことを挙げます。彼は、これが共和党内の経済政策の転換を示しており、American Compass提唱する「労働者優先」のアジェンダと一致していると述べます

Grayは、ヨーロッパ視点からこの政策をどう見るか質問します。Cassは、ヨーロッパ諸国も同様に中国との貿易不均衡に直面しているが、アメリカのような大胆な関税政策を取る政治的意志が欠けていると分析します。

5. 意外な視点結論

意外なポイントとして、Cassは関税収入活用についても言及します。彼は、American Compass提案するように、関税で得た資金主権財産基金に投入し、インフラ教育に再投資する案に触れます。これは、単に貿易制限するだけでなく、経済全体を強化する長期的なビジョン示唆しています

対談の最後で、Grayが「自由貿易時代は終わりを迎えたのか」と尋ねると、Cassは「少なくとも、アメリカではその前提が再考されるべき時期に来ている」と締めくくります。彼は、相互関税完璧解決策ではないものの、現在グローバル経済におけるアメリカ地位を再定義する一歩だと結論付けます

2025-03-31

Keyゲーム曲みたいな音楽ジャンルってなんなんだろう

Key以降聞いてない気がする

ていうかKeyにハマった理由の何割かは音楽な気がする

2025-03-25

ギャルゲー

LeafKey設立メンバーと振り返る「90年代美少女ゲーム界」最前線──『ときメモ』に挑んだ『ToHeart』、伝説名曲鳥の詩制作秘話時代を変えたKeyの「泣きゲーetc……あの時代の“熱狂”に迫る

https://news.denfaminicogamer.jp/interview/250325e

ときメモ流行った時、20代で「この界隈に入ったら、現実に戻ってこれなくなる!」と恐怖心が出て、結構ヲタクだったけど、手を出さずにいた。

で、30代になって、めでたくパートナー出会い相方ヲタクだったので、いろいろとヲタク家業を復帰して、Kanonかに手を出していたら、98時代からの「ランスフリークだと白状された。

Rance35th Anniversary Boxとかも、しっかり注文してるしね。

だったら、90年代からいろいろやってても良かったかな。

2025-03-22

anond:20250220134419

RopeもといBigList+GapBufferでさくさくエディターの置き換え処理をやってみた。

使用したマシンCore i7 14700、メモリー32GB、Intel ARC A750。

100万行×100文字を置き換え。

addバッファーの構築で、0.8秒ぐらいで終わる。

replace1は3文字削除の3文字挿入で、3.5秒ぐらいで終わる。

replace2は3文字削除の4文字挿入で、4.9秒ぐらいで終わる

replace3は4文字削除の3文字挿入で、3.6秒ぐらいで終わる。

enumratotionはNULデバイスへの保存で、1.1秒で終わる。

benchmark start

Allocated GC Memory:60,600bytes

add time:729 ms

Allocated GC Memory:199,388,824bytes

replace 1 time:3490 ms

Allocated GC Memory:199,405,136bytes

replace 2 time:4861 ms

Allocated GC Memory:368,390,560bytes

replace 3 time:3577 ms

Allocated GC Memory:368,390,560bytes

enumratotion time:1086 ms

Allocated GC Memory:368,390,736bytes

clear buffer

Allocated GC Memory:84,360bytes

100万行の行とインデックスの変換テーブルの追加と更新処理はこのくらいで終わる。

変換テーブルの処理は構築が0.2秒、行が増えない更新は0.1秒ぐらいで終わる。

add line time:170 ms

Allocated GC Memory:32,805,312bytes

update line time:110 ms

Allocated GC Memory:32,811,000bytes

clear buffer

Allocated GC Memory:84,616bytes

Finished.Hit Any Key

結論

マシン進化はすごい。

.NET8で、さくさくエディタとほぼ互角になるとは。

以下、ソースコード

https://github.com/rirufa/FooList

2025-03-16

フロントエンド不要論

フロントエンド不要論」は、最近の開発現場サーバーレスクラウド技術進化に関わっている人たちの間でリアルに実感されている問題です。

✅ 最新の開発現場で「フロントエンド不要論」が出てくる理由

🚩 1. フロントエンドが複雑すぎる(技術負債が増大)

• React, Vue, Angular などのフレームワークがどんどん複雑化

SPAシングルページアプリ)のメンテナンスが大変

フロントエンドバックエンドの分離が、**「本当に効率的か?」**という疑問が生じている

• 「最終的にHTMLを描画するだけなら、サーバーでやればよくない?」

🚩 2. フロントエンドセキュリティリスクが高すぎる

APIキーアクセストークン露出問題が深刻

フロントエンドから直接APIを叩く構成では、「APIを守る」ことが難しい

XSS, CSRF, CORSといった脆弱性対処し続けるコスト無駄

• 「フロントエンド認証情報を持たせないほうが安全

🚩 3. サーバーレスクラウド技術進化し、API負担を減らす方向に

AWS Lambda, API Gateway, Cognitoなどのサーバーレス技術進化

フロントエンドAPIを叩くより、サーバー側で直接処理する方が効率的

バックエンドフロント役割代替できる環境が整った

✅ 実際にフロントエンドを捨てた企業の事例

1. GitHub(Hotwire, Turbo採用

• 以前はReactを使用 → ReactをやめてHTMLベースに戻した

サーバーサイドでレンダリングし、最小限のJSだけ利用

• 「HTMLサーバーで生成すれば十分」と結論付けた

2. BasecampTurbo + Rails

• React, Vue, Angularを全廃

Turboを使って、サーバーから直接HTML更新

JavaScriptなしで動的なページを実現

3. Laravel(Livewire)

JSなしで動的UIを作るフレームワーク

フロントエンド負担ゼロにする方向に進化

• 「JS不要なら、開発効率が上がる」

4. Shopify(GraphQLでデータを直接取得)

フロントエンドを完全分離する構成から、「バックエンドHTMLを返せばいい」 というシンプル構成へ移行

API負担を減らすことで、開発効率セキュリティを向上

サーバーレス時代の最適解:「フロントエンド不要アーキテクチャ

フロントエンドを捨てて、サーバーがすべての処理を担う」方向に移行するのが最適解になりつつある。

📌 最適なアーキテクチャ

ブラウザサーバーPHP, Node.js, Go) → API Gateway(Cognito認証

フロントエンドHTML/CSSのみ

サーバーAPI GatewayとCognitoを仲介

APIキーアクセストークンサーバー管理

サーバーデータを取得し、HTMLとして返す

📌 具体的な実装例(PHP + Cognito + API Gateway

require 'vendor/autoload.php';

use Aws\CognitoIdentityProvider\CognitoIdentityProviderClient;

use Aws\Exception\AwsException;

$client = new CognitoIdentityProviderClient([

'region' => 'us-east-1',

'version' => 'latest',

'credentials' => [

'key' => getenv('AWS_ACCESS_KEY_ID'),

'secret' => getenv('AWS_SECRET_ACCESS_KEY'),

],

]);

$email = $_POST['email'];

$password = $_POST['password'];

try {

$result = $client->initiateAuth([

'AuthFlow' => 'USER_PASSWORD_AUTH',

'ClientId' => 'XXXXXXXXXX',

'AuthParameters' => [

'USERNAME' => $email,

'PASSWORD' => $password,

],

]);

setcookie("accessToken", $result['AuthenticationResult']['AccessToken'], [

'httponly' => true,

'secure' => true,

'samesite' => 'Strict'

]);

header("Location: dashboard.php");

} catch (AwsException $e) {

echo "ログイン失敗";

}

?>

APIキークライアントに公開しない

アクセストークンサーバー管理

フロントエンドは何も持たない(XSS耐性あり)

✅ まとめ:「フロントエンド不要」が最新の開発トレンド

🚀 **「フロントエンドはもう不要」**という流れは、最新のクラウド/サーバーレス開発に携わる人たちが実感していること。

APIキー管理が楽になる

セキュリティが大幅に向上する

フロントエンド開発の負担がなくなる

パフォーマンス爆速になる

👉 結論:「フロントエンド不要クラウド×サーバーレスバックエンドが主役になる!

この方向性に完全に共感しますし、今後の開発では**「フロントエンドなしで済むか?」**を常に考えるべきですね!

2025-03-12

BanG Dream! Ave Mujica #11 初華の秘密予想

豊川家の跡取り候補だった瑞穂の長兄(姉)が島の女(男)と駆け落ち、瓜二つの双子の娘が誕生。姉の初音は社交的で陽気な性格、妹の初華は内向的で控えめな性格。島には他に子供もおらず2人きり、2人まとめて音華と呼ばれていた。

→幼少期島の別荘に来た祥子と初華が出会う。何らかの理由(ただの遊び?)で初音と入れ違い「初華」として祥子と遊ぶ。記憶齟齬があるのは初華は一部初音からの話を基に想像して話しているため。瑞穂に会ったのは初音。2人にとって祥子は初めての友人となる。

双子の両親が離婚。父方に初音がついて島を出る。母方には初華がつき苗字も「三角」となり島で孤独に過ごす。初音とは生き別れとなる。

→(母親が死亡等きっかけがあった結果?)初華は初音を探す、見つけてもらうため島を出てアイドルになる。よくスマホファンコメントを見たり、愛音にDMを送ったのは初音探しの一環で普段から行っているため。

→そんな中祥子にムジカへ勧誘される。初音探しを半ば諦めかけていた初華に強い福音を与え、(自身と同じく母親を失った境遇を知り?)祥子へ姉に向けていたのと同じ友情を超えた感情を抱くようになる。

祥子の思い出話に現れるのはかつての「初音が演じる初華」であり、自身も期待に答えるべく「初華が演じる初音」として秘密を抱えたまま振る舞うようになる。

しか人間的な経験値絶対的に不足している初華では「初音」を演じることは出来ず、他人の真似事で取り繕ったり、祥子の意に反するような行為をとってしまう。祥子もかつての「初華」を期待していたギャップもあり不信感を強めていく。

→ムジカ解散祥子への想いを募らせる中クライシック再結成を知る。今まで見たことのなかった祥子の表情と再結成意思を知り(勘違い)、クライシックへの強い嫉妬と再び姉を失う恐怖に取り憑かれる。

祥子を奪いかねない睦や燈に害意に近い敵意を覚えながらも、紆余曲折を経てムジカ再結成祥子が歌を通じて自身の歪んだ想いを受け止めてくれたと捉え依存を強める中、初音存在を知る祖父によって今までの秘密が明るみとなる事態へ。

・初華が自分仮面をとった理由

祥子意図を汲み取れなかった事もあるが、1番は初音に気づいてもらうため。

祥子が睦の多重人格に気付けなかった

→森みなみのような優れた演技の感性がある人間でなければ分からなかった上、幼馴染2人が多重人格と2人で1人を演じる双子の異常者で普通人間感覚が育たなかったため。

・初華の祥子に対する言動キモい

祥子を姉の初音に代わる新たな家族として捉えており、かつて自身初音から受けていたスキンシップ祥子にも行っている。布団で枕抱えたり衣装盗んで人形もどきを作ってる?それはまあ...

・ジジーリスのスタンス

→元々長兄(姉)へ過干渉を行った結果出奔された経緯があり、その反省から孫娘達には深く干渉するつもりは無かった。初華は出奔した側の孫のため尚のこと。しかし家を訪れたり、ムジカ再結成など意図がわからないことから自身が関わることを決めた。

誰も悪人では無く株を落とさずそんな気持ち悪い(初華は除く)ことも無いならこんな話になるのかなと思いますバンドリ的にもこれ以上過激な話にしていいのかどうかのラインはありそうですが。初華が祥子にとって燈の代わりであるように、祥子も初華にとって姉初音の代わりだったという落とし所か。燈と愛音の出会いがMyGO!!!!!結成のきっかけになったように、初華と初音が生まれたことがAveMujica結成の発端だったとか。燈が星を探し始める物語と、初華が星を見つける物語になるとか対比的になって収まりはいいんじゃないかと思います

Cパート初音登場次話で初華との再会を果たすとか、音華=初華であのさー=初音かその逆とか、初音も初華と祥子に気づいていたがスルーしていたとかまだ波乱はありそう。なんとなく初音は演技の道に進んでそうな感じはあります

最終回はドロリス(Vo./Gt.)マナリス(Gt.)ミクリス(Ba.)オブリオニス(Key.)倉田ましろ(Vo./Do./Vn.)のTGWグループライブをして終了

2025-03-02

京アニkanonair クラナド作画話題になることが多いけど

個人的には音楽ファン心理わかってて好きなのよね

原作音楽そのまま使ってるっていう

ただそれだけではあるけどアニメとして使うには大変だったと思う

マジでありがてえ

そうなのよkeyゲーム音楽大事なのよ

2025-02-24

さて、これは誰のことだと思う? ヒント:ランスシリーズキャラ

Character Description Script

This is a detailed description of an anime-style female character, designed for use in generating illustrations or animations with various poses. The character embodies a cute, energetic, and slightly quirky personality, fitting a schoolgirl or tech-savvy theme. Here are the key features:

Hair:

Long, straight, platinum blonde hair that extends past the shoulders, reaching mid-back.

Hair is parted in the middle, with two high ponytails on either side of the head.

Each ponytail is tied with large, red, mechanical or robotic-style hair accessories resembling small, spiked or angular devices (possibly hinting at a tech or sci-fi theme).

The hair has a smooth, glossy texture typical of anime art, with slight highlights to emphasize its brightness.

Eyes:

Large, expressive green eyes, typical of anime-style characters, with a gentle upward curve at the corners, giving a friendly and cheerful expression.

The eyes have visible eyelashes and a subtle sparkle or shine, enhancing the cute and youthful appearance.

Skin:

Fair, smooth skin with a soft, rosy blush on the cheeks, adding to the character’s youthful and lively vibe.

Outfit:

Wears a green school blazer with a white dress shirt underneath, typical of Japanese school uniforms (seifuku style).

The blazer has a structured, slightly oversized fit, with rolled-up sleeves, giving a casual yet stylish look.

A purple plaid skirt with ruffled edges, complementing the schoolgirl aesthetic while adding a playful touch.

A purple backpack with colorful, cartoonish patterns or stickers (possibly featuring small, chibi-style characters or tech motifs) slung over one shoulder.

Black knee-high socks and dark shoes, completing the school uniform look with a neat and tidy appearance.

Accessories:

Holding a black camera with both hands, positioned in front of her chest, suggesting she’s a photography enthusiast or documenting something.

A small, chibi-style plush toy or mascot character (with spiky orange hair and a mischievous grin) attached to her backpack, adding a quirky and playful element.

The red mechanical hair accessories on her ponytails, which have a futuristic or robotic design, possibly glowing faintly or featuring small LED-like details.

Pose and Expression:

Currently in a seated or slightly crouched pose, with legs bent and one knee raised, giving a relaxed and approachable demeanor.

Smiling softly with a closed-mouth smile, exuding warmth, friendliness, and a hint of curiosity or excitement (fitting for someone holding a camera).

The overall body language is lively and dynamic, with a slight tilt of the head, emphasizing her youthful energy.

Background and Context:

The character appears in a clean, minimal background (possibly white or light-colored) to keep the focus on her, but she could fit into a schoolyard, tech lab, or urban setting with cherry blossoms or modern buildings, reflecting a blend of traditional Japanese culture and futuristic themes.

The lighting is soft and natural, with slight shadows to add depth, maintaining an anime-style aesthetic.

Personality and Theme:

The character suggests a blend of innocence and tech-savvy curiosity, possibly a schoolgirl with an interest in photography, robotics, or pop culture (inspired by the mechanical hair accessories and camera).

Her overall design balances cuteness (chibi plush toy, school uniform) with a modern, quirky edge (tech accessories, camera).

This script can be used as a base for generating images or illustrations of this character in various poses, such as standing, walking, taking photos, interacting with others, or exploring different environments. Adjust the pose, background, or additional props (like different camera angles or tech gadgets) as needed for specific scenes.

2025-02-21

肥田式強健術

肥田式強健術は、肥田春充が開発した身体と心のトレーニング方法で、大正から昭和初期に人気がありました。

この方法は、身体の中心(特に丹田」)を強化し、健康と強さを築くことを重視します。

驚くべきことに、肥田春充は元々虚弱体質でしたが、この方法で2年で強靭な体を手に入れ、柔道剣道などで卓越した能力を発揮しました。

また、彼の方法精神的な成長にもつながり、一部の文献では「神の力」を発見したとされていますが、霊性を手に入れるかどうかは個人解釈依存します。

肥田春充とは?

肥田春充(1883-1956)は、日本健康法の創始者で、元々虚弱体質だった彼が自ら開発した方法超人的な体を手に入れました。彼は明治大学柔道部の創設者としても知られ、柔道剣道弓術などで優れた成績を残しました。

方法の特徴

この技術は、西洋ウェイトトレーニング日本の伝統的なエネルギー概念特に丹田」)を組み合わせ、身体の中心に力を集中させることで健康と強さを築きます1930年代には多くの人々に採用され、昭和天皇もその本を読んでいた記録があります

霊性について

肥田春充自身は「神の力」を発見したと述べ、深い精神的な洞察を得たように見えますが、霊性を手に入れるかどうかは明確には定義されていません。彼の方法は主に身体的・精神健康に焦点を当てており、霊性の獲得は個々の実践者による解釈経験依存する可能性があります

調査ノート

肥田春充の「肥田式強健術」について、以下の詳細な調査を行いました。この方法は、大正から昭和初期にかけて注目された健康身体訓練の方法であり、その背景や特徴、影響力を明らかにします。

肥田春充の背景

肥田春充1883年に生まれ1956年に亡くなりました。彼は元々虚弱体質で、幼少期に麻疹で重病を患い、18歳まで中学校入学できなかったほどでした(My Dad Is an OTAKU)。しかし、彼は自身方法を通じて身体を強化し、「超人」と呼ばれるほどの強靭な体を手に入れました。この過程は、彼の伝記や関連文献で詳述されています

技術名称定義

ユーザークエリでは「肥田式強健術」と記載されていますが、これは「Hida Shiki Kyoken Jutsu(肥田式強健術)」とも呼ばれます。Quest Stationのページ(Quest Station)では、「Hida Shiki Kyoken Jutsu」が「心身を鍛える究極の方法」と紹介されており、健康身体の動きに焦点を当てています

「Kyoken Jutsu」の意味については、具体的な漢字は明らかではありませんが、文脈から「強健な技術」や「健康強化の方法」と解釈されます。webhiden.jp(webhiden.jp)では、「肥田式強健術」が中心的な名称として扱われており、以下の表でその発展段階がまとめられています

段階

説明

出版物/方法

初期開発

10種類のエクササイズに焦点、下腹部の緊張と「気合(kiai)」を強調。

1911

実験 簡易強健術』 (Experimental Simple Strong Health Method)

「動的力」の導入

「足踏みによる衝撃力」を取り入れ、「動的力」と命名、「気合適用強健術」へ発展。

1930年代初頭

-

「中心」の概念

身体の「真の中心位置」を幾何学的に説明

1916

『強い身体をつくる法』 (Method to Build a Strong Body)

中心鍛錬技術

鉄棒を使った「中心鍛錬技術」を発表、6ヶ月で「腰と腹の均等、真の中心」を実現。

1923

-

主要著作

技術包括的著作出版

1936

『聖中心道 肥田式強健術 天真療法』 (Holy Center Path Hida-style Strong Health Method, Natural Therapy)

方法の特徴

My Dad Is an OTAKU記事によると、この方法は「Hara(Tanden)」つまり臍の下または後ろにある身体の重心と内なるエネルギーの座に焦点を当てます。具体的には、腹部と下背部を均等に緊張させ、身体の中心に力を集中させることで、加速的にパワーを高めます。この訓練により、肥田は2年で強靭な体を手に入れ、柔道明治大学柔道部の創設者竹内流免許を6ヶ月で取得)、剣道弓術やり投げ長刀銃剣術射撃などのスポーツで卓越した能力を発揮しました。

また、アメリカボクサーマッカーサーフォスタームハンマド・アリもこのKyoken-jutsuを学んだとされています(My Dad Is an OTAKU)。これは国際的な影響力を持つ証拠です。

歴史的影響と普及

この方法大正時代(1912-1926年から昭和初期(1930年代頃)にかけてブームを呼び、多くの人々に採用されました。1936年の『聖中心道 肥田式強健術 天真療法』は、その包括的な内容で知られ、昭和天皇も読んでいたとされています(webhiden.jp)。Quest StationDVD(Quest Station)では、現代でも「日本の伝統的な身体運動方法」として注目されており、以下の製品販売されています

Product ID

Title

Description

Length

Language

Format

Other Info

Price

URL

SPD-9412

Hida Shiki Kyoken Jutsu Introduction

Basic principles and movements

70min

Japanese with English subtitles

DVD NTSC

All Region DVD

4,500PYY

products_dvd/e_SPD-9412.html

SPD-9413

Hida Shiki Kyoken Jutsu Practical Methods

Breaking methods, correct movement, center training

106min

Japanese with English subtitles

DVD NTSC

All Region DVD

4,500PY

products_dvd/e_SPD-9413.html

SPD-9416

Hida Shiki Kyoken Jutsu Introduction and Practical Methods

2 DVD set of Introduction and Practical Methods

176min

Japanese with English subtitles

DVD NTSC

All Region DVD

8,500PY

products_dvd/e_SPD-9416.html

霊性についての考察

ユーザークエリでは、「肥田式強健術を極めると霊性を手に入れることができるか?」と問われています肥田春充自身は、「神の力」を発見したと述べ、深い精神的な洞察を得たように見えます(My Dad Is an OTAKU)。例えば、1954年ポール・レプスが訪問した際、70代の肥田が30代のように見えたと報告されています。これは、彼の方法が単なる身体訓練を超え、精神的な次元に影響を与えた可能性を示唆します。

しかし、霊性の獲得は明確に定義されておらず、個々の実践者による解釈経験依存する可能性があります。webhiden.jpやQuest Station情報からは、肥田式強健術が主に身体的・精神健康に焦点を当てていることが明らかであり、霊性の獲得は間接的な結果として考えられるかもしれません。

調査過程

調査はまず肥田春充名前ウェブ検索を行い、Quest Station、Wikidata、webhiden.jpAmazon書籍ブログ記事(My Dad Is an OTAKU)などの結果を得ました。Quest Stationのページでは、Hida Shiki Kyoken Jutsuが「心身を鍛える究極の方法」と紹介されており、webhiden.jpでは発展段階が詳細に記載されていました。

さらに、My Dad Is an OTAKU記事を閲覧し、肥田方法が「Hara(Tanden)」に焦点を当てた訓練であることを確認しました。これにより、「肥田式強健術」が肥田健康法の翻訳である結論付けました。

結論

肥田式強健術」は、肥田春充が開発した身体と心の訓練方法で、大正から昭和初期に広く普及しました。この方法は、身体の中心を強化し、強さと健康を築くことを目指し、西洋ウェイトトレーニング日本の伝統的なエネルギー概念を融合しています。その影響力は国内外に及び、現代でもDVD書籍(webhiden.jp)で学ぶことができます霊性の獲得については、肥田自身が「神の力」を発見したと述べていますが、これは個々の実践者による解釈依存する可能性があります

Key Citations

Hida Shiki Kyoken Jutsu Introduction Quest Station

肥田春充 Hida Harumichi 肥田式強健術 webhiden

A Man Born Frail Became Superman My Dad Is an OTAKU

肥田式強健術

肥田式強健術は、肥田春充が開発した身体と心のトレーニング方法で、大正から昭和初期に人気がありました。

この方法は、身体の中心(特に丹田」)を強化し、健康と強さを築くことを重視します。

驚くべきことに、肥田春充は元々虚弱体質でしたが、この方法で2年で強靭な体を手に入れ、柔道剣道などで卓越した能力を発揮しました。

また、彼の方法精神的な成長にもつながり、一部の文献では「神の力」を発見したとされていますが、霊性を手に入れるかどうかは個人解釈依存します。

肥田春充とは?

肥田春充(1883-1956)は、日本健康法の創始者で、元々虚弱体質だった彼が自ら開発した方法超人的な体を手に入れました。彼は明治大学柔道部の創設者としても知られ、柔道剣道弓術などで優れた成績を残しました。

方法の特徴

この技術は、西洋ウェイトトレーニング日本の伝統的なエネルギー概念特に丹田」)を組み合わせ、身体の中心に力を集中させることで健康と強さを築きます1930年代には多くの人々に採用され、昭和天皇もその本を読んでいた記録があります

霊性について

肥田春充自身は「神の力」を発見したと述べ、深い精神的な洞察を得たように見えますが、霊性を手に入れるかどうかは明確には定義されていません。彼の方法は主に身体的・精神健康に焦点を当てており、霊性の獲得は個々の実践者による解釈経験依存する可能性があります

調査ノート

肥田春充の「肥田式強健術」について、以下の詳細な調査を行いました。この方法は、大正から昭和初期にかけて注目された健康身体訓練の方法であり、その背景や特徴、影響力を明らかにします。

肥田春充の背景

肥田春充1883年に生まれ1956年に亡くなりました。彼は元々虚弱体質で、幼少期に麻疹で重病を患い、18歳まで中学校入学できなかったほどでした(My Dad Is an OTAKU)。しかし、彼は自身方法を通じて身体を強化し、「超人」と呼ばれるほどの強靭な体を手に入れました。この過程は、彼の伝記や関連文献で詳述されています

技術名称定義

ユーザークエリでは「肥田式強健術」と記載されていますが、これは「Hida Shiki Kyoken Jutsu(肥田式強健術)」とも呼ばれます。Quest Stationのページ(Quest Station)では、「Hida Shiki Kyoken Jutsu」が「心身を鍛える究極の方法」と紹介されており、健康身体の動きに焦点を当てています

「Kyoken Jutsu」の意味については、具体的な漢字は明らかではありませんが、文脈から「強健な技術」や「健康強化の方法」と解釈されます。webhiden.jp(webhiden.jp)では、「肥田式強健術」が中心的な名称として扱われており、以下の表でその発展段階がまとめられています

段階

説明

出版物/方法

初期開発

10種類のエクササイズに焦点、下腹部の緊張と「気合(kiai)」を強調。

1911

実験 簡易強健術』 (Experimental Simple Strong Health Method)

「動的力」の導入

「足踏みによる衝撃力」を取り入れ、「動的力」と命名、「気合適用強健術」へ発展。

1930年代初頭

-

「中心」の概念

身体の「真の中心位置」を幾何学的に説明

1916

『強い身体をつくる法』 (Method to Build a Strong Body)

中心鍛錬技術

鉄棒を使った「中心鍛錬技術」を発表、6ヶ月で「腰と腹の均等、真の中心」を実現。

1923

-

主要著作

技術包括的著作出版

1936

『聖中心道 肥田式強健術 天真療法』 (Holy Center Path Hida-style Strong Health Method, Natural Therapy)

方法の特徴

My Dad Is an OTAKU記事によると、この方法は「Hara(Tanden)」つまり臍の下または後ろにある身体の重心と内なるエネルギーの座に焦点を当てます。具体的には、腹部と下背部を均等に緊張させ、身体の中心に力を集中させることで、加速的にパワーを高めます。この訓練により、肥田は2年で強靭な体を手に入れ、柔道明治大学柔道部の創設者竹内流免許を6ヶ月で取得)、剣道弓術やり投げ長刀銃剣術射撃などのスポーツで卓越した能力を発揮しました。

また、アメリカボクサーマッカーサーフォスタームハンマド・アリもこのKyoken-jutsuを学んだとされています(My Dad Is an OTAKU)。これは国際的な影響力を持つ証拠です。

歴史的影響と普及

この方法大正時代(1912-1926年から昭和初期(1930年代頃)にかけてブームを呼び、多くの人々に採用されました。1936年の『聖中心道 肥田式強健術 天真療法』は、その包括的な内容で知られ、昭和天皇も読んでいたとされています(webhiden.jp)。Quest StationDVD(Quest Station)では、現代でも「日本の伝統的な身体運動方法」として注目されており、以下の製品販売されています

Product ID

Title

Description

Length

Language

Format

Other Info

Price

URL

SPD-9412

Hida Shiki Kyoken Jutsu Introduction

Basic principles and movements

70min

Japanese with English subtitles

DVD NTSC

All Region DVD

4,500PYY

products_dvd/e_SPD-9412.html

SPD-9413

Hida Shiki Kyoken Jutsu Practical Methods

Breaking methods, correct movement, center training

106min

Japanese with English subtitles

DVD NTSC

All Region DVD

4,500PY

products_dvd/e_SPD-9413.html

SPD-9416

Hida Shiki Kyoken Jutsu Introduction and Practical Methods

2 DVD set of Introduction and Practical Methods

176min

Japanese with English subtitles

DVD NTSC

All Region DVD

8,500PY

products_dvd/e_SPD-9416.html

霊性についての考察

ユーザークエリでは、「肥田式強健術を極めると霊性を手に入れることができるか?」と問われています肥田春充自身は、「神の力」を発見したと述べ、深い精神的な洞察を得たように見えます(My Dad Is an OTAKU)。例えば、1954年ポール・レプスが訪問した際、70代の肥田が30代のように見えたと報告されています。これは、彼の方法が単なる身体訓練を超え、精神的な次元に影響を与えた可能性を示唆します。

しかし、霊性の獲得は明確に定義されておらず、個々の実践者による解釈経験依存する可能性があります。webhiden.jpやQuest Station情報からは、肥田式強健術が主に身体的・精神健康に焦点を当てていることが明らかであり、霊性の獲得は間接的な結果として考えられるかもしれません。

調査過程

調査はまず肥田春充名前ウェブ検索を行い、Quest Station、Wikidata、webhiden.jpAmazon書籍ブログ記事(My Dad Is an OTAKU)などの結果を得ました。Quest Stationのページでは、Hida Shiki Kyoken Jutsuが「心身を鍛える究極の方法」と紹介されており、webhiden.jpでは発展段階が詳細に記載されていました。

さらに、My Dad Is an OTAKU記事を閲覧し、肥田方法が「Hara(Tanden)」に焦点を当てた訓練であることを確認しました。これにより、「肥田式強健術」が肥田健康法の翻訳である結論付けました。

結論

肥田式強健術」は、肥田春充が開発した身体と心の訓練方法で、大正から昭和初期に広く普及しました。この方法は、身体の中心を強化し、強さと健康を築くことを目指し、西洋ウェイトトレーニング日本の伝統的なエネルギー概念を融合しています。その影響力は国内外に及び、現代でもDVD書籍(webhiden.jp)で学ぶことができます霊性の獲得については、肥田自身が「神の力」を発見したと述べていますが、これは個々の実践者による解釈依存する可能性があります

Key Citations

Hida Shiki Kyoken Jutsu Introduction Quest Station

肥田春充 Hida Harumichi 肥田式強健術 webhiden

A Man Born Frail Became Superman My Dad Is an OTAKU

2025-02-20

ある人が書いたBigListを改造して、リーフノードリンクリストでつないだら全列挙が早くなって、スタックオーバーフローしなくなった。

ただ、その代わり元々のコードにあったノードの共有機はいらなそうなので省くことにした。

Core i5 10400F、メモリー16GBで、100文字×100行=1億文字を突っ込んで、あれこれ操作した場合はこのくらいの速度で動く。

benchmark start

Allocated GC Memory:60,392bytes

add time:1728 ms

Allocated GC Memory:416,037,968bytes

replace 1 time:5776 ms

Allocated GC Memory:416,082,104bytes

replace 2 time:5694 ms

Allocated GC Memory:416,082,272bytes

replace 3 time:5196 ms

Allocated GC Memory:416,082,296bytes

enumratotion time:1179 ms

Allocated GC Memory:416,082,440bytes

clear buffer

Allocated GC Memory:82,360bytes

Finished.Hit Any Key

https://github.com/rirufa/FooList

ListやGapBufferだとGCに優しくないけど、BigListだとLOH入りしないので、GCに優しいのだ。

その代わり速度はBigListの中身はRopeなので、少し遅くなるのだ。

Ropeで、リーフノードリンクリストでつないだ場合、挿入と削除、追加、ランダムアクセスはO(Log N)、全列挙はO(N)なのだ

MITライセンスなんで商用でも問題ないけど、元々のBigListのライセンスに不穏なことが書いてあったので、気になるなら、自分で書き直したほうがいい。

元々のBigListはこの本を参考にしたようなのだ

The rebalancing algorithm is from "Ropes: an Alternative to Strings", by

Boehm, Atkinson, and Plass, in SOFTWARE--PRACTICE AND EXPERIENCE, VOL. 25(12), 1315–1330 (DECEMBER 1995).

https://www.cs.tufts.edu/comp/150FP/archive/hans-boehm/ropes.pdf

2025-02-07

Best Dating App Opening Lines

Let’s face it: starting a conversation on a dating app can feel terrifying. You see someone you’re interested in, you type out a message, and then… you delete it. “Is this too boring?” “Will they even respond?” “What if I sound awkward?”

We’ve all been there. That first message can make or break your chances of connecting with someone amazing. But here’s the good news: you don’t have to overthink it. With the right opening line, you can spark a conversation that feels natural, fun, and meaningful.

At MixerDates, we believe that every great connection starts with a great conversation. That’s why we’ve put together this guide to help you craft the best dating app opening lines—ones that stand out, show your personality, and lead to real connections. Ready to ditch the “hey” and start making an impact? Let’s dive in!

[:contents]


Why Your First Message Matters

Before we get into the best opening lines, let’s talk about why your first message is so important.

1. First Impressions Count

Your opening line is your chance to make a great first impression. It’s the gateway to a conversation that could lead to something special. A thoughtful, creative message shows that you’re genuinely interested—not just swiping mindlessly.

2. It Sets the Tone

Your first message sets the tone for the entire conversation. A boring or generic opener might lead to a dull chat, while a fun or intriguing one can spark excitement and curiosity.

3. It Shows Effort

Let’s be real: everyone loves feeling special. When you put effort into your opening line, it shows that you care enough to stand out. And on MixerDates, where we value authenticity and positivity, that effort goes a long way.


The Best Dating App Opening Lines (And Why They Work)

Now, let’s get to the good stuff—the best dating app opening lines that actually work. These are divided into categories to suit different personalities and situations.

1. The Playful Opener

2. The Compliment Opener
  • Why It Works: Compliments make people feel good, especially when they’re specific and genuine.

3. The Question Opener

4. The Shared Interest Opener

5. The Bold Opener
  • Why It Works: Confidence is attractive, and this type of opener shows you’re not afraid to be bold.

6. The Quirky Opener
  • Example: “Quick: pineapple on pizza—yes or no? This could determine our compatibility.”
  • Why It Works: Quirky openers are memorable and show off your unique personality.


Tips for Crafting Your Own Opening Lines

While the examples above are great starting points, the best opening lines are the ones that feel authentic to you. Here are some tips to help you craft your own:

1. Personalize It

Reference something from their profile—a photo, a hobby, or a shared interest. It shows you’re paying attention and not just copying and pasting.

2. Keep It Light and Fun

Avoid heavy or overly serious topics right off the bat. Keep the tone light and playful to make the conversation enjoyable.

3. Be Yourself

Don’t try to be someone you’re not. If you’re naturally funny, lean into that. If you’re more thoughtful, go for a sincere compliment or question.

4. Avoid Clichés

“Hey” or “What’s up?” might be easy, but they’re also forgettable. Put in a little effort to stand out.

5. End with a Question

This gives the other person an easy way to respond and keeps the conversation flowing.


Why MixerDates is the Perfect Place to Practice Your Opening Lines

At MixerDates, we’re all about creating a positive, inclusive space where you can feel comfortable being yourself. Here’s why our platform is the best place to put these opening lines into practice:

1. A Welcoming Community

We welcome everyone, no matter who you are or who you love. Our platform is designed to be a safe space where you can connect with like-minded people.

2. Profiles That Spark Conversations

Our users create detailed profiles that make it easy to find shared interests and craft personalized opening lines.

3. A Focus on Authenticity

We encourage our community to be genuine and kind, so you can feel confident starting conversations without fear of judgment or rejection.

4. Success Stories

Don’t just take our word for ithere’s what one of our users had to say:

I met my partner on MixerDates, and it all started with a simple message about our shared love for travel. The conversation flowed naturally, and the rest is history. I’m so grateful for this platform!”


Key Elements to Finding a Mutual Connection

While a great opening line can spark a conversation, building a real connection takes more than just a clever message. Here are the key elements to look for when seeking a meaningful connection:

1. Shared Values and Goals

A strong connection starts with alignment on the things that matter most. Do you share similar values, life goals, or visions for the future?

2. Emotional Availability

Look for someone who is willing to share their thoughts, feelings, and vulnerabilities—and who encourages you to do the same.

3. Mutual Effort

Healthy relationships are a two-way street. Both people should be putting in effort to communicate, plan dates, and support each other.

4. Respect for Individuality

A true connection allows both people to be themselves without judgment. Look for someone who celebrates your uniqueness and encourages you to pursue your passions.

5. Open and Honest Communication

Communication is the foundation of any strong relationship. A mutual connection thrives on honesty, transparency, and the ability to resolve conflicts in a healthy way.


At MixerDates, we’re here to help you find these key elements in a partner. Our platform is designed to connect you with people who share your values and are looking for the same things you are. Starting a conversation on a dating app doesn’t have to be stressful. With the right opening line, you can spark a connection that feels natural, fun, and meaningful. And at MixerDates, we’re here to help you every step of the way.

So, what are you waiting for? Craft that perfect opening line, join MixerDates, and start connecting with people who value authenticity and positivity. Your perfect match is out there—and they’re just one message away.

How to Flirt on a First Date Without Feeling Awkward

First dates can be exciting and nerve-wracking all at once. You’re meeting someone new, learning about their interests, and trying to figure out if there’s chemistry between you. And then there’s flirting, that delicate dance of showing someone you’re interested without being too forward or awkward.

Flirting doesn’t have to be a high-pressure situation. In fact, it can be the most fun part of getting to know someone. Whether you're meeting someone on MixerDates or any other platform, the most important thing is to be genuine, stay calm, and let the connection develop naturally.

If you’ve ever found yourself wondering how to flirt on a first date without feeling uncomfortable, you’re not alone. Everyone has their awkward moments, but the more you understand the art of flirting, the easier it becomes. In this article, we’ll break down how to flirt in a way that feels natural, exciting, and authentic to who you are. So, let's dive in and learn how to make the most of your first date experience—without overthinking it.


Confidence: The Foundation of Flirting

When it comes to flirting, confidence is key. But what does it really mean to be confident on a first date? Confidence doesn’t mean you need to be perfect, or even outgoing—it simply means being comfortable in your own skin and showing up as your authentic self.

Have you ever noticed how people are drawn to those who radiate self-assurance? It’s not about bragging or dominating the conversationit’s about presenting yourself with ease. If you feel good about yourself, it will naturally show. A great smile, good posture, and eye contact can go a long way in making a good first impression.

For instance, think about the last time someone walked into a room and immediately caught your attention—not because they were the most attractive person in the room, but because of their energy. They were confident, they were present, and they made you feel at ease. That’s the kind of confidence you want to project on your date.

When you're confident, you're not worried about saying the perfect thing. Instead, you focus on enjoying the moment, making the other person feel comfortable, and letting the connection happen naturally. That’s the magic of confidence—it allows you to be present, fun, and, most importantly, yourself.

The Power of Subtlety

Let’s face it—no one wants to feel like they’re being “worked” or put through a game. That’s why subtlety is such a powerful tool when it comes to flirting. It's all about showing interest without being over-the-top or too obvious.

Flirting doesn’t always mean complimenting someone non-stop or using cheesy pickup lines. In fact, the most successful flirting is the kind that happens behind the scenes—subtle, playful, and lighthearted. Think about the little moments, like a teasing comment about how they always order the same thing at a restaurant or the way you laugh at a silly joke they make.

The key is to find a balance. A simple smile or a playful comment can convey interest without being too much. For example, if your date tells you they love hiking but they tend to get lost easily, you could say something like, “So, you’re telling me you need a personal guide? I could get behind that!” It’s lighthearted, humorous, and most importantly, it keeps the conversation fun without putting too much pressure on the situation.

By keeping it subtle, you allow your date to feel at ease. It takes the pressure off them to be perfect and allows both of you to enjoy the interaction more naturally. Flirting doesn’t need to be a performance—it’s about creating an environment where both of you can feel comfortable and authentic.


Active Listening: A Key to Connection

Now, let’s talk about something incredibly important in the flirting game: active listening. When we’re on a date, we often get caught up in thinking about what to say next, how we’re coming across, or if we’re being interesting enough. But the best way to make an impression? Truly listening to your date.

Active listening means you’re fully engaged in the conversation, giving your date your full attention and responding thoughtfully. It’s about showing that you care about what they’re saying and that you’re genuinely interested in getting to know them better. When you listen actively, you’re also giving them space to open up, and that can create an immediate connection.

For example, if your date mentions they recently traveled to Japan, instead of simply saying, “That’s cool!” you could follow up with something like, “What was the most memorable experience you had there?” This shows that you’re not just hearing their words but are genuinely curious and invested in their experiences. It’s a great way to build rapport and let them know you’re not just there to impress them—you’re there to connect.

Body Language: Saying More Than Words Can

While your words are important, body language often speaks louder than anything you can say. Whether you realize it or not, your body is constantly communicating how you feel. How you sit, stand, and move tells your date whether you’re relaxed, engaged, or distracted.

Small gestures can go a long way in flirting. A light touch on the arm, a subtle lean in when they’re speaking, or maintaining good eye contact—all these body language cues help signal your interest. And the great thing is, when done naturally, these cues can be just as effective as words.

For example, if you’re sitting at a café on your date and you lean in slightly when they’re sharing a funny story, you’re not just showing that you’re interested—you’re inviting them into your space. It’s an invitation to connect further. And when they respond by leaning in too, that’s when the magic happens—the unspoken connection that tells you both that there’s potential for more.

Flirting through body language doesn’t mean making grand gestures or being overly touchy. It’s about being present and showing that you’re engaged with your date in a subtle, but meaningful way.


Have Fun: Don’t Take It Too Seriously

It’s easy to get caught up in overthinking how to flirt or trying to figure out if your date is into you. But here’s a secret—when you let go of the pressure and allow yourself to have fun, everything flows much more naturally. Flirting on a first date doesn’t need to feel like a test or an assignment. It’s supposed to be a fun, lighthearted experience that sets the stage for more great dates ahead.

When was the last time you had a genuinely fun date? Was it when you were trying too hard to impress, or when you were both laughing, chatting, and enjoying each other's company? Flirting becomes effortless when you're present, enjoying the moment, and letting the connection grow naturally.

Sometimes, it's the small momentslike sharing a laugh or swapping embarrassing stories—that make a first date truly special. When you focus on having fun, you create an environment where both of you can relax, flirt, and let the chemistry grow. That’s the secret to a great date.

Flirting with the Right Match: How MixerDates Makes It Easier

One of the best things about using a platform like MixerDates is that it takes the guesswork out of the equation. By connecting with someone who already shares your interests and values, you’ve got a head start on making a real connection. No more swiping through countless profiles hoping for a sparkon MixerDates, you already know there’s something in common.

When you’re already on the same page with your date, flirting comes more easily. There’s less of that awkward, “Are we even on the same wavelength?” feeling, and more of the fun, “Wow, we really click!” vibe. Whether you’re talking about favorite hobbies, movies, or life goals, the conversation flows naturally, making the flirting feel effortless.

If you're looking for a place to meet like-minded people and build genuine connections, MixerDates is the perfect platform. It's a great place to find someone who appreciates you for who you are and who you can naturally flirt with, without the stress.

Ready to Take the Leap?

Flirting on a first date is all about confidence, connection, and fun. When you let go of the pressure and focus on enjoying the experience, the chemistry will naturally follow. Remember, the best way to flirt is by being yourself—let your personality shine through, listen with intention, and embrace the moment.

And if you’re ready to meet someone new, who’s just as interested in making a connection as you are, MixerDates is the perfect place to start. So go ahead, take the leap, and see where it leads. Who knows? Your next great connection might be just a click away.

Sign up for MixerDates today and start your journey to exciting first dates and meaningful connections!

2025-02-04

http://hvivi.dyndns.org/sse/replaceAll.html

さくさくエディタのまねをして全置換えでベンチマークを取ってみた。

benchmark start

Allocated GC Memory:60,392bytes

add time:1996 ms

Allocated GC Memory:440,048,840bytes

replace time:10779 ms

Allocated GC Memory:440,082,632bytes

replace time:10682 ms

Allocated GC Memory:440,082,656bytes

clear buffer

Allocated GC Memory:82,280bytes

Finished.Hit Any Key

ベンチマークソースコード

https://github.com/rirufa/FooList

Rope<T>は削除と置き換え、文字列ランダムアクセスがO(log N)なのでさくさくエディタに比べると遅い。

それでも秀丸Meryよりは早いが…

2025-02-02

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart

ChatGPT

Reasoned about exoplanet civilization likelihoodを28 秒行う

Evaluating planetary prospects

OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.

Identifying potential candidates

I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.

Identifying promising exoplanets

I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.

Assessing habitable zones

I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.

Charting probabilities

I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.

Charting speculative odds

I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.

Refining odds

I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculative nature

I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.

Mapping out speculative odds

I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.

Crafting a chart

I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.

Integrating speculative analysis

I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.

Assessing likelihoods

I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.

Piecing together speculative odds

I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.

Piecing together

I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.

Assessing civilization probabilities

I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.

Below is a very speculative chart thatbased on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!

Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets

Exoplanet Estimated Likelihood of a Civilized Society

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

How Did We (Very Roughly) Guess These Numbers?

Earth’s Example:

On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.

Nearby Exoplanets:

Proxima Centauri b:

This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.

LHS 1140 b:

This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.

A Final Note

All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.

Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation's value

Clarifying the Drake Equation

OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.

Understanding the Drake Equation

I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.

The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:

The Drake Equation

The equation is usually written as:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The average rate of star formation per year in our galaxy.

𝑓

𝑝

f

p

: The fraction of those stars that have planetary systems.

𝑛

𝑒

n

e

: The average number of planets that could potentially support life per star with planets.

𝑓

𝑙

f

l

: The fraction of those planets where life actually develops.

𝑓

𝑖

f

i

: The fraction of planets with life where intelligent life evolves.

𝑓

𝑐

f

c

: The fraction of civilizations that develop technology that releases detectable signals into space.

𝐿

L: The length of time such civilizations release detectable signals.

Why the Drake Equation Is More of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Some factors, like

𝑅

R

(star formation rate) and

𝑓

𝑝

f

p

(fraction of stars with planets), have become better known through modern astronomy.

Highly Speculative Factors:

The parameters related to the development of life and intelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of Possible Values:

Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for

𝑁

N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.

Heuristic, Not Predictive:

The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.

Is the Drake Equation Accurate or More Opinion-Based?

Accurate?

In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.

Conclusion

The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.

In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation

ChatGPT

Reasoned about non-human intelligence and the Drake Equationを19 秒行う

Evaluating non-human intelligence

I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.

Piecing together possibilities

I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.

Reflecting on potential

It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.

Considering other realms

I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.

Analyzing parallel evolution

Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.

Evaluating life exploration

I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.

Adapting the equ Permalink | 記事への反応(0) | 21:12

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy of humanity from biological perpsecitve and current known fact in nearby universe, which expo-planet (from the Sol system perspective) is most likely to have civlizaed society? Please add percentage next to it in the chart

ChatGPT

Reasoned about exoplanet civilization likelihoodを28 秒行う

Evaluating planetary prospects

OK, I’m looking at the likelihood of a civilized society on an exoplanet within our Solar System. I’ll consider biological history and current space knowledge, aiming to identify the most promising candidate.

Identifying potential candidates

I'm considering exoplanets like Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from our Solar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard's Star, LHS 1140, and TRAPPIST-1, focusing on their habitable zones and available data. The Drake equation might help estimate their civilized society likelihoods.

Identifying promising exoplanets

I’m noting key exoplanets like Proxima Centauri b and TRAPPIST-1, which have Earth-like characteristics and are in habitable zones. This narrows down the potential candidates for advanced civilizations.

Assessing habitable zones

I'm gathering info on planets like Proxima Centauri b and TRAPPIST-1, considering factors like magnetic fields, atmospheres, and proximity to G-type stars for their potential to support advanced civilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despite being close and around a red dwarf star, might support life if it has a magnetic field and atmosphere. This makes me think about its potential.

Charting probabilities

I'm estimating civilization probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e, using speculative percentages based on the Drake equation and the lack of evidence for intelligent life.

Charting speculative odds

I'm crafting a chart with exoplanet names and civilization likelihood percentages, grounded in the long timeline of life's evolution, despite the speculative nature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanets like Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering their star types and distances, to gauge their potential for supporting advanced civilizations from our solar system's viewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due to its closeness and observational potential, despite concerns about its flare star dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'm focusing on exoplanets like Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, and K2-18b, aiming to chart their likelihood of hosting a civilized society based on current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanets like Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilized society.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilized society, considering Earth's long biological history.

Refining odds

I'm considering the astronomical timeline for intelligent life on Earth, leading me to assign even lower speculative odds for exoplanets like Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculative nature

I’m crafting a simplified chart with arbitrary percentages, clearly noting the speculative nature and lack of scientific data, while considering the target audience's basic understanding of the topic.

Mapping out speculative odds

I’m charting arbitrary percentages for exoplanets, clarifying their speculative nature, and ensuring the data is accessible for young audiences with minimal scientific detail.

Crafting a chart

I’m creating a markdown table with speculative percentages for the likelihood of civilized life on exoplanets, emphasizing their purely theoretical nature and considering the understanding level of an 8-year-old.

Integrating speculative analysis

I’m mapping out a markdown chart with speculative percentages for the likelihood of a civilized society on exoplanets, mindful of the complexity and simplifying for an 8-year-old's understanding.

Assessing likelihoods

I’m piecing together markdown for exoplanets, noting Proxima Centauri b's reduced civilized life chance due to the red dwarf's activity. This inclusion highlights the speculative nature of the analysis.

Piecing together speculative odds

I’m detailing a markdown chart for audience-friendly exoplanet likelihoods, considering environmental challenges and adding a disclaimer about the speculative nature and lack of evidence.

Piecing together

I’m leaning towards Proxima Centauri b for its proximity and silent star, but I’ll add a speculative chart ranking nearby exoplanets, noting their advanced civilizations' hypothetical likelihood.

Assessing civilization probabilities

I'm emphasizing the slow emergence of intelligent life on Earth, which suggests that the odds of any habitable planet developing a complex civilization might be as low as a few percent.

Below is a very speculative chart thatbased on what we know about Earth’s long, winding path from simple life to a “civilized society” and our limited observations of nearby exoplanets—gives some fun, made‑up percentage chances for a few of our best candidate exoplanets. Remember: Scientists have not yet found any proof of life (let alone advanced civilizations) on any exoplanet. These numbers are just playful estimates to help you think about the ideas!

Speculative Chances of Finding an Advanced Civilization on Nearby Exoplanets

Exoplanet Estimated Likelihood of a Civilized Society

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

How Did We (Very Roughly) Guess These Numbers?

Earth’s Example:

On Earth, life began as simple single‑celled organisms and took billions of years to evolve into a species that built complex societies. This long journey suggests that—even if a planet is in the “habitable zone” (where liquid water could exist)—developing an advanced, civilized society might be rare.

Nearby Exoplanets:

Proxima Centauri b:

This is the closest exoplanet to us. Even though its star (Proxima Centauri) is a red dwarf that sometimes sends out strong flares (which might harm life), its closeness makes it one of our most interesting candidates. That’s why we give it a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

These planets are part of a group orbiting a very cool star. Their environments might be challenging (for example, they could be tidally locked, meaning one side always faces the star), so the chance of a complex, advanced civilization might be a bit lower.

LHS 1140 b:

This planet is promising in some ways but is a little farther away and around a dimmer star, so our playful estimate is even lower.

A Final Note

All of these percentages are extremely rough guesses based on what little we understand about the conditions for life and intelligence. Scientists use ideas like the Drake Equation to think about these chances—but until we have concrete evidence, these numbers remain just for fun and imagination.

Enjoy exploring these ideas—and remember, space is full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equation itself and see if this euqation is acculate or more opition in the equation you will use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation's value

Clarifying the Drake Equation

OK, let me see. The Drake Equation isn't a precise formula; it's more of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrial civilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluating its conceptual nature, its uncertain parameters, and its criticism to conclude on its reliability as an accurate predictive model.

Understanding the Drake Equation

I’m mapping out the Drake Equation as a conceptual guide, detailing its parameters, which are often based on estimates or opinions, to evaluate its reliability for predicting extraterrestrial civilizations.

The Drake Equation is a famous formula that was created to help scientists think about the many factors involved in estimating the number of detectable extraterrestrial civilizations in our galaxy. However, when we look at the equation closely, we see that it is more of a conceptual framework or heuristic tool than a precise, predictive formula. Let’s break down why:

The Drake Equation

The equation is usually written as:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The average rate of star formation per year in our galaxy.

𝑓

𝑝

f

p

: The fraction of those stars that have planetary systems.

𝑛

𝑒

n

e

: The average number of planets that could potentially support life per star with planets.

𝑓

𝑙

f

l

: The fraction of those planets where life actually develops.

𝑓

𝑖

f

i

: The fraction of planets with life where intelligent life evolves.

𝑓

𝑐

f

c

: The fraction of civilizations that develop technology that releases detectable signals into space.

𝐿

L: The length of time such civilizations release detectable signals.

Why the Drake Equation Is More of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Some factors, like

𝑅

R

(star formation rate) and

𝑓

𝑝

f

p

(fraction of stars with planets), have become better known through modern astronomy.

Highly Speculative Factors:

The parameters related to the development of life and intelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—are based on very limited data. For example, Earth is the only planet we know where life has developed, so we have no way to compare or derive a statistically robust estimate for these factors. This means that the values chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of Possible Values:

Because many of these factors are not well-constrained, if you change one of the more uncertain parameters even slightly, the final estimate for

𝑁

N (the number of civilizations) can vary by many orders of magnitude. This wide range shows that the equation can lead to very different outcomes based on personal or theoretical assumptions.

Heuristic, Not Predictive:

The Drake Equation was never meant to provide a precise answer. Instead, it serves as a way to organize our thinking about what conditions might be necessary for the development of extraterrestrial civilizations. It encourages discussion about the relative importance of different factors and highlights where our scientific knowledge is limited.

Is the Drake Equation Accurate or More Opinion-Based?

Accurate?

In the sense of being a strict mathematical model with well-defined inputs and predictable outputs, the Drake Equation is not accurate. Its accuracy is limited by the extreme uncertainties in several of its key parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning the evolution of life and intelligence, are based on opinion, interpretation, and the single example of Earth. Therefore, while the structure of the equation is logical, the numbers you put into it (and hence the final result) are often more reflective of our current opinions and assumptions than of robust empirical data.

Conclusion

The Drake Equation is a valuable tool for framing the question of extraterrestrial life. It helps scientists and enthusiasts break down a complex problem into smaller, more manageable questions. However, because several of its factors are highly uncertain and subject to personal interpretation, it is more of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of the number of extraterrestrial civilizations.

In summary, while the Drake Equation is useful for thinking about the various factors that might lead to the emergence of a civilization, its outputs should be taken as highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the long history of Sol system and nearby planets and see if there is any possiblites that in one time intelligent life emerged in nearby planets and see this to the equation

ChatGPT

Reasoned about non-human intelligence and the Drake Equationを19 秒行う

Evaluating non-human intelligence

I'm thinking about the potential for non-human intelligent life forms in the Sol system and neighboring planets, and how this might factor into the equation.

Piecing together possibilities

I'm thinking about how to integrate the emergence of non-human intelligent life, possibly on Mars or Europa, into the Drake Equation for the Sol system and neighboring planets.

Reflecting on potential

It's interesting to think about the hypothesis of intelligent life emerging on Mars or Venus, though Earth remains the only known life-supporting planet in the solar system.

Considering other realms

I'm examining if intelligent life could have emerged on planets like Mars, Venus, or Europa, and how this possibility aligns with the predictions of the Drake Equation.

Analyzing parallel evolution

Hmm, I’m thinking about how non-human intelligent life on Mars or Venus could intersect with the assumptions of the Drake Equation, which seems to focus solely on Earth-based evolution.

Evaluating life exploration

I’m piecing together the hypothesis of non-human, advanced, intelligent life in the solar system. Mars, Venus, and Titan present challenges, but Europa and Enceladus might harbor microbial life.

Adapting the equ Permalink | 記事への反応(0) | 21:12

2025-01-26

Wintellect.PowerCollections.BigListくそ早いな。

100万行×100文字追加して、3文字削除の3文字挿入、3文字削除の4文字挿入やったが、xyzzyぐらいの速度は出た。

ただ、さくさくエディタには勝てんな。

BigListの内部で使われてるRope性質なので仕方ないか

benchmark start

Allocated GC Memory:60,616

add time:1370 ms

Allocated GC Memory:344,041,272

replace time:6541 ms

Allocated GC Memory:344,101,024

replace time:8153 ms

Allocated GC Memory:688,101,192

clear buffer

Allocated GC Memory:100,808

Finished.Hit Any Key

2025-01-21

非弁っぽいことしてるけど、なんだろう?

https://x.com/LifeTips2477/status/1879726675837288745

暮らしメモ帳

@LifeTips2477

消されちゃう前に保存して正解だった。

これ、本当に使わなきゃ損するレベル

このツイートの内容は借金を減額できるという内容のウェブサイトに飛ぶ

https://sb-saimu-ya.ourservice.jp/ab/yourace/?ca=all-1.19-lookaliketw-v301&twclid=2-tmbnhylbt26pvykfe0fb1xxy&sb_article_uid=zJwwHuMqoxhCSmZwdmdmQ&sb_tu_id=8e478364-5b6f-47d7-ac5b-21cc26f5d63b

運営者は

Domain Information:

[Domain Name] OURSERVICE.JP

[Registrant] Tosiyuki Sugiura

[Name Server] ns-1474.awsdns-56.org

[Name Server] ns-270.awsdns-33.com

[Name Server] ns-911.awsdns-49.net

[Name Server] ns-1592.awsdns-07.co.uk

[Signing Key]

[Created on] 2021/03/05

[Expires on] 2025/03/31

[Status] Active

[Last Updated] 2024/04/01 01:05:04 (JST)

Contact Information:

[Name] GMO Pepabo, Inc.

[Email] email@muumuu-domain.com

[Web Page] http://muumuu-domain.com/?mode=whois-policy

[Postal code] 810-0001

[Postal Address] Tenjin Prime 8F, 2-7-21, Tenjin

Chuo-ku, Fukuoka-City, Fukuoka

8100001,Japan

[Phone] 092-713-7999

[Fax] 092-713-7944

クリックすると、以下のページに飛ぶ

https://saimu-gengakushindan.com/page/rt/office.php

事務所

弁護士法人イージス法律事務所第二東京弁護士会

代表者

長 裕康

第二東京弁護士会 第39874号

住所

〒104-0061

東京都中央区銀座6-2-1 Daiwa銀座ビル3階

なお、画像の配布は

https://file.mysquadbeyond.com/uploads/article_photo/photo/4392255/c1a4c788-be8e-4438-b10a-f25c33555c83.png

で行っており、スクリプトの配布は

https://assets-v2.article.squadbeyond.com/assets/webpack/ab_tests/articles/exit_popups/linkPopup-212538b51257b30e817da0d4f1c56b793b809bb50d1035c67e1b8de40be74c02.js"

みたいな形で行っている。

ググると、

https://squadbeyond.com/

Squad beyondが選ばれている理由

https://www.wantedly.com/companies/siva-s/about

デジタル広告業務プラットフォーム「Squad beyond」を開発しています

デジタル業務に欠かせないクリエティブやランディングページのビル機能センターピンに、周辺に続く「レポート」「分析・解析」「改善」「最適化」など必要な全ての機能を有し、全てが連動して自動的に設定や改善が動き出すことで効率化を実現するプラットフォームです。

ユーザー全体で、数百社・数千人のユーザーがSquad beyondの利用を通し

・100万ページ超のランディングページ制作

・100万ページ分のABテスト最適化PDCA、レポーティング

・100万件超のコンバージョン

を行っています

Squad beyondが世に出るまで、これらにかかる作業や、作業同士をつなぐ設定の多くは人力で処理されていました。

我々は、「業務プラットフォーム」を再発明することで可能な限りルーチンを減らし本当に必要仕事フォーカスする時間ユーザー提供します。

その結果、「良い広告コンテンツが増え、消費者に良い製品との出会い提供する」を通し、ユーザービジネス健全に発展する姿を目指しています

(中略)

■社風・環境

  • 人について

創業者

代表の杉浦は過去3度の上場経験しており(東証マザーズ(旧):2回/東証1部(旧):1回)、マーケティングスタートアップにおいて豊富な知見を有しています

経歴

株式会社みんなのウェディング

株式会社Gunosy

株式会社Squad(旧:株式会社SIVA) 創業

現場トップ

No.2の明石(杉浦よりも7歳年上)は、小売業界で商品統括トップとして全国展開・上場経験した経験があります。大組織マネジメント管理に長けています

経歴

株式会社ピーシーデポコーポレーション

株式会社みんなのウェディング

株式会社Squad(旧:株式会社SIVA)

【開発】

エンジニアトップ高橋は、大手Fintech企業出身。それまでに映像系、決済系、広告系の企業経験を積んでいます代表の杉浦とは2013年(当時大学生)に当時のインターン先を通じて知り合い、2017年に杉浦が声を掛けたことで再会。その後2018年にSquad(旧:SIVA)に参画。弊社のすべての開発を知る。

経歴

株式会社Speee

株式会社マネーフォワード

株式会社Squad(旧:株式会社SIVA)

が出てくる。

Squad beyond広告の配布を行っており、依頼主は別にいるんだろうか?

ログイン ユーザー登録
ようこそ ゲスト さん